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Abstract— In generating walking patterns for humanoid
robots, a Center-of-Mass trajectory is usually derived from
the desired Zero-Moment-Point (ZMP) trajectory. One way
to accomplish this is the use of the preview-control method,
which tracks the desired ZMP trajectory while minimizing
the jerk. Another method, which is more computationally
efficient, is based on the convolution-sum method. Although
this method is simple to implement, the resulting motion could
be jerky. In this paper, we utilize the convolution-sum method
to generate walking patterns for slopes and stairs walking while
minimizing jerky motions. Furthermore, we extend the method
to generate walking patterns for non-uniform terrain walking.
This is accomplished by defining certain coordinate frames
and maintaining the right-foot posture necessary for achieving
robust walking. Computer simulations utilizing Webots were
performed to validate the proposed convolution-sum method
for the generation of walking patterns for a HOAP-2 humanoid
robot.

I. INTRODUCTION

To realize walking in uneven terrains, it is obvious that
humanoid robots should be equipped with two important
mechanisms. One is to get sufficiently accurate information
of the surrounding environment and terrain in real time either
through visual input or some other sensors. The other one is
to plan and execute robust walking according to the acquired
environment and terrain information [1], [2], [3]. Although
many walking patterns have been proposed for humanoid
robots to walk on unknown terrains [4], [5], [6], [7], most
of these techniques are applicable to slightly uneven terrains
as indicated in [6]. To move around on uneven ground with
large variations like stairs or steep slopes, real-time terrain
information is essential. We assume that real-time terrain
information is available through necessary sensory inputs.

In this paper we deal with the problem of walking on
uneven terrains with large variations. For generating walking
patterns based on ZMP, a desired ZMP trajectory is first
designed for a given placement of footsteps, then a Center-
of-Mass (CoM) trajectory is derived such that the resulting
ZMP would follow the desired or reference ZMP trajectory
[8], [9]. One way to do this is by using the preview-control
method introduced by Kajita et al. [10], which was used
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by Huang [11] to generate walking patterns for walking
on slopes and stairs. Although the preview-control method
tracks the desired ZMP trajectory reasonably well, it needs
to solve Ricatti’s equation for the optimal control problem.
Wieber et al [12] proposed a method, which solves the
optimal control problem through simpler matrix manipula-
tions instead of solving the more complex algebraic Ricatti’s
equation.

Recently, another method, introduced by Kim [13], effi-
ciently solves the problem of finding the CoM trajectory. It
uses a convolution-sum-based algorithm to derive the CoM
trajectory in real time from a given ZMP trajectory. This
convolution-sum-based algorithm is able to track the ZMP
trajectory exactly in computer simulations. Unfortunately,
the generated CoM trajectory from the convolution-sum
method has jerky acceleration of CoM in certain conditions
[13]. In this paper, we extend the convolution-sum-based
method to generate walking patterns for walking on level
ground and on uneven terrains like slopes and stairs. We
also minimize the jerky acceleration of CoM to accomplish
smooth walking.

For the remaining of the paper, we first discuss the
concept and analysis of the convolution-sum method as
compared to the preview-control method. In Section III, we
propose a flexible walking algorithm based on the proposed
convolution-sum-based method to generate walking patterns
for known uneven terrains such as slopes and stairs utilizing
the scheme of coordinate frames. In Section IV, extensive
computer simulations of walking patterns for a HOAP-2
humanoid robot were performed to validate the proposed
walking-pattern generation on uneven terrains. Finally, Sec-
tion V summarizes the conclusions of the proposed work.

II. CONVOLUTION-SUM METHOD

The convolution-sum method [13] is based on a linear
inverted-pendulum model with a point mass as shown in
Fig. 1. Let us first restate the Zero-Moment-Point (ZMP)
equations, which describe the relation between the ZMP
and the Center-of-Mass (CoM) position and acceleration.
It assumes that the height (H) of CoM remains constant
in the vertical direction. Using this assumption, the x and
y coordinates of ZMP can be described by the following
equations [10], [13], [14]:
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Fig. 1. A linear inverted-pendulum model.

xzmp = xcom −
H

|g|
ẍcom (1)

yzmp = ycom −
H

|g|
ÿcom (2)

where |g| is the magnitude of the acceleration due to
the gravity g, and (xzmp, yzmp) is the position of ZMP
trajectory. Throughout this paper, unless specified otherwise,
x-axis is in the direction of forward motion of the humanoid
robot, y-axis is along the lateral motion, and z-axis is
vertically upwards away from the supporting ground.

