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Abstract 

For 3D walking control of a biped robot we analyze 
the dynamics of a three-dimensional inverted pendu- 
lum in which motion i s  constrained to move along an 
arbitrarily defined plane. This analysis leads us a sim- 
ple linear dynamics, the Three-Dimensional Linear In- 
verted Pendulum Mode (SD-LIPM). Geometric nature 
of trajectories under the 3D-LIPM and a method for 
walking pattern genemtion are discussed. A simula- 
tion result of a walking control using a 12 d.0.f. biped 
robot model is also shown. 

1 Introduction 

Research on humanoid robots and biped locomo- 
tion is currently one of the most exciting topics in the 
field of robotics and there exist many ongoing projects. 
Although some of those works have already demon- 
strated very reliable dynamic biped walking[5, 151, we 
believe it is still important to understand the theoret- 
ical background of biped locomotion. 

A lot of researches dedicated to the biped walk- 
ing pattern generation can be classified into two cate- 
gories. The first group uses precise knowledge of dy- 
namic parameter of a robot e.g. mass, location of cen- 
ter of mass and inertia of each link to prepare walking 
patterns. Therefore, it mainly relies on the accuracy 
of the model data [15, 5, 12, 61. 

Contrary, the second group uses limited knowledge 
of dynamics e.g. location of total center of mass, total 
angular momentum, etc. Since the controller knows 
little about the system structure, this approach much 
relies on a feedback control [14, 1, 11, 17, 7, 2, 131. 

In this paper we take a standpoint of the second 
approach, and introduce a new modeling which rep- 
resents a robot dynamics with limited parameters. 

The modeling, the Three-Dimensional Linear Inverted 
Pendulum Mode (3D-LIPM) is derived from a general 
three-dimensional inverted pendulum whose motion is 
constrained to move along an arbitrarily defined plane. 
It allows a separate controller design for the sagit- 
tal (x-z) and the lateral (y-z) motion and simplifies 
a walking pattern generation a great deal. 

2 Derivation of 3D Linear Inverted 
Pendulum Mode 

2.1 Motion equation of a 3D inverted 
pendulum 

When a biped robot is supporting its body on one 
leg, its dominant dynamics can be represented by a 
single inverted pendulum which connects the support- 
ing foot and the center of mass of the whole robot. 
Figure 1 depicts such an inverted pendulum consist- 
ing of a point mass and a massless telescopic leg. The 
position of the point mass p = (x,y,z) is uniquely 
specified by a set of state variables q = (e,, e,, T ) .  

S, sinO,,S, = sine,, D dl - Sr2 - SP2. 
Let (r,, r,, f )  be the actuator torque and force asso- 

ciated with the state variables (e,, e,, T ) .  With these 
inputs, the equation of motion of the 3D inverted pen- 
dulum in Cartesian coordinates is given as follows. 

... 
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2.2 3D Linear Inverted Pendulum Mode 

t 
2 

Figure 1: 30 Pendulum 

where m is the mass of the pendulum and g is gravity 
acceleration. The structure of the Jacobian J is 

c, cos er, cp cos e,. 
To erase the inversed Jacobian that appears in (4), 

m ( rCp 0 -rCpSp/D ) ( i ) = 

let us multiply the matrix JT from the left. 

0 -re, -rCpSpID 

S p  -Sr D 

Using the first row of this equation and multiplying 
D/Cp we get 

D 
m(-rDji - rSp2) = -rr + rSpmg. (7) 

By substituting kinematic relationship of equations 
(2) and (3), we get a good-looking equation that d e  
scribes the dynamics along the y-axis. 

(8) 

cr 

D 
Cr 

m(-zji + y2) = - 7 p  - mgy 

A similar procedure for the second row of (6) yields 
the equation for the dynamics along the x-axis. 

(9) 
D 

m(zZ - z2) = - T ~  + mgz 
CP 

Although the moving pattern of the pendulum has 
vast possibilities, we want to select a class of motion 
that would be suitable for walking. For this reason, we 
apply constraints to limit the motion of the pendulum. 
The first constraint limits the motion in a plane with 
given normal vector (k,, k,, -1) and z intersection zc. 

E = k,cc + k,y + zc (10) 

For a robot walking on a rugged terrain, the normal 
vector should match the slope of the ground and the 
z intersection should be the expected average distance 
of the center of the robot’s mass from the ground. For 
further calculation, we prepare the second derivatives 
of (10). 

f = k,x + kyji (11) 
Substituting these constraints into equations (8) and 
(9), we obtain the dynamics of the pendulum under 
the constraints. From straightforward calculations we 
get 

where up,up are new virtual inputs which are intro- 
duced to compensate input nonlinearity. 

