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Teaching Physical Collaborative Tasks:
Object-Lifting Case Study with a Humanoid
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Abstract-This paper presents the application of a statistical
framework that allows to endow a humanoid robot with the
ability to perform a collaborative manipulation task with a
human operator. We investigate to what extent the dynamics
of the motion and the haptic communication process that takes
place during physical collaborative tasks can be encapsulated
by the probabilistic model. This framework encodes the dataset
in a Gaussian Mixture Model, which components represent the
local correlations across the variables that characterize the task.
A set of demonstrations is performed using a bilateral coupling
teleoperation setup; then the statistical model is trained in a
pure followerlleader role distribution mode between the human
and robot alternatively. The task is reproduced using Gaussian
Mixture Regression. We present the probabilistic model and the
experimental results obtained on the humanoid platform HRP
2; preliminary results assess our theory on switching behavior
modes in dyad collaborative tasks: when reproduced with users
which were not instructed to behave in either a follower or
a leader mode, the robot switched automatically between the
learned leader and follower behaviors.

I. INTRODUCTION

Our aim is to accomplish physical collaborative tasks
between a human and a humanoid robot. In robotics, this
problem has lately been referred to as physical Human-Robot
interactions (pHRI). Physical interaction between a couple
of human or robotic agents considers situations where the
agents are in physical contact with each other and exchange
mechanical energy. The contact can be direct, i.e. part of the
human body is in contact with part of the robot links; it can
also be established through collaborative manipulation of a
common object. Our work concerns the latter case, and aims
at endowing a humanoid with collaborative manipulation
skills so as to cooperate with a human partner in a proactive
way.

To perform pHRI tasks, the partners concurrently apply
forces on a common object of interest. During the task, the
partners regulate the exchange of mechanical energy not only
based on task and environmental physical requirements but
also through mutual understanding of each other's intentions
in order to negotiate a common trajectory or a strategy which
allows performing the task in a good synergy. If we consider
that each partner can take initiatives, the adaptation and the
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synchronization among the partners is certainly bilateral, i.e.
both partners adjust and adapt to each other. In the literature,
very little is known on these processes in humans, though
being able to understand and model them would be a great
advance towards robot partners' technology.

The ability to negotiate and perform a collaborative task
is acquired by humans at an early age, but this cognitive
process is still not well understood and hence it is difficult to
infer hypotheses or models that one can be inspired from to
design solutions for robotic systems. State-of-the-art systems
based on impedance control [1] provides interesting bricks
in understanding what could probably be sub-modules of
the overall solution. Many implementation show interesting
performances [2], [3], [4], [5], [6], yet they affix the robot a
pure follower role. Though one may say that, to some extent,
a robot can perform simple collaborative tasks, it certainly
is unable to negotiate them with their human partners.

We claim that during a dyadic physical collaborative task,
both partners regulate the behavior between two extreme the
oretical cases: a leader and a follower behaviors [7]; we also
claim that the partners rely on hidden force patterns in the
haptic signal exchanged while performing the task to relay
intention through haptic communication. We also believe
that this haptic communication can be used as a modality
to adjust a weighting function (a homotopy) between the
leader and follower roles [8]. However, we admit that these
theoretical hypotheses are yet difficult to assess: the nature of
the force patterns and the hypothetical haptic language that
is supposed to relay user's intentions are probably appealing
theories, but they need to be proved.

Our idea in proving these concepts is to tackle the pHRI
problem by using a Programming by Demonstration (PbD)
approach, described in [9] and on which this work builds. We
hypothesize that part of the complexity of deriving explicit
models can be avoided by using a probabilistic framework
based on Gaussian Mixture Models (GMM) and Gaussian
Mixture Regression (GMR). We also want to investigate
whether this framework is able to catch all the aspects of
the haptic cue exchange during collaborative physical task,
including the dynamics of the motion and the synchroniza
tion and adaptation processes.

In [9], a robotic system is demonstrated several instances
of a collaborative lifting task, and learns the necessary
skills to reproduce the task. The reproduction of the task
is then simulated to evaluate the learned model. This paper
presents the results from a real experiment involving the
HRP-2 humanoid robot jointly lifting an object with a human
operator. We will try to use obtained results to see assess our
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behavior switching theory developed in [7], [8].

II. DEMONSTRATING COLLABORATIVE TASKS

A. Human-Robot collaborative lifting tasks

If two partners perform a lifting task collaboratively, they
are likely to have different intentions regarding the target
position of the lifted object and the desired velocity pro
file [10]. Hence, during the motion, they will have to adjust
toward a common plan. We make the hypothesis that this
is partly achieved through haptic cues, i.e. that the partners
will guess each other's intentions by interpreting kinesthesia
and the interaction forces they sense at the grasping points
of the manipulated object. This hypothesis relies on the fact
that a disagreement between the partners will result in higher
interaction forces.

