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Design of an optimal controller for a discrete-time system 
subject to previewable demand 

TOHRU KATAYAMAtS, TAKAHIRA OHKIS, TOSHIO TNOUES 
and TOMOYUKI KATOt 

This paper is concerned with a method of designing a type one servomechanism for a 
discrete-time system subject to a time-varying demand and an unmeasurable 
constant disturbance. It is assumed that the time-varying demand is previewable in 
the sense that some finite future as well as present and past values of the demands are 
available at each time. A controller with state feedback plus integral and preview 
actions is derived by applying a linear quadratic integral (LQI) technique due to 
Tomizuka and Rosenthal(1979). It is shown under the stabilizability and detecta- 
bility conditions that the closed-loop system achieves a complete regulation in the 
presence of small perturbations in system parameters, eliminating the effect of 
disturbance. An example of power plant control is presented to show the flexibility 
of the design method and the effectiveness of the preview action for improving the 
transient responses of the closed-loop system. 

1. Introduction 
In many practical control systems designs, it is required that the outputs, or the 

controlled variables, track without steady-state error the demand signals in the 
presence of unmeasurable disturbances. For more than a decade there has been 
much interest in tracking or servo-mechanism problems for linear time-invariant 
multivariable systems (Davison 1972, Smith and Davison 1972, Young and Willems 
1972, Bradshaw and Porter 1976, Furuta and Kamiya 1982). Furthermore, design 
problems of robust servomechanisms have been extensively studied by the state-space 
and frequency-domain approaches (Davison and Goldenberg 1975, Davison 1976, 
Francis and Wonham 1976, Ferreira 1976). An overview of the state of knowledge 
on the robust servomechanism problem is presented by Desoer and Wang (1980). 

In most papers mentioned above, however, it is assumed that the desired signals as 
well as disturbances are constants, or ramp functions, or  more generally the outputs of 
some free time-invariant linear systems. More recently, assuming that the disturb- 
ances are previewable, Tomizuka and Rosenthal (1979) have developed a digital 
controller with state feedback plus integral and preview actions for a discrete-time 
system with a constant demand input; they have shown that the preview of future 
disturbances is very effective for improving the transient responses of the closed-loop 
system. A related finite preview control problem for a continuous-time system is also 
considered by Tomizuka (1975). 

This paper deals with a tracking problem for a discrete-time system in the presence 
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of unmeasurable disturbances. It is assumed that the demand signal is rather 
arbitrary but eventually converges to a constant vector, and that finite future values of 
the demand signal are available at each instant of time. These assumptions may not 
be unrealistic in many practical control problems. For example, in power plant 
control, the outputs must be kept at constant levels over a period of time, where the 
constant levels,.or the set points, may change from time to time according to the load 
demand, for which a local future information is available. We wish to present a 
method of designing an optimal type one servomechanism for a discrete-time system 
by extending the linear quadratic integral (LQI )  technique due to Tomizuka and 
Rosenthal (1979). 

This paper is organized as follows. In 5 2, we formulate the tracking problem as 
an LQI problem by defining an appropriate performance index and an augmented 
state-space model ihat includes the available future demands as a part of the state 
vector. The optimal controller with state feedback plus integral and preview actions 
is derived in 5 3. Section 4 presents some preliminary lemmas. In 5 5, we show that 
the closed-loop system is asymptotically stable and hence a complete regulation 
occurs under the conditions of stabilizability (or reachability) and detectability (or 
observability). We also show that a complete regulation occurs in the presence of 
small perturbations in system parameters. Section 6 is devoted to the stability 
analysis of the overall system when an observer is incorporated into the state feedback 
loop. A numerical example taken from a power control is provided in 5 7 to 
show the feasibility of the present method and the effectiveness of the preview action 
for improving the transient responses of the plant. 

2. Problem statement 
We consider a time-invariant linear discrete system described by 

where x(k) is the n x 1 state vector, u(k) the r x 1 control vector; y(k) the p x 1 output 
vector to be controlled and w(k) the q x 1 inaccessible constant disturbance. A, B, C 
and E are constant matrices of dimensions n x n, n x r,  p x n and n x q, respect- 
ively. It is assumed that rank B = r, rank C = p and rank E = q. 