A. Finding CoM trajectory from ZMP reference Trajectory
using Convolution Sum

The above Eqs. (1) and (2) show that if the CoM trajectory
is known, then the ZMP trajectory can be easily computed.
However, for the generation of walking patterns, we need
to solve the inverse problem; that is, we are interested in
deriving the CoM trajectory from the desired ZMP trajectory.
Since Eqs. (1) and (2) are second-order differential equations
in xcom and ycom, respectively, we can treat the ZMP
trajectory as an input to a system and the CoM trajectory as
the output or response of the system. The output of a linear
time-invariant system is actually the convolution of the input
signal with its impulse response. So the idea here is if we can
find the impulse response of this system, we can convolve
any given ZMP trajectory with this impulse response to
obtain the CoM trajectory. Thus, an acausal step response,
which satisfies the above equations, is first obtained, then
from the step response, a discrete-time impulse response,
h[n], is obtained [13],

h[n] = h[0] · e−|n|λT , (3)

where h[0] = 1
2 (e
−λT − 1)e−

λT
2 = sinh(λT2 ), λ = |g|

H , and
T is the sampling period.

Using the above impulse response truncated at a suffi-
ciently large N , the CoM trajectory can be found from
the reference ZMP trajectory by using the convolution-sum
method,

xcom[n] =

k=N∑
k=−N

xzmp[n− k]h[k]. (4)

If N is chosen to be sufficiently large so that the effect of
truncation of impulse response is minimal, the convolution-

sum method in principle tracks the ZMP trajectory ex-
actly. Kim [13] has also derived a recursive formula for
computing the above convolution-sum method, which is
computationally more efficient for the online generation of
CoM trajectory.

B. ZMP Preview-Control Method

The ZMP preview-control scheme [10], which generates
dynamically stable motions for a humanoid robot, is also
based on a linear inverted-pendulum model for designing
an optimal servo controller. In this method, a new variable
is introduced, which is the derivative of CoM acceleration.
If the CoM trajectory has abrupt changes in acceleration,
then the resulting motion will be jerky. So the derivative of
CoM acceleration quantifies the jerkiness of motion [12].
Hence, the strategy for the generation of walking motion in
the preview-control method is to track the ZMP trajectory
closely while minimizing the derivative of CoM acceleration.
In general, these two goals are competing objectives; that is,
minimizing errors in the ZMP trajectory may result in large
jerkiness, and minimizing the jerkiness may result in large
errors in the ZMP trajectory. Hence, the control problem is
formulated as the linear quadratic regulator (LQR) problem.

min...
x (k)
com,

...
x (k+1)
com ,...

∞∑
i=k

1

2
Q(x(i)zmp − x(i) refzmp )2 +

1

2
R

...
x(i)2
com (5)

where the parameters Q and R are appropriate weights,
which reflect the relative importance of keeping the error
in ZMP trajectory small versus keeping the jerkiness to a
minimum. For this method we have to solve the Ricatti’s
equation to obtain a solution to the above problem.

C. Problems with Convolution-Sum Method

Although the convolution-sum method tracks the ZMP
trajectory exactly, its CoM trajectory may have large jerky
motions. As shown in Fig. 2, when the ZMP trajectory is a
step input, the resulting CoM trajectory has an abrupt change
in the CoM acceleration. This means that the derivative of
CoM acceleration is quite large, which results in large jerky
motions. Thus, one needs to keep the jerk, or the derivative
of CoM acceleration, within acceptable bounds.

