This is an old revision of the document!
Programming
<Face Tracking>
The findface_publisher.py is a publisher that detects people's face and transfer the x,y coordinates of people's face to the face_tracks.py script.
Directory: facedetects/nodes/findface_publisher.py
- | findface_publisher.py
#!/usr/bin/env python import cv2 as cv # opencv library name to cv import rospy #ros python from sensor_msgs.msg import Image from geometry_msgs.msg import Point rec_point=Point() rospy.init_node("furo_find") coordinates_pub = rospy.Publisher("target_coordinate", Point, queue_size=10) #publish x,y coordinate to the node ## Trained XML file for detecting face with its path face_cascade = cv.CascadeClassifier('/home/dasl/opencv/opencv-4.2.0/data/haarcascades/haarcascade_frontalface_alt.xml') # Trained XML file for detecting eyes eye_cascade = cv.CascadeClassifier('/home/dasl/opencv/opencv-4.2.0/data/haarcascades/haarcascade_eye.xml') # Capture frames from a camera cap = cv.VideoCapture(0,cv.CAP_V4L) while True: ret, img = cap.read() # Convert to gray scale of each frames gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # Detects faces of different sizes in the input image faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: # To draw a rectangle in a face cv.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] target_x=(w/2.0)+x target_y=(h/2.0)+y target_direction_x = target_x/640 target_direction_y = target_y/480 target_direction_x -= 0.5 target_direction_y -= 0.5 target_direction_x *= 2.0 target_direction_y *= 2.0 rec_point.x = target_direction_x rec_point.y = target_direction_y # Detects eyes of different sizes in the input image # eyes = eye_cascade.detectMultiScale(roi_gray) #To draw a rectangle in eyes #for (ex,ey,ew,eh) in eyes: # cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,127,255),2) ##Use the below comment if you need to display an image in a window screen_res=2560,1440 window_width=2560 window_height=1440 cv.namedWindow('img',cv.WINDOW_NORMAL) resized=cv.resize(img,screen_res) cv.resizeWindow('img',window_width, window_height) flipped =cv.flip(resized,1) cv.imshow('img', flipped) h,w,c=img.shape #print(w) #print('width:',img.width) #print('height:',img.height) coordinates_pub.publish(rec_point) rospy.loginfo(rec_point) rate = rospy.Rate(200) #rate.sleep() # Wait for Esc key to stop if cv.waitKey(5) ==27: break
The face_tracks.py script is a subscriber that receives the x,y coordinate of a person's face and enable Furo to move toward the person.
Directory: head_motor/src/face_tracks.py
- | face_tracks.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import rospy from geometry_msgs.msg import Twist from std_msgs.msg import Float32 from geometry_msgs.msg import Point import RPi.GPIO as GPIO from time import sleep GPIO.setmode(GPIO.BOARD) GPIO.setwarnings(False) AN2 =33 #pitch AN1 = 32 #roll DIG2 = 18 #pitch DIG1 = 37 #roll GPIO.setup(AN2,GPIO.OUT) GPIO.setup(AN1, GPIO.OUT) GPIO.setup(DIG2, GPIO.OUT) GPIO.setup(DIG1, GPIO.OUT) sleep(1) p1=GPIO.PWM(AN1,100) p2=GPIO.PWM(AN2,100) __author__= "4dimentional@kau.kr" target_x = 0; target_y = 0; error_x = 0; error_y = 0; diff_x = 0; diff_y = 0; max_output_x = 76.7; min_output_x = -76.7; max_output_y = 76.7; min_output_y = -76.7; def head_motion_callback(rec_point): global target_y,target_x global error_x,error_y global diff_x,diff_y global max_output_x, min_output_x global max_output_y, min_output_y Px,Dx =20, 30 Py,Dy = 20 , 30 prev_x = 0 prev_y = 0 target_x = rec_point.x target_y = rec_point.y error_x = 0 - target_x error_y = 0 - target_y diff_x = prev_x - error_x diff_y = prev_y - error_y prev_x = error_x prev_y = error_y output_x = Px*error_x + Dx*diff_x output_y = Py*error_y + Dy*diff_y if output_x > max_output_x: output_x = max_output_x elif output_x < min_output_x: output_x = min_output_x if output_x < 0: left_speed = abs(output_x) GPIO.output(DIG2,GPIO.LOW) p2.start(left_speed) elif output_x > 0: right_speed = abs(output_x) GPIO.output(DIG2,GPIO.HIGH) p2.start(right_speed) if output_y > max_output_y: output_y = max_output_y elif output_y < min_output_y: output_y = min_output_y if output_y < 0: upward_speed = abs(output_y) GPIO.output(DIG1,GPIO.LOW) p1.start(upward_speed) elif output_y > 0: downward_speed = abs(output_y) GPIO.output(DIG1,GPIO.HIGH) p1.start(downward_speed) print(output_y)
<Furo's Mobility using Joystick>
The joy_node script is to convert joystick value to digital value.
Directory: joy/src/joy_node.cpp
The furo script is a topic is both a publisher as well as subscriber at the same time. Obtaining value from the joystick, converting it to a float data type and passes it to the motor controller.