Let yd(k) be the p x 1 desired output, or the demand vector, for which we assume 
that there exists a constant vector such that 

lim yd(k) = fi 
k - m  

This implies that the demand vector is an arbitrary time-varying function, except that 
it reaches a steady state. We further assume that the demand is previewable in the 
scnse that at each time k, NL future values y,(k + I), . . . , yd(k + NL) as well as the 
present and past values of the demand are available. The future values of the desired 
output beyond time k + NL are approximated by yd(k + N,), namely 

The basic design problem considered in this paper is to find a controller such that: 

(i) In the steady state, the output y(k) tracks the demand vector yd(k) in the 
presence of disturbance w(k). 
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(ii) The closed-loop system is asymptotically stable and exibits acceptable transi- 
ent responses. 

In order to meet the above requirements, it is desired to introduce integrators to 
eliminate the tracking error e(k) = y(k) - yd(k). In other words, we must design a type 
one servomechanism for the system of (1) and (2) such that the asymptotic regulation 
occurs, e(k)-+O as k+ a, while keeping the transient responses satisfactory in some 
sense. To this end, we employ the LQI technique (Athans 1971, Smith and Davison 
1972, Tomizuka and Rosenthal 1979). 

Let the incremental state vector be Ax(k) = x(k) - x(k - 1) and let the incremental 
control vector be Au(k) = u(k) - u(k - 1). It is wet1 known (Athans 1971) that the 
integral action of the controller is introduced by including the incremental control in 
the performance index. Therefore we wish to obtain the optimal controller u(k) such 
that the performance index 

is minimized at each time k, where Q, and R are p x p and r x r symmetric positive 
definite matrices respectively, Q, is an n x n symmetric non-negative definite matrix, i 
denotes the dummy time index and the superscript ( s ) ~  denotes the transpose. 

It should be noted that the term eT(i)Q,e(i) represents the loss due to tracking 
error, and that AxT(i)QXAx(i) and AuT(i)RAu(i) represent the losses due to the 
incremental state and control vectors respectively. Thus the physical interpretation 
of J is to achieve the asymptotic regulation without excessive rate of change in the 
state and control vectors. The quadratic term for the rate of change in state vector, 
which is not used in Tomizuka and Rosenthal(1979), will make the design technique 
more flexible allowing us to directly regulate the transient responses of the state 
variables. 

3. Design of optimal controller 
We derive an augmented state-space description that includes the future informa- 

tion on the demand signal as well as the error e(i), the incremental state vector Ax(i) 
and the incremental control vector Au(i). From (I), the incremental state is described 
by 

Ax(i + 1) = AAx(i) + BAu(i), i = k, k + 1, . . . (5) 

where we note that the incremental disturbance Aw(k) does not appear because the 
disturbance is a step function. Also, we see from (2) and (5) that the tracking error 
satisfies 

where the incremental demand is defined by 

Combining (5) and (6) yields 

where i = k, k + 1, ..., and I ,  denotes the p x p unit matrix. 
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Since N L  future demands yd(i), i = k + 1, ..., k +  NL, are available at time k,  
the relevant information on the incremental demand can be summarized as the 
p N L  x 1 vector 

xd(k)  = [ A Y : ( ~  + I ) ,  . . . , A J J : ( ~  + N ~ ) ] ~  (9) 

It follows from the assumption of ( 3 )  that xd(i) satisfies 

where 

Now define the ( p  + n + pNL) x 1 augmented state vector 

f ( i )  = [eT(i) AxT(i) x;(i)lT (12) 
' Putting (8) and (10)  together yields 

On the other hand, in terms of the augmented state vector f(i),  the performance index 
J of (4) is expressed as 

Therefore, the optimal controller can be derived by solving the optimal control 
problem that minimizes the performance index J of (14)  subject to the dynamic 
constraint of (13). 