We found that instead of using a ZMP trajectory, which
has a step change, we use a ZMP trajectory that rises
somewhat gradually, the resulting third derivative of CoM
trajectory gets reduced significantly as shown in Fig. 3. This
shows that the jerk has some dependency on the shape of
desired ZMP trajectory. This becomes evident when we take
the time derivative of Eq. (1) and obtain

ẋrefzmp = ẋcom −
H

|g|
...
xcom (6)

Rearranging Eq. (6), we get

...
xcom =

|g|
H

(ẋcom − ẋrefzmp) (7)

Equation (7) shows that the third derivative of xcom (i.e.,...
xcom) is a function of CoM velocity ẋcom and the first
derivative of ZMP trajectory ẋzmp. Since the CoM velocity
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Fig. 2. Step reference ZMP trajectory with Ts = 10 ms and l = 1 m,
where λ =

√
|g|/l = 3.1315

Fig. 3. Modified reference ZMP trajectory with Ts = 10 ms and l = 1
m, where λ =

√
|g|/l = 3.1315

always remains within a limited range, and if ẋzmp is large,
then the jerk can be large. Hence, given a bound on the value
of jerk (i.e., third derivative of xcom or ycom), we can find
a bound on the first derivative of xzmp and yzmp. From Eq.
(7), we find that the maximum absolute value of

...
xcom at

any instant of time can be at most,

max |...xcom| =
|g|
H

(|ẋcom|+ |ẋzmp|) (8)

Hence, the upper bound on xzmp and yzmp velocities can
be written as

|ẋzmp| ≤
H

|g|
max |...xcom| −max |ẋcom| (9)

|ẏzmp| ≤
H

|g|
max |

...
y com| −max |ẏcom| (10)

where max |ẋcom| and max |ẏcom| are maximum attainable
CoM velocity during the walking cycle in x and y direction,
respectively.

This implies that if we design the desired ZMP trajectory
such that the ZMP velocity is bounded by some value, then

we shall have jerkiness in motion within allowable limits.
Let us consider a single-support phase walking scenario
with footsteps as shown in Fig. 4(a). One way is to design
the ZMP trajectory such that the ZMP lies at the center of
supporting foot, and it moves to the other foot instantly when
the supporting foot changes. The resulting ZMP trajectory
profile will look like as in Fig. 4(b). We can see that the ZMP
trajectory has step-size changes, which are not desirable
since they will result in large jerky motions.

(a)

(b)
Fig. 4. (a) Footsteps, (b) Xzmp profile and Yzmp profile.

If we introduce a double-support phase (DSP) between
two single-support phases (SSP) and appropriately choose
the duration of DSP, we can design the ZMP trajectory to
have a bounded ZMP velocity. It should be noted that the
ZMP velocity is very low during a SSP and is only high
when the ZMP has to move from one supporting foot to the
other during a DSP. This will result in balanced motions no
matter how slow the ZMP moves from the previous foot
to the next foot because we shall ensure that this ZMP
transition takes place during the DSP only. This design of
the ZMP trajectory will lie within the support convex hull
bounded by the two feet. The duration of the DSP of kth
walking step can be found as follows.

tDSP ≥
x
(k+1)
supp − x(k)supp

max |ẋzmp|
(11)

where x(k)supp is the x coordinate of supporting-foot position
in kth walking step. Also we should have

tDSP ≥
y
(k+1)
supp − y(k)supp

max |ẏzmp|
. (12)

The greater of the above two values is selected as tDSP .
Calculating the duration of a DSP ensures that the ZMP
velocity remains within the upper bound defined by Eqs. (9)
and (10).
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For the HOAP-2 robot that we used in our computer
simulations, the parameter values are H = 0.313m,
max |ẋcom| = 0.2m/s, and |g| = 9.8066m/s2. For example,
if we choose the upper bound on |...xcom| = 20m/s3 and for
the first step, x(0)supp = 0 and x

(1)
supp = 0.08m, then using

the above equations we get max |ẋzmp| = 0.438 m/s, which
in turn gives the lower bound of the duration of DSP as
tDSP = 183 msec.

III. CONVOLUTION-SUM-BASED FLEXIBLE WALKING
ALGORITHM FOR KNOWN TERRAINS

Whether it is the preview-control method or the
convolution-sum method for generating walking patterns, the
trajectories generated must be referenced to some coordinate
frame. One can use the world coordinate frame as the
reference coordinate frame. However, by doing this way,
it will become more complicated to plan the trajectories.
This is mainly because if the robot has been walking for a
while, we need to maintain the complete history of walking
in order to determine its current location with reference to
the world coordinate frame (W). We need to do it because in
this method everything, including foot positions, trajectories
of CoM and ZMP and so on, would need to be referenced
to the world coordinate frame. Thus, it is better and more
efficient to use some local coordinate frame as a reference
for planning trajectories.