Cr 
D r, = -up 

In the case of the walking on a flat plane, we can 
set the horizontal constraint plane (kz = 0, k, = 0) 
and we obtain 

-. 9 1 
y = -9 - -up, 

zc mac 

(17) 
9 1 

x = -x + -up. 
zc mzc 

In the case of the walking on a slope or stairs 
where k,, k, # 0, we need another constraint. From 
zx(12)+yx(13) we see 

-1 zg - 2y = -((upz + upy). 
ma 

Therefore, we have the same dynamics of (16) and (17) 
in the case of an inclined constraint plane by introduc- 
ing the following new constraint about the inputs. 

(19) upz + upy = 0 
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Equations (16) and (17) are independent h e a r  
equations. The only parameter which governs those 
dynamics is z,, i.e., the z intersection of the constraint 
plane and the inclination of the plane never affects the 
horizontal motion. Note that the original dynamics 
were nonlinear and we derived linear dynamics with- 
out using any approximation. 

Let us call this the ThreeDimensional Linear In- 
verted Pendulum Mode (3D-LIF’M). The first author 
and Tani introduced a two-dimensional version of this 
dynamics mode[7] in 1991, and Hara, Yokokawa and 
Sadao extended it to three dimensions in the case of 
zero input torque[4] in 1997. 

3 Nature of the 3D 
Pendulum Mode 

In this section, we examine 

Linear Inverted 

nature of trajectories 
under the 3D-LIF’M with zero input torques (U, = 
up = 0). 

With a given initial condition, these equations deter- 
mine a trajectory in 3D space. Figure 2 shows two 
examples. 

N 

0.2 - 

-0.5 -0.5 
Y X 

Figure 2: 3 0  Linear Inverted Pendulum Mode 

3.1 Similarity and difference with gravity 
field 

We can regard that equations (20) and (21) repre- 
sent a force field for a unit mass. 

A unit mass is driven by a force vector of magnitude 
f that is proportional to the distance r between the 
mass and the origin. The force magnitude can be dis- 
tributed into x and y element as follows. 

Equation (22) reminds us the celestial mechanics 
under the gravity field. In this case, the force magni- 
tude is 

(25) 
kG 

fG = -7’ 
where kG is a parameter determined from the gravity 
constant and the mass of the gravity source. Both 
in the equations (22) and (25), the force vectors are 
parallel to the position vectors from the origin to the 
mass. This results well-known Kepler’s second law of 
planetary motion: areal velocity conservation. 

Let us see how the force of gravity can be separated 
into x and y direction. 

Since x affects f~~ and y affects fez, we must always 
treat these two equations as a set. Contrarily, the x 
and y element of the 3D-LIPM can be treated inde- 
pendently at all times. This gives us great advantages 
in analyzing and in designing walking patterns as we 
will see in the following sections. 

3.2 Geometry of the trajectory 

Figure 3: 3D-LIPM projected onto X Y  plane 
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Figure 3 shows a 3D-LIPM trajectory which is pro- 
jected onto XY plane. Motions along I' and X are 
governed by the equations (20) and (21) respectively. 
By integrating each equation, we obtain a time invari- 
ant parameter named the orbital energy [7]. 

In Figure 3, it is shown another coordinate frame 
X'Y' which rotates 8 from the original frame XY. 
Since the 3D-LIPM is a dynamics under the central 
force field as discussed in the last section, the new 
frame X'Y' also gives a proper representation of the 
3D-LIPM. The new orbital energy is calculated as, 

9 1 
22, 2 

2% 

EL = --(CZ + ~ y ) ~  + -(& + s C ) ~ ,  (30) 

Eh = -L(-sz  + cy)2 + ,(-sk + qj)2, (31) 
1 

where c 3 cos 8, s sin 8. By simple calculations we 
can verify that the total energy of the system does not 
change by the way of the coordinate setting. 

EL + E :  = E, + E, = constant. (32) 

When the Y'-axis corresponds to the axis of sym- 
metry like in Figure 3, EI, and EL become maximum 
and minimum respectively. Therefore, we can cal- 
culate the axis of symmetry by solving the following 
equation. 

a ! ?  = A(s" - c") + Bsc = 0, ae 
where 

A G (g/zC)xy - X y ,  

B G (g/zc)(z2 - y2) - (2' - i2). 
The solution is, when 13 # 0 

1 
2 

8 = - tan-'(2A/E), 

when I3 = O,A# 0 

e = R/4, 

when B = 0,A = 0 

0 = atan2(y, x). 