For the sake of simplicity, we define 

Theorem 1 
The optimal incremental control Aua(k) is given by 

where 

G, = [ R  + BTRB] - 'BTRJ 
G, = [R + BTRB] -'BTZF 
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and where the ( p  + n) x ( p  + n) matrix is the non-negative definite solution of the 
algebraic Riccati equation 

R = ATRJ - A ~ R B [ R  + BTRB] - 1 Bl'RA + (18) 

Furthermore, the (p + n) x p matrices z ( 1 )  are given by 

2(1) = A;T8(1- I ) ,  I = 2, . . . , NL; 2(1) = - AZRi (19) 

where is the closed-loop matrix defined by 

A, = A - B[R + BTRE] - BTRA (20) 

Proof 
A proof is elementary, and is given in Appendix A for completeness. 

Theorem 2 
The optimal controller uO(k) is given by 

where it is assumed that y(k) = yd(k) = 0, x(k) = 0 for k = 0, - 1 ,  . .. 

Proof 
A proof is immediate from Theorem 1. 

It should be noted that the optimal controller uO(k) of (21)  consists of three terms; 
the first term represents the integral action on the tracking error, the second term 
represents the state feedback and the third term is the feedforward or preview action 
based on the local future information on the demand vector. 

We observe that if N L  = 0 ,  then the preview action disappears from (21)  so that 
uo(k) becomes 

Moreover, since G , ( l )  = - G I  if NL = 1, then we have 

This is a state feedback controller with integral and feedforward actions. 
Let o(k) be the discrete integral of tracking error e(k), namely 
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Thus it follows from (21) and (24) that the optimal controller is expressed as 

Hence the resulting configuration of the overall system becomes as shown in 
Fig. 1. Noting that e(k) = y(k)  - y,(k), it follows from (I), (2) and (24) that 

Combining (1) and (27) gives 

where 

E =  [TI 
Substituting (26) into (28) yields 

where A, is given by (20). 
Therefore we observe that the closed-loop characteristic is determined by A,, or 

the state feedback and the integral action, so that the stability of the overall system is 
independent or the preview action. It should be noted that the controller uO(k) is 
independent of the matrix E; thus the exact knowledge of the disturbance matrix is not 
necessary for designing the optimal controller. Note that this is not the case if the 
state vector is not directly accessible (see 4 6). 

w(k) 
Prevlew action I 

/ Integral  action I I I 
u 

Slate feedback 

Figure 1. Overall configuration of feedback system. 

4. Preliminary lemmas 
In order to prove the asymptotic stability of the closed-loop system we need some 

preliminary lemmas for stabilizability (or reachability) and detectability (or 
observabili ty). 
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Lemma l a  
The pair (A, I?) is stabilizable if and only if (A, B) is stabilizable and the following 

rank condition holds 

C 
rank[' B A - I ,  ] = p + n  

Proof 
For the proofs of this and following lemmas, the PBH rank test (Kailath 1980) is 

employed. Assume that (A, B) is stabilizable and (31) holds. For the stabilizability 
of (2, B) it suffices to show that for any complex 111 2 1 

1 - ) I p  CA 
rank [A- Alp+, i B] =rank ""1 = p + n  

A-Al, B 
. (32) 

Since rank [A - ill, i B] = n for any complex 113-1 2 I ,  we see that (32) holds for 
il # 1. For the case of A = 1, it follows from (31) that 

Thus we have shown that (32) holds for any complex 111 2 1. 
Now assume that (A, d) is stabilizable, so that (32) holds for any complex 

1A12 1 .  Since the matrix [A - II,,, i 83 has a maximal row rank for any complex 
111 2 1 ,  we see that rank [A - A I ,  i B] = n for any complex 1A12 1. Letting A = 1 in 
(32) and using (33), we have (31). 

A continuous-time version of Lemma l a  has been proved by Smith and Davison 
(1972) by manipulating the controllability matrix. It is also well known that the rank 
condition of (31) implies that the system (C, A, B) has no  transmission zeros at  z = 1 
(Davison 1976). 

Lemma 1 b 
The pair (A, B) is reachable if and only if (A, B) is reachable and the rank condition 

of (31) holds. 