Since there exist many choices of local coordinate frames,
one can assign the reference coordinate frame to the center
of the trunk of the robot. But this is also not a good choice
for planning trajectories, especially if it is omni-directional
walking. Furthermore, if performing a turning motion, the
reference coordinate frame itself will be changing its orien-
tation as well. Hence, the best choice is to choose a local
coordinate frame that will remain stationary with respect to
the ground during a phase of the walking cycle. A walking
cycle has two distinct phases — a single support phase (SSP)
and a double support phase (DSP). During a SSP, the robot
is only supported by one leg and the other leg is in a swing
mode. If we assume that there is sufficient friction between
the support foot and the ground (i.e., there is no slippage),
then the support foot can be assumed to be stationary with
respect to the ground during a SSP. Hence, we can assign
the reference coordinate frame to the support foot as shown
in Fig. 5 and calculate all the trajectories belonging to this
walking cycle with respect to this coordinate frame. We shall
denote this coordinate frame as a trajectory coordinate frame
or just the T frame. Here we should note that the support
foot changes from left to right and vice versa once in every
walking cycle. So does the T coordinate frame.

Strom et al [15] proposed a similar scheme for omni-
directional walking on a level ground. As we shall show,
selecting the reference coordinate frame at the support foot
will make it easier to implement walking on uneven ground
as well as walking on slopes and stairs. For walking on
slopes and stairs, Huang et al [11] have proposed a method
in which they have to change the ZMP model whenever the
robot walks on a slope. The change proposed in the ZMP

Fig. 5. Coordinate frames being used.

model is convenient in the sense that it is a simple change
and the computation of trajectories for slopes remains very
similar to that for the level ground. But the ZMP model
has to be changed whenever the robot encounters a different
slope and connecting two trajectories over slope discontinu-
ities is rather cumbersome. In our approach of selecting the
reference coordinate frame at the support foot, we do not
have to change the ZMP model for changing slopes as well
as to all sorts of terrains like stairs and uneven ground.

Fig. 6. Chart of the proposed convolution-sum walking algorithm.

The proposed convolution-sum walking algorithm of gen-
erating walking patterns is shown in Fig. 6. The proposed
algorithm assumes that the terrain information is available in
real time and the position of the robot relative to the terrain
is also known at all instants of time with the help of some
sensory information system. For a given initial configuration
of the robot’s feet and posture, the foot-step planner decides
the next foothold based on the terrain information. Here we
do not discuss the operation of the footstep planner, but just
assume that the next planned foot step is available. It should
be noted that the next planned footstep needs not be on the
same level, it can be at a lower or higher level depending
upon the terrain. Based on the next footstep, the support foot
and the swing foot are determined. A new coordinate frame,
which we mentioned as the trajectory coordinate frame or
the T frame, is attached to the support foot such that the
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origin of the trajectory coordinate frame coincides with the
origin of the support-foot coordinate frame (F), but its z-
axis is always parallel to the gravity. That is why using this
trajectory coordinate frame, we can generate trajectories for
both level ground as well as slopes and stairs because the
coordinate frame always remains aligned with the gravity,
and we do not have to change the ZMP model as in [11].
Using the forward kinematics, the initial position of CoM
and the initial position of the swing foot are determined
with reference to the support-foot coordinate frame. Note
that the support-foot coordinate frame (F) is not the same
as the trajectory coordinate frame (T). Although their origins
coincide, the coordinate frame T’s z-axis is always aligned
with the gravity and the orientation of the F coordinate
frame changes with the foot orientation. Using the rotation
matrix TRF , the initial position of CoM and the initial
position of the swing foot can be rotated to the T frame
because from now on everything will be referred to the T
frame. Then the ZMP trajectory is designed for the current
step according to the details in Section II. After that the CoM
trajectory is obtained using the convolution-sum method.