Directory: learning_joy/src/main.cpp
CMakeList
- | CMakeLists.txt
cmake_minimum_required(VERSION 2.8.3) project(learning_joy) ## Compile as C++11, supported in ROS Kinetic and newer # add_compile_options(-std=c++11) ## Find catkin macros and libraries ## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) ## is used, also find other catkin packages find_package(catkin REQUIRED COMPONENTS joy roscpp turtlesim ) ## System dependencies are found with CMake's conventions # find_package(Boost REQUIRED COMPONENTS system) ## Uncomment this if the package has a setup.py. This macro ensures ## modules and global scripts declared therein get installed ## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html # catkin_python_setup() ################################################ ## Declare ROS messages, services and actions ## ################################################ ## To declare and build messages, services or actions from within this ## package, follow these steps: ## * Let MSG_DEP_SET be the set of packages whose message types you use in ## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...). ## * In the file package.xml: ## * add a build_depend tag for "message_generation" ## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET ## * If MSG_DEP_SET isn't empty the following dependency has been pulled in ## but can be declared for certainty nonetheless: ## * add a exec_depend tag for "message_runtime" ## * In this file (CMakeLists.txt): ## * add "message_generation" and every package in MSG_DEP_SET to ## find_package(catkin REQUIRED COMPONENTS ...) ## * add "message_runtime" and every package in MSG_DEP_SET to ## catkin_package(CATKIN_DEPENDS ...) ## * uncomment the add_*_files sections below as needed ## and list every .msg/.srv/.action file to be processed ## * uncomment the generate_messages entry below ## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...) ## Generate messages in the 'msg' folder # add_message_files( # FILES # Message1.msg # Message2.msg # ) ## Generate services in the 'srv' folder # add_service_files( # FILES # Service1.srv # Service2.srv # ) ## Generate actions in the 'action' folder # add_action_files( # FILES # Action1.action # Action2.action # ) ## Generate added messages and services with any dependencies listed here # generate_messages( # DEPENDENCIES # std_msgs # Or other packages containing msgs # ) ################################################ ## Declare ROS dynamic reconfigure parameters ## ################################################ ## To declare and build dynamic reconfigure parameters within this ## package, follow these steps: ## * In the file package.xml: ## * add a build_depend and a exec_depend tag for "dynamic_reconfigure" ## * In this file (CMakeLists.txt): ## * add "dynamic_reconfigure" to ## find_package(catkin REQUIRED COMPONENTS ...) ## * uncomment the "generate_dynamic_reconfigure_options" section below ## and list every .cfg file to be processed ## Generate dynamic reconfigure parameters in the 'cfg' folder # generate_dynamic_reconfigure_options( # cfg/DynReconf1.cfg # cfg/DynReconf2.cfg # ) ################################### ## catkin specific configuration ## ################################### ## The catkin_package macro generates cmake config files for your package ## Declare things to be passed to dependent projects ## INCLUDE_DIRS: uncomment this if your package contains header files ## LIBRARIES: libraries you create in this project that dependent projects also need ## CATKIN_DEPENDS: catkin_packages dependent projects also need ## DEPENDS: system dependencies of this project that dependent projects also need catkin_package( # INCLUDE_DIRS include # LIBRARIES learning_joy # CATKIN_DEPENDS joy roscpp turtlesim # DEPENDS system_lib ) ########### ## Build ## ########### ## Specify additional locations of header files ## Your package locations should be listed before other locations include_directories( # include ${catkin_INCLUDE_DIRS} ) ## Declare a C++ library # add_library(${PROJECT_NAME} # src/${PROJECT_NAME}/learning_joy.cpp # ) ## Add cmake target dependencies of the library ## as an example, code may need to be generated before libraries ## either from message generation or dynamic reconfigure # add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) ## Declare a C++ executable ## With catkin_make all packages are built within a single CMake context ## The recommended prefix ensures that target names across packages don't collide # add_executable(${PROJECT_NAME}_node src/learning_joy_node.cpp) ## Rename C++ executable without prefix ## The above recommended prefix causes long target names, the following renames the ## target back to the shorter version for ease of user use ## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node" # set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "") ## Add cmake target dependencies of the executable ## same as for the library above # add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) ## Specify libraries to link a library or executable target against # target_link_libraries(${PROJECT_NAME}_node # ${catkin_LIBRARIES} # ) ############# ## Install ## ############# # all install targets should use catkin DESTINATION variables # See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html ## Mark executable scripts (Python etc.) for installation ## in contrast to setup.py, you can choose the destination # install(PROGRAMS # scripts/my_python_script # DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} # ) ## Mark executables and/or libraries for installation # install(TARGETS ${PROJECT_NAME} ${PROJECT_NAME}_node # ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} # LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} # RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} # ) ## Mark cpp header files for installation # install(DIRECTORY include/${PROJECT_NAME}/ # DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION} # FILES_MATCHING PATTERN "*.h" # PATTERN ".svn" EXCLUDE # ) ## Mark other files for installation (e.g. launch and bag files, etc.) # install(FILES # # myfile1 # # myfile2 # DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION} # ) ############# ## Testing ## ############# ## Add gtest based cpp test target and link libraries # catkin_add_gtest(${PROJECT_NAME}-test test/test_learning_joy.cpp) # if(TARGET ${PROJECT_NAME}-test) # target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME}) # endif() ## Add folders to be run by python nosetests # catkin_add_nosetests(test) add_executable(furo src/main.cpp) #Calls furo instead of main.cpp when launching the script from ROS target_link_libraries(furo ${catkin_LIBRARIES})