Proof 
For the reachability of (A, B), it suffices to show that (32) holds for any com- 

plex A. Assume that ( A ,  B) is reachable and (31) holds. It then follows that rank 
[A - 11, I B] = n for any complex 2. Thus, for I # 1, we can easily see that (32) 
holds. Moreover, for A = 1, (33) holds as shown above. This implies that (A, B) is 
reachable. O n  the other hand, if (A, B) is reachable, then (32) holds for any complex 
I. Hence, as in the proof of Lemma la, we have rank [A - IIn iB] = n for any 
complex 1, and we have (31). This completes the proof of Lemma lb.  

By manipulating the controllability matrix, Seraji (1983) has proved Lemma I b, 
and Young and Willems (1972) and Smith and Davison (1972) have proved the 
continuous-time version of Lemma lb. 
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Now let H e  and H x  be p x p and n x n matrices such that Q, = HTH, and 
Q, = HZH, respectively. Then we have 

Q=jjTA (34) 

where 

Lemma 2a 
' . Let Q, be positive definite. If (C, A) is detectable, then (R, 2) is detectable. 

Proof 
We can easily see that (CA, A)  is detectable if and only if (C, A) is detectable. For 

the detectability of (A, A) it suffices to show that for any complex (11 2 I 

Suppose that (C, A) is detectable and hence (CA, A) is detectab!e. Then for any 
complex 111 2 1 

But since rank He = rank Q e  = p, i t  follows from (37) that (36) holds for any complex 
113-1 2 1. 

Lemma 2b 
Let Q, be positive definite, and assume that A is non-singular. Then if (C, A) is 

observable, (I?, 2) is observable. 

Proof 
Suppose that (C, A) is observable. Since A is non-singular, (CA, A) is observable 

if and only if (C, A) is observable. Therefore (37) holds for any complex I ,  so that we 
see from rank He = p that (36) holds for any complex I. This implies that (R, 2) is 
observable. D 

It should be noted that if Q,  = 0, then Lemmas 2a and 2b give necessary and 
sufficient conditions for the detectability and observability of (A, A) respectively. 
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5. Property of feedback system 
In this section, we consider the stability of the closed-loop system described by 

(30). 

Theorem 3a 
Suppose that the following conditions are satisfied: 

(a)  Q, and R are positive definite, 

(b) the rank condition of (31) holds 

C 
rank[O B A - I ,  ] = p + n  

(c)  (A, B) is stabilizable, 

( d )  (C, A)  is detectable. 

Then the algebraic Riccati equation of (18) has the unique non-negative definite 
solution k ,  and the eigenvalues of A, of (20) are all inside the unit circle in the complex 
plane, namely A", is asymptotically and exponentially stable. 

Proof 
From Lemmas la  and 2a, it follows that (A", B) is stabilizable and (G, A) is 

detectable. Furthermore, since R is positive definite the algebraic Riccati equation 

K" = pK"J - ~ P ~ B [ R  + P K B ]  - 'ETRA + ( 1 8') 

is well defined. Thus the theorem is proved by applying the well-known theorem for 
the linear quadratic regulator (Kucera 1972, Kwakernaak and Sivan 1972). 0 

Theorem 3b 
Suppose that the conditions (a) and (b) of Theorem 3a are satisfied. Moreover, 

assume that: 

(c') ( A ,  B )  is reachable, 

(d') (C, A) is observable and A is non-singular. 

Then the statement of Theorem 3a hdds, except that the algebraic Riccati equation 
has the unique positive definite solution. 

Proof 
It follows from Lemmas l b  and 2b thai (A, B) is reachable and (6,  A) is 

observable. The rest of the proof is standard (Kucera 1972, Kwakernaak and Sivan 
1972). 

Remark 1 
It should benoted that the condition of (31) implies that r 2 p. Thus for A", to be 

asymptotically stable, the number of control variables must be greater than or equal 
to that of the output variables to be controlled. This is quite common in practical 
control problems. 

Remark 2 
It follows from (17 c), (17 d) and (19) that the preview gains are given by 

~ ~ ( 1 )  = - C R  + P R B I - ~ P ( X ) ' - ~ R K  I = 1, ..., NL (38) 
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Thus, under the assumption of Theorem 3a or 3b, the information on the future values 
of the demand vector becomes less important as I increases, since A, is exponentially 
stable. 