The swing-foot trajectory is calculated by a sinusoidal
interpolation between the swing-foot initial position and the
final position using a raised-cosine function for reducing the
impact when the swing foot lands on the ground. Once the
CoM trajectory and the swing-foot trajectory are obtained,
joint trajectories are calculated using the inverse kinematics
[16].

Finally, to ensure that when the swing foot lands on the
ground, it is parallel to the ground, the available terrain
information is used to calculate the gradient of the terrain
surface at the landing site, and from that the required ankle
joint angles (pitch and roll) of the swing foot are calculated.
Then the pitch- and roll-angle trajectories are calculated by
sinusoidally interpolating between the initial-angle values
and the final-angle values required for safe landing.

IV. COMPUTER SIMULATIONS

Using the dynamic simulation software Webots, we eval-
uated the proposed convolution-sum walking algorithm on
a HOAP-2 robot as shown in Fig. 7. HOAP-2 robot is 50
cm in height and weighs about 7.0 kg. It has 25 degrees of
freedom (DoFs), 6 in each leg, 4 in each arm, 1 in each hand,
1 in the waist and 2 in the neck. The kinematic diagram of
a HOAP-2 robot is shown in Fig. 7(b).

In our computer simulations, the real-time ZMP trajectory
is measured by 4 force sensors placed under each foot of the
robot. It is shown in Fig. 8 and the corresponding measured
CoM trajectory and the resulting jerk is shown in Fig. 9.
The step length is 0.1 m, the step duration is 1.5 sec, and
the sampling period is 50msec. In the proposed convolution-
sum trajectory generation function, we have λ = 5.596. The
time constant of impulse response is τ = 1/λ = 0.179.
Therefore, the impulse response is truncated to t = 5τ ,
which corresponds to having approximately N = 30 samples
of impulse response in discrete time. The upper- and lower-
bound indicate the stability margins in which ZMP can move

(a) (b) (c)
Fig. 7. (a) HOAP-2, (b) Kinematic diagram, and (c) HOAP-2 model in
Webots.

without falling down, and they depend upon the size of the
foot.

(a)

(b)
Fig. 8. Trajectory of ZMP.

As shown in Fig. 8, the actual ZMP trajectory measured
by force sensors remains within the upper and lower bounds
of stability margin. However, it is not exactly following the
desired reference ZMP trajectory because of the difference
in the dynamic model between the real robot and the linear
inverted-pendulum model that we used. Since the DSP
duration was determined in such a way that the jerk in
the resulting motion remains within acceptable bounds, we
can see from Fig. 9(b) that the jerk in the measured CoM
motion is well within the bound of ±20m/s3. Since the CoM
trajectory was measured by using a position sensor attached
to the CoM of the robot in the simulation software, we have
some noise in the graphs of xcom and the jerk of xcom.

In order to show the effectiveness of the proposed
convolution-sum walking algorithm, we performed four sim-
ulations: Upslope/Downslope walking from a flat terrain, and
upstair/downstair walking and transition walking from 5◦
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(a)

(b)
Fig. 9. Trajectory of CoM and jerk in X direction

to 10◦ to 15◦ slopes. The snapshots of these simulations
are shown in Figs. 10-11. The simulations show that the
proposed convolution-sum walking algorithm can be suc-
cessfully applied for walking on stairs and grounds with
changing slopes.

(a) (b) (c) (d)
Fig. 10. Snapshots of upstair walking (height=30mm, length=125mm) and
Snapshots of downstair walking (height=15mm, length=100mm)

(a) (b)

(c) (d)

Fig. 11. Snapshots of transitional-upslope walking from 5◦ to 10◦ to 15◦.

V. CONCLUSIONS

In this paper, we extended and utilized the convolution-
sum method to generate walking patterns for uneven terrains

while maintaining the jerky motion of the generated CoM
trajectory to within an acceptable bound. The proposed
convolution-sum walking algorithm assumes that the un-
known terrain information is available in real time. To im-
prove the computational efficiency of the proposed walking
algorithm, the proposed algorithm selects the support-foot
coordinate frame as the reference coordinate frame, which
remains stationary with respect to the ground during a phase
of the walking cycle, for planning the trajectories. It has been
demonstrated through computer simulations on Webots that
it can enable successful walking on stairs and grounds with
changing slopes.
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