If the Y-axis happen to be already the axis of sym- 
metry, 0 should be zero. From equations (36) and (34), 

following condition must be satisfied (Since B = 0 
rarely happens, we do not consider eq.(37) and (38)). 

(g/z,)xy - iqj = 0 (39) 

Using this equation, we can calculate the geometric 
shape of the 3D-LIPM. By substituting eq.(28) and 
(29) > 

(9/2c)2z2Y2 = X2Y2 

= (2EZ + (g/zc)z2)(2Ey + (g/zc)Y2). 

The final form is a simple quadratic equation. 

2z,E, x2+- 2z,E, y 2 + 1 = 0  (40) 

Since E, > 0 and E, < 0, eq.(40) forms a hyperbolic 
curve. 

Hyperbolic curves also appear in Kepler motion, 
and one of its examples is a swing by flight of the 
Voyager 1 spacecraft approached Jupiter in 1979 [16]. 
It seems interesting that we obtained same shape of 
trajectory from a totally different potential field. 

4 3D walking pattern generation 

4.1 Outline 

Figure 4 shows an example of a walking pattern 
based on the 3D-LIPM. In this paper we assume sup- 
port leg exchange of constant pace. To change the 
walking speed and direction, the robot modifies foot 
placements (shown as small circles in Figure 4). 

When we project the walking motion onto X and Y- 
axis, we observe decoupled motions governed by equa- 
tions (21) and (20) (Figure 5). Each motion follows 
the 2D version of the Linear Inverted Pendulum Mode 
that we described in the former paper [7]. 

4.2 Pattern generation along a local axis 

Now the problem becomes a control of the motion 
along X or Y-axis for each step. Let us assume that 
the robot is repeating single support phase of duration 
T, and double support phase of duration T d b l .  

Figure 6 illustrates successive steps in X-direction. 
The initial body state (Z!~),O:")) and the final body 
state ( x r ) ,  u p ) )  have the following relationship. 
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CT cosh(T,/T,), ST E sinh(T,/T,) 

To control the walking speed, we must change the 
foothold (point E) to modify the initial condition of 
the support phase (D’-+F). When the desired status 
a t  the end of support (point F) is given as ( Z d ,  V d )  we 
can define error norm with certain weight a, b > 0 as 

c - - - ’  

n 

Figure 4: Walking pattern genemted from the 3D- 
LIPM. A robot takes seven steps from left to right. 
Motion of the tip of the inverted pendulum is shown 
as pieces of hyperbolic curves (solid lines). W e  as- 
sume that the robot i s  in double support and moves 
on a straight line between each support phase (dotted 
lines). Small circles are foot places and dashed lines 
indicate primary axes of hyperbolic curve. 
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Figure 5: XY -position and velocity in a walk of the jig- 
ure 4. The tick line shows x motion and the thin line 
shows y motion. The position graphs jump the dis- 
tance of the step length a t  each support foot exchange, 
since we are taking a n  origin at a foot place of each 
support. The vertical dotted lines indicate the time of 
the supporting mode change. I n  this walking pattern, 
the robot i s  taking 0.4s f o r  single support and 0.1s for  
double support. 

By substituting eq.(41) into this equation and calcu- 
lating the foothold of zi2) which minimizes N, we ob- 
tain a proper control law. 

xi2)  = (aCT(zd - S T T c V d )  + bST/Tc(Vd - C T V ~ ) ) / D T  

DT E aC$ + b(ST/Tc)2  
(42) 

Z 

. .  

Figure 6: Two successive steps in the sagittal plane 
are illustrated. The body travels from B to D in the 
single-leg support phase, then moves f rom D to  D’ in 
the double-leg support phase with constant speed U?) , 
and then travels D’ to  F in the second single-support 
phase. While the body moves from B to  D, the tip of 
the swing leg travels from A to  E (dashed curved line). 
B y  changing the position of E we can control the final 
body speed U?’ at the point F. Except for  our inserted 
double-support phase, this i s  the same idea proposed 
by M i u m  and Shimoyama [lo]. 