Now we show that under the assumption of Theorem 3a or 3b, a complete 
regulation occurs for the optimal closed-loop system. 

Theorem 4 
Assume that the conditions of either Theorem 3a or 3b are satisfied. IT the 

demand vector is a step function, then a complete regulation occurs 

lim e(k)  = 0 (exponentially) 
k -  m 

and also 
lirn x(k) = 2 and lirn uO(k) = i 

k -  m k - m  

where 2 and i are constant vectors related by 

and where w(k) = C for k > 0. 

Proof 
By taking the increment of (30), or by substituting AuO(k) from (16) into (8), it 

follows that 

5(k + 1) = A,<(k) +I (k) (42)  

where <(k)  = [eT(k) AxT(k)IT, and 

Since the demand vector is a step function, we have Ayd(k + I) = 0 for any I .  Thus 
f ( k )  = 0, so that (42)  reduces to t ( k  + 1) = J c t ( k ) .  But since & is exponentially stable 
from Theorem 3a or 3b, it follows that 

lirn ((k) = 0 
k- m 

so that 
lirn e(k) = 0 and lirn Ax(k) = 0 

k - , a  k - m  

By using (16) ,  we have 
lirn Auo(k) = 0 

k + m  

Thus we have shown (40); moreover from ( 1 )  and (2), we have (41). 

Theorem 5 
Assume that the conditions of either Theorem 3a or 3b are satisfied. If the 

demand vector satisfies 
lirn yd(k) = fi 
k+ m 
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then a complete regulation also occurs, namely e(k) -0 as k -t m, and we have (40) and 
(41). The convergence of e(k) is, however, not necessarily exponential, since it 
depends on the rate of convergence of demand vector y,(k). 

Proof 
A proof is immediate by noting that 2, is exponentially stable and that f (k) 0 as 

k -P m in (42). 

Remark 3 ' 
It may be noted that since (41) can be written as 

[O B A - I "  c ] [ [ : ] = [ " ]  -Ew 

the rank condition of (31) implies that there exist z i  and 2 for given fi and w. Note 
that if p = r, then the steady states tiand %are independent of the quadratic weights 
and R.  The transient responses, however, depend heavily on the quadratic 
weights. It should also be noted that if r > p, namely the number of control variables 
are greater than that of the output variables to be controlled, then the steady states ti 
and 2 will be affected by the quadratic weights. 

Remark 4 
We note here that the asymptotic stability of a dynamic system is generally 

preserved for small perturbations in the system parameters. Thus it follows from 
Theorem 4 or 5 that a complete regulation occurs for the closed-loop system of (30) in 
the presence of small perturbations in A, B, C and E matrices, namely the controller is 
insensitive to small change in system parameters. Furthermore, the arbitrary 
perturbations are allowed as long as the closed-loop system is asymptotically stable. 

6. Observer-based controller 
When the state vector x(k) is not directly measurable, we are led to the 

introduction of an observer or a Kalman filter to obtain the estimate of the state 
vector (O'Reilly 1983). In this section, we assume that the measurable output vector 
is given by 

where y,(k) is the m x 1 measurable output vector, and C, is the m x m constant 
matrix. Usually the p x 1 output vector to be regulated is a part of the measurable 
output vector, so that there exists the p x m matrix M such that C = MC,. This is 
called the 'readability condition' (Francis and Wonham 1976). , 

Since w(k) is constant, we have 
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Let Yk-' 
~m(k - 1)). 
ments pm- 

be the measurements up to k- 1, namely Pm-' = {ym(0), ym(l), ..., 
Let 2(k) and 6(k) be the estimates of x(k) and w(k) based on the measure- 
respectively. Then the full-order observer for the system of (47) and 

(48) is given by 

where L, and L, are n x m and q x m constant gain matrices respectively, which are 
determined so that the (n + q) x (n + q) matrix 

is asymptotically stable (O'Reilly 1983). It should be noted that lia(k) in (49) is 
obtained by replacing x(k) by i(k) in (21) or (26). 