We hereby consider a one-dimensional task where the
position of the lifted object is described by its altitude.
Besides, we also consider the vertical velocity of the object
and the force applied by the robot along the vertical axis.
We assume that the mass of the object is known, and
more importantly, that the task will be demonstrated in
predetermined stereotypical manners, where one partner is
asked to always lead and the other is asked to act as a
pure follower at the onset and at the end of the motion.
Finally, we also assume that the partner acting as a follower
is blindfolded, so that visual cues do not interfere with the
task.

Rahman et al. showed that the dynamics of a follower
human arm during collaborative task was dominated by a
variable damping term [4]. The force applied on the robot's
wrist and the gripper velocity should therefore be taken into
consideration in order to reproduce human-like dynamics
during the task. In our case, we consider that the robot can
also have its own desired trajectory to perform the task. A
position-dependent term can be added to the dynamics to
drive the arm towards a target position.

In the context of this work, we will thus use the following
three variables to characterize the behavior of the robot
during collaborative lifting tasks: the altitude x of the robot's
gripper and its velocity X, and the force F sensed by the
robot at the grasping point.

E. Robotic system and controller

Collaborative lifting tasks have been demonstrated on the
full-sized humanoid robot HRP-2. Fig. 1 shows the experi
mental setup used during the teaching phase, see [9] for a
thorough description of the setup. During the demonstrations,
a human operator (the teacher) teleoperates the robot using
a 6dof force feedback device described in [11]. A second
operator (the user) assists the teleoperated robot to lift a
beam, while keeping it horizontal. Only the right arm is
used to perform the lifting task, while the robot is standing.
The wrist of the robot is constrained to move only along a
vertical direction during the whole task, and its orientation
is constrained to remain constant.

The force feedback device and the robot's arm are bi
laterally coupled using a simple 2-channel Velocity-Force
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Fig. 1. A human (teacher) teleoperates the humanoid HRP-2 through a force
feedback haptic display to teach HRP-2 the lifting task made collaboratively
with another human (task-partner).

scheme. The velocity of the tip of the PHANToM device
is sent as a velocity reference for the end-effector of the
robot. The forces and torques measured at the wrist of the
robot were scaled and mapped to the PHANToM workspace
to be sent as a reference for the low-level control of the
device. The value scale factor applied to the robot sensor
forces was set to 0.3. This scale factor is applied for stability
reasons. Another option to ensure the stability of the system
is to damp the system. This allows feeding back the sensor's
forces with their real amplitude; however it limits the velocity
of the motion, resulting in less realistic demonstrations. Both
options have been tested, and rescaling the forces has been
chosen, as it felt more natural to the teacher.

C. Method and results

Two sets of scenarios are demonstrated to the robot. In
the first set, the teacher closes the eyes and the user initiates
and ends the motion: this is the case where we instructed the
robot teacher to behave like a pure follower where the partner
is instructed to behave as a pure leader. In the other set,
the roles are exchanged, and the teacher leads the onset and
end of the motion. The position and velocity of the robot's
gripper together with the force measured at the robot's
wrist were measured at 200Hz. The teaching process was
conducted with one teacher (obviously, the robot behavior is
personalized to this teacher), and only two humans as task
partners.

The results are illustrated in Fig. 2 showing separate
patterns for the two different teaching behaviors (robot leader
and robot follower). See details in [9].

III. PROPOSED APPROACH

A. Probabilistic encoding and retrieving of the skill

Once a task has been demonstrated, the robot has to auto
matically extract the important features of the task in order
to reproduce it [12]. For this purpose, we use a probabilis
tic framework based on GMMs to encode the correlations
between the different variables of the task, and GMR [9] to



Eq. 4 has two terms: the position term attracts the robot
to the reference position x to avoid moving away to an un
learned situation, while the velocity term allows to reproduce
the learned dynamics, see more details in [9].

C. Encoding of the lifting task

As explained in section II-C, two scenarios have been
demonstrated to the robot: one were it behaved as a leader,
and one where it behaved as a follower. The resulting data
set have been encoded into two different models, which have
been merged into one single model for the reproduction
phase. Therefore, the robot can adopt either behavior depend
ing on the user preference. The resulting GMM is depicted
on Fig. 3.
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Fig. 2. Resulting patterns in leader and follower teaching demonstration
in the force/velocity space.
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This section describes the experimental setup used for the
reproductions, and evaluates the usability and robustness of
the proposed method. We also show how the experimental
results support our behavior switching hypothesis suggested
in [7].