To determine the foothold E, we also need the dis- 
tance that body travels in the double support. The 
distance is 

d = vy)Tdt,l. (43) 

The motion of the swing leg is planned to arrive at  
the point E at the expected touchdown time (dashed 
curve from A to E in Figure 6). 
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4.3 Control of walking direction 

I 

’ moment of inertia of the body [kgm2] 
I,, I 0.5548 

To specify the walking direction, we rotates the ref- 
erence XI’-frame for step to step (See Figure 3). The 
control of eq.(42) automatically shapes the robot mo- 
tion to follow the given frame of reference. Figure 7 
illustrates a walking along a circle. In this walking 
pattern, the reference frame is rotated ~ / 1 0  rad so 
that the robot returns the stating point with 20 steps. 

X N  

Figure 7: Walk on a circle 

5 Simulation of humanoid walking 

The 3D-LIPM has been already applied to a non- 
humanoid type biped robot that has telescopic legs. 
Though the robot could perform 3D dynamic biped 
walking without using prepared trajectory, walking di- 
rection control was not yet considered [a]. 

In this paper, we examine a simulated humanoid 
robot whose motion is generated by the 3D-LIPM. 
Figure 8 shows the outlook of the robot used in the 
simulation. The robot has 6 d.0.f. for each leg but 
the arms and the head are modeled as one block with 
the body. Table 1 shows important physical param- 
eters that was determined by considering an actual 
mechanical design. The size of the foot is 0.21m x 
O.lm (length x width). Total mass of the robot is 
56kgs and the center of mass is located 0.542m in the 
height from the floor level. 

For the dynamic simulation we used the OpenHRP 
simulator which was developed in METI’s humanoid 
robotics project [9]. The walking pattern of Figure 7 
was used as a reference input to the robot and the cen- 
ter of mass of the robot body was controlled to follow 
this. To walk on a flat floor, the body height was kept 

Figure 8: A Humanoid Robot model. Total mass of 
the robot is 56kgs and the center of mass is located 
0.542m in the height from the froor level. The robot 
has 6 d.0.f. fo r  each leg but the arms and the head do 
not contain any joints (modeled as one block with the 
body). 

Table 1: Important link parameters 

length [m] 
width of pelvis+ I 0.12 

thigh link 
schank link 

anklesole distance 
foot length 
foot width 

0.3 
0.3 

0.11 
0.21 
0.1 

weight [kg] 
body I 20 

crotch yaw 
crotch roll 

thigh 
shank 

ankle pitch 
foot 

IYY 0.4882 I I , ,  I 0.1417 

t distance between the right and left hip joints 

244 



constant. The reference joint angles and speeds were 
calculated by inverse kinematics so that the position 
and the velocity of the feet with respect to the body 
correspond to the specified motion. Finally, the ref- 
erence joint angles and speeds were realized by a PD 
feedback controller. 

Furthermore, we must consider the body and the 
foot rotation around z-axis. Although the walking 
pattern of Figure 7 is assuming an ideal robot that 
can step towards any direction at all time, the robot 
of Figure 8 has the limit of joint angles and it must 
avoid collision between the left and the right legs. For 
this reason we designed additional pattern for the foot 
orientation with respect to the body, so that the body 
faces instantaneous walking direction in the middle of 
each support. 

Figure 9 shows the snapshots of the simulation and 
Figure 10 shows the body trajectory and foot place- 
ments. We see that the trajectory of the humanoid 
robot did not close a circle at the 20th steps. This 
causes from a small foot slip occurred in each support 
(the friction coefficient between the foot and the floor: 
,U = 0.5). In Figure 10, we can see the slip as blur of 
the footholds that should be fixed points. At the same 
time, the foot slips around z-axis and that diverted the 
robot from the planned walking direction. 

Despite of the error caused by slip of the feet, it is 
important that a stable dynamic walk was realized by 
the 3D-LIPM trajectories. We believe the error can 
be reduced by introducing additional feedback control 
to the 3D-LIPM system. For example, F’ujimoto and 
Kawamura proposed a feedback compensation of yaw 
axis rotation by arm swing motion [3]. By introducing 
such methods, we can expect more accurate walking 
direction control. 

E 

6 Summary and Conclusions 

In this paper, we introduced the ThreeDimensional 
Linear Inverted Pendulum Mode (3D-LIPM) that is 
useful for walking control in a 3D space. We discussed 
a nature of the 3D-LIPM and proposed a simple walk- 
ing pattern generation that can specify walking speed 
and direction. The walking pattern was tested on a 12 
d.0.f. humanoid robot in a dynamic simulator, and a 
dynamically stable walk along a circle was successfully 
simulated. 
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