Lemma 3 
The pair 

is detectable (observable) if and only if (C,, A )  is detectable (observable) and the 
following rank condition holds 

Proof 
Assume that (C,, A) is detectable and (52) holds. For the detectability of the pair 

(51), it suffices to show that for any complex 111 2 1 

Since 

rank [ Cm ] = n 
21, - A 

for any complex 111 2 1, (53) holds for any complex I # 1. For 1 = 1, (53) also holds 
from (52). Conversely, if (53) holds for any complex I R (  2 l;then, as in the proof of 
Lemma Ib, we can easily see that (Cm, A) is detectable and (52) holds. The 
observability part of the lemma can be proved similarly. 

The continuous-time version of the observability part is proved by Young and 
Willems (1972). It should also be noted that the rank condition of (52) implies that 
the system (C,, A, E) has no transmission zeros at z = 1 (Davison 1976), and that 
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m 2 q, namely the number of output variables is not less than that of the 
unmeasurable disturbances. 

Lemma 4 
If (C,, A )  is detectable (observable) and the rank condition of(52) holds, then we 

can find suitable gains L, and L, such that A, of (48) is asymptotically stable. 

Proof 
A proof is immediate from Lemma 3 and the definition of detectability 

(observability). 

Now define the estimation errors by 2(k) = x(k) - P(k) and 9(k) = w(k) - G(k) .  
Then, from (47)-(50), we have 

If we employ the estimate L(k) in place of the state vector x(k) in the controller of (26), 
then we have. 

since 2(k) = x(k) - P(k). However, if A, is asymptotically stable, f(k) converges to 
zero, so that the controller lio(k) is asymptotically equivalent to uO(k). 

Substituting (56) into (28) and combining the resultant system with (55) yields 

Therefore we have the following theorem. 

Theorem 6 
Suppose that the conditions of Theorem 3a are satisfied. If the rank condition of 

(52) holds, and if the demand vector y,(k) converges to fi, then there exist dand fsuch  
that 

lim u(k) = d and lim x(k) = 2 
k -  m k-m 

Hence a complete regulation is achieved under the observer-based controller of li0(k). 
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Proof 
It follows from Theorem 3a and Lemma 4 that the (p + 2n + q) x (p + 2n + q) 

matrix 

(59) 

becomes exponentially stable. Since w(k) is constant, and y,(k) j,, the rest of the 
proof is immediate. 

Remark 5 
Conditions (b), (c) and (d) of Theorem 3a together with,the readability condition 

(C = MC,) are equivalent to the necessary and sufficient conditions for the existence 
o l a  robust controller for the system of(l), (2) and (46) (Davison and Goldenberg 1975, 
Davison 1976). 

Remark 6 
As in Remark 4, the observer-based controller of (56) achieves a complete 

regulation under small perturbations of system parameters. However, i t  is to be 
noted that the robustness of the LQ regulator is not preserved for the case when a 
state observer or a Kalman filter is introduced into the state feedback loop (Doyle and 
Stein 1979, O'Reilly 1983). 

7. Numerical example 
In this section, we apply the present technique to the design of an optimal 

controller for a power plant model. A discrete-time model of a typical large-scale 
supercritical once-through steam generator is given by 

x(k + 1) = Ax(&) + Bu(k) (60) 

yrn(k) = C,x(k) (61) 

where the sampling interval is 20 s, and where x(k) is the 20 x 1 state vector, u(k) is the 
6 x 1 control vector arid y,(k) is the 10 x 1 measurable outputs; thus we have n = 20, 
r = 6, m = 10. Matrices A, B and C, are given by (B 1)-(B 3) in Appendix B 
(Katayama et al. 1984). The description of the input and output variables are shown 
in Table 1, and a schematic diagram of the input-output model is shown in 
Fig. 2. Among ten measurable output variables, six variables MST, TPL, TP, MW, 
RHT and NOX are considered as the outputs to be regulated, so that we have p = 6 
and 

Y I ( ~ ) :  = yrn,(k), ydk) : = yrn,(k), ~ , ( k ) :  = ymdk) 

ydk) : = yrn,(k), Y S ( ~ )  : = yrndk), ydk): = yrndk) 

Therefore C becomes a 6 x 20 matrix formed by deleting the third, fourth, fifth and 
tenth rows from the matrix C, of (B 31, so that 2, B, &and R are of dimension 26 x 26, 
26 x 6, 26 x 26 and 6 x 6 respectively. 