Fig. 3. GMM models encoding the relationships between the velocity and
the position, and the velocity and the measured force. The gray components
of the left correspond to a leader behavior of the robot. and the mixture on
the right (white ellipses) correspond to a follower behavior from the robot.

A. Reproduction setup

The setup used for the reproduction of the demonstrated
task is the same as during the teaching phase, except that
the robot is now acting autonomously, instead of being
teleoperated. The velocity of the end-effector of the robot
is computed at each control iteration using Eq (4).

Different subjects were asked to lift the object together
with the robot. The subject were not given any specific
instructions on how they must behave, apart that they had
to lift the object naturally together with the robotic partner;
therefore, they were not asked to behave as leaders or
followers. Figure 4 shows an autonomous replication of a
beam lifting task by HRP-2 jointly with a human task-partner
(see also the companion video).

B. Experimental results

1) Successful task reproductions: The reproduction was
performed with 13 subjects, not including the two partners
involved in the teaching process . 71 lifting task trials have
been performed among which 38 were successful replica
tions. In the general case, where the subjects performed

IV. TASK REPRODUCTION

(3)

(1)

(4)

[
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JLi = JLf '~i = ~fx Ef
The estimate of an output {o can be computed by:

B. Control scheme

Using Eq. (2), a target velocity :t will be computed from
the actual position x of the gripper and the measured force
F, and a target position x will be computed from the actual
velocity j; of the gripper and F . From x and :t, a reference
velocity j; * is computed for an inner velocity controller of
the robot by numerically integrating the following equation:

K

{o = I:: hi(e) (JLf + ~fX(~f)-l(e - JLf)) , (2)
i=l

reproduce the demonstrated task. This framework has been
used successfully in 'stand-alone' tasks (see e.g. [13]), and
we evaluate its usability in physical collaborative tasks.

The data recorded during the demonstrations of the col
laborative lifting task is encoded into a GMM with K com
ponents representing the local correlations of the variables
in the data-set. The GMM is trained to find the parameters
,X = {JL,~} that maximize the likelihood of p(el,X), where e
is the data-set. For each component i , JLi and ~i are the mean
vector and covariance matrix of the Gaussian distribution.

The data encoded by the GMM can be reconstructed using
a GMR process. If we split the different variables into one
output variable eo and a set of input variables e, then
for each component i of the GMM, the mean vectors and
covariance matrices have the following structure:
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Fig. 4. Autonomous reproduction of a beam lifting task by HRP-2 jointly with a human task-partner.

the task naturally, the robot lifted the object smoothly. As
long as the subjects exhibited a behavior close to either of
the demonstrated scenarios, the robot behaved properly and
the object reached a target position with a smooth velocity
profile, even if, as will be seen later, some of the partners
switched from one behavior to another.

The about 50% success rate is not surprising, since the
demonstrations were not performed with much variability
in the velocity and force profiles. Therefore, the adaptation
capabilities of the robot were limited. Extending our model to
various velocity and force profiles will be addressed in our
future work. This success rate is nevertheless encouraging
since it suggests that the approach is quite robust to the
variability of human partners.

Given the limited adaptation capabilities of the robot, this
success rate can be considered relatively high. This illustrates
the challenge in evaluating models and algorithms in haptic
collaboration between human operators and robotic systems:
during the demonstrations, the robot only interacted with
two different human partners. In theory, our model should
not have allowed generalization to different human partners.
However, in our context, the robot and the human have a
symmetric role, and the robot is not the only partner to
adapt. It seems that the subjects who participated to the
reproduction experiments adapted to the robot controller so
as to perform the task successfully.

Most of the 33 failed attempts corresponded to the cases
where the object could be lifted, but not with the demon
strated dynamics. However, even when the dynamics of the
reproduced motion differed from the demonstrated one, the
overall behavior of the system was similar. This is illustrated
in Fig. 5, where we see that the dynamics of the motion
is similar to the demonstrated one, except that the pattern
seems to be stretched along the force dimension, and shifted
towards the positive forces. This suggests that it should be
possible to extract a general pattern which would be invariant
for all partners after rescaling; this can be an interesting
issue toward a more robust controller, and will be thoroughly
investigated.