We assume that the desired values of MST, TPL, RHT and NOX are the average 
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Name Description (average value at 50% load) 

O u t p u t s  

Ymr M ST Main steam temperature at turbine inlet (538" C) 
Ymz TPL Platen superheater outlet temperature (502" C) 
y,, TlSH Primary superheater outlet temperature (456" C) 
Ym4 TF Furnace pass outlet temperature (395" C) 
Yms TECO Economizer outlet temperature (291" C) 
Ym, TP Main stream pressure (174 kgf/cm2) 
Y m l  MW Generator output (250 MW) 
Yma RHT Reheater output steam temperature (556" C) 
Y m g  NOX NO, content in exhaust gas (102 ppm) 
Y,IO 0 2  0, content in exhaust gas (2.49%) 

inputs 
U I  QFW Feedwater flow (760 tjh) 
u 2 QFO Fuel flow (55.9 t/h) 

LGD Reheater gas damper position (59.6%) u 3 

"A LTV Turbine control valve position (61.0%) 
u5 GMF Damper position for gas mixing fan (201%) 
U6 QSP2 Secondary spray flow (362 t/h) 
" 1  QAIR Air flow (39.6%) 

Table 1. Description of input and output variables 

OFW 
O F 0  
L G D  
L T V  
GMF 

(OSPI 1 
QSP2 
OAl R 

M S T  
T P L  
T lSH 
TF 
TECO 
T P 
MW 
R H T  
NOX 
0 2  

Figure 2. Schematic diagram of input-output model. 

values a t  50% load condition (seeTable 1). Also, we assume that thedemand for M W 
is changed from 50% load to 75% load at  S%/min rate, starting a t  k = 10. The 
demand for TP is determined according to the program of variable-pressure 
operation (see Fig. 3 (a)). 

The closed-loop responses are computed for various quadratic weights Q,, Q, and 
R and the preview lengths N,. The algebraic matrix Riccati equation of dimension 
26 x 26 is solved via the real Schur method due to Laub (1979). Figures 3 (a)-(e) 
depict the closed-loop responses for 

Q, = diag (2, 1 ,3 ,3 ,4 ,  1) 

Q,=O (62) 

R = diag (0.1,0.1, 10,0.1, 10, 1) 
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It should be noted in Figs. 3 (a)-(e) that all the responses are shown as. the deviations 
from the average values at 50% load condition. The solid and dashed curves 
represent the responses for NL = 5 and NL = 1 respectively. Table 2 displays the 
mean square errors of the controlled variables 

where N, = 0, 1, . . . , 5, and the quadratic weights of (62) are employed. We can 
clearly see from Fig. 3 and Table 2 that the preview action is very effective for 
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OFW 

200- j N,' 5 
I 

loo- ; ------- N,= I 

0 :  I I 1 1 

GMF 
I - 

(4 T i m e  ( r n i n )  
Figure 3. Closed-loop responses: (a) main steam pressure TP, (b) generator output MW, 

(c) controlled variables MST, TPL, RHT and NOX, (d) measurable outputs TISH, TF, 
TECO and 02, (e) control variables QFW, QFO, LCD, LTV, GMF and QSPZ. 

improving the load following capability of the plant, although the performance of 
MST and TPL is not improved by the preview actions. Further we observe that the 
variations of other output variables become smoother by introducing the preview 
action. 

Since the excursion of T F  is very large, as shown in Fig. 3 (d), we set Q,(8,8) = 10 
to regulate the transient response of TF, while keeping Q, and R as in (62) (note that 
x,(k) = y,,(k)). Then, as shown in Fig. 3 (d), the dip of T F  is reduced from - 44" C 
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NL M ST TPL TP MW RHT NOX 

5 t 140 1273 142 80 960 1408 

t QA8, 8) = 10 

Table 2. Mean square errors of controlled variables. 

to -23' C at the expense of the performance of controlled variables, except for TPL, 
as shown in the bottom line of Table 2. Further adjustment of the values of 
quadratic weights could improve the transient responses of the closed-loop 
system. Therefore we see that the present method is effective for designing a 
servomechanism for a multivariable linear system. 

8. Conclusions 
This paper has presented a method of designing an optimal servo controller with 

state feedback plus integral and preview actions for a discrete-time linear multi- 
variable system. It is shown under the mild conditions that the closed-loop system 
achieves a complete regulation in the presence of a step disturbance and small 
perturbations in system parameters. It is also shown that when an observer is 
introduced into the state feedback loop, a complete regulation also occurs. 
Numerical results show that the present design method is flexible and that the pre- 
view action is very effective for improving the transient responses of the closed-loop 
system. 

Further studies are needed on the robustness issue for the closed-loop system 
when an observer or a Kalman filter is incorporated into the state feedback loop. 

Appendix A 
A proof of Theorem 1 

It is weH known (Kwakernaak and Sivan 1972) that the problem of minimizing 
m 

J = [fT(i)Qf(i) + AuT ( i )  RAu(i)] 
i = k  

( A  1) 

subject to the dynamic constraint 

2(i + 1 )  = X.f(i) + BAu(i) 

has the optimal solution 

uO(i) = - [ R  + BTREJ-'BTRAAf( i ) ,  i = k, k + 1, ... ( A  3) 

where R is the non-negative definite solution of the algebraic matrix Riccati equation 

R = JTRA - ATRB[R + BTKQ - 1 BTRA + Q (A 4) 
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and where 
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B  = [f] 
[ ( p + n + p N r ) * r l  

We partition the (p + n + pNL) x (p + n + pNL) matrix as 

Then it follows from (A 5), (A 7) and (A 9) that 

R + B ~ R B =  R + B ~ R B  (A 10) 

BTRA = [BTRJ ; BTR P + B T T A ~ ]  (A 11) 

Hence we see from (A 3) that the optimal control is expressed as 

- [ R  4- BTRB] - ' B T ( R  B + 3 ~ * ) ~ d ( i )  (A 12) 

But it follows from (A 6) and (9) that 

Vxd(i) = - r ~ ~ ~ ( i  + 1) (A I31 

X"Adxd(i) = r? (A 14) 

where 

= [@I)  ! x ( 2 )  : ... i ~ ( N ~ ) J ~ ( ~ + , , )  pNLl (A 15) 

Therefore, noting that A= [i F], we see from (A 12)-(A 14) that 

where G,, G,, Gd(l) are given by (17 a)-(17 d). Putting i = k in (A 16), we have (16). 
We now turn to the proof of (18) and (19). It follows from (A 5) and (A 9) that 
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Also, by using (A 10) and (A 11) 

It follows from (A 17), (A 18) and (A 8) that the (1, 1)-block of the algebraic Riccati 
equation of (A 4) reduces to (18). Also, the (1, 2)-block of (A 4) becomes 

X = P ( R V +  XA,) - A~RB[R + F R B I - ~ F ( R V +  %A,) (A 19) 

But we see from (A 6), (A 15) and (A 11) that 

K V =  [- Zf ;o  i ... io] 
r ? ~ ,  = [0 i z(1) i ... i r ? ( ~ ~  - I)] 

Thus using (A 20), the first block of (A 19) becomes 

X(1) = - P R i +  A~RB[R + F R B ]  - l F R i  
=' - ~ R J  

where A, is given by (20). Also, the lth block of (A 19) is expressed as 

X(1) = XX(1- l), I = 2, . . . , NL 

This completes the proof of (19). 

Appendix B 
Matrices A, B, C, are given by 
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Since usually the ratio QAIR/QFO is kept around 0.7 a t  partial load, it is assumed 
that u,(k)  = 0-7u2(k) .  Thus  matrix B above is obtained by modifying as  
b,: = b 2  + 0.76,  in Katayama et al. (1984), where bi is the ith column. 
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