2) Reaction to undemonstrated behavior: To test the
limits of our current model, we also tried to adopt a very
different behavior during some of the trials: at one point in
the task, the human subject had to stop abruptly. Due to the
nature of the encoded force-velocity relationship, the robot
interpreted this as the human having a follower behavior.
Indeed, as can be seen in Fig. 2, the Gaussian components
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Fig. 5. Failed reproduction attempt. The object is successfully lifted, but the
dynamics of the motion differs from the demonstrated one. Notice, however,
that the obtained dynamics is similar to the demonstrated one when the robot
is behaving as a follower (see Fig. 6).

encoding the data recorded during scenarios where the robot
was leading are all located in the subspace of negative
forces, which correspond to forces applied downwards by
the human operator. In this area of the F -x subspace, the
velocity and forces are always locally correlated with a
negative coefficient, meaning that both variables will vary
in opposite directions. As a result, when a human operator
tries to brake abruptly before the end of the motion, the GMR
process will generate upward reference velocities, while the
reference position will follow the trajectory that was usually
demonstrated. Hence, the robot resists to the human operator,
trying to go even faster upwards as the user is pushing
downwards, which is an unstable behavior and leads to jerky
motions.

3) Conclusion: The model implemented in this pilot study
can be used as a basis for future work as it shows some
robustness to conditions that shift from the demonstrated
conditions. The experimental results confirm the usability of
Programming by Demonstration methodologies to provide
robotic systems with the ability to perform collaborative
tasks. However, the adaptation capabilities of our current
model needs to be improved by additional demonstrating
scenarios and task-partners. Finally, the experimental results
allow for a qualitative assessment of the proposed method.
Additional analysis is also needed to quantitatively evaluate
our controllers and compare them to existing techniques in
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Fig. 6. Human partner behaving closely as a full leader of the lifting task. Fig. 8. Human partner behavior switching from a follower to a leader
during the lifting task (only three cases are illustrated).
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Fig. 7. One human partner behaves closely as a full follower in the lifting
task case.

robotics, which is likely to be difficult, given the adaptation
capabilities of human subjects.

C. Preliminary assessment of the leader-follower switching
model

In this paragraph, we will study and comment only the 38
successful trials. We were interested in observing how the
subject and the robot would behave if we did not impose
any role during the reproduction. Since we use a joint
mixture composed from both leader and follower models,
we expected that the robot would be able to act either as a
leader or as a follower, depending on the preference of the
human partner.

The robot behaved as a follower in 23 of the 38 successful
trials, as can be seen in the Fig. 6. It is legitimate to conclude
that the human partner was leading the robot to the target
altitude, since the task was realized. If we confront this
results to our dyad physical interaction theory [7], we can
only say that the human task-partners ' behavior is closer
to the leader controller strategy. On the contrary, the Fig. 7
shows a case in which a human partner behaves as a follower.

We were particularily interested to observe switching be
tween the follower and the leader encoded behaviors during
the replication of the learned task. In fact, what was taught
and what the robot learned is simply to recognize a follower
or a leader behavior of the partner and act subsequently in
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Fig. 9. lllustration of a human partner behavior realizing a double switching
of the behavior in a single lifting task.

a complementary way. Note that during the learning phase,
see details in [9], we affixed such a role to each partner
(teacher and task-partners). It is certainly easy to force the
robot to behave strictly as a pure leader or a pure follower;
the results show that human operator (task-partners) also
did their best to achieve strictly one of the two behaviors.
However, when we replicated the learned lifting task on
the humanoid robot, we did not instruct the human partners
involved in the experiment to behave in either of these two
extreme modes. Indeed, we simply asked the human partner
to lift the object together with the robot.

Fig. 8 illustrates 3 cases among 14 observed trials where
a human partner switched the behavior from a follower
to a leader one. Only one subject started as a leader and
performed a double switching as can be seen in Fig. 9.
What is important for the time being, is that this switching
of the behavior seems to agree with our theory and model
on dyad interaction [7], [8] in which we claim that the
behavior of each dyad is a continuous switch between two
extreme theoretical behaviors which are follower or leader,
and synchrony is realized through a continuous adjustment of
this switch. Here, the humanoid robot recognizes a change of
the behavior of the human partner and adapted continuously
to that change.



Note that this switching could not have been obtained if
we had used Hidden Markov Models as proposed in [9].
HMMs would have encoded temporal information which
would have resulted in very low switching probabilities
from the components of the mixture representing the leader
behavior to those representing the follower behavior, and
vice-versa.

V. CONCLUSIONS AND FUTURE WORKS

This paper deals with one aspect of Human-Robot inter
actions, which aims at endowing a robotic platform with
the ability to perform collaborative tasks. We proposed to
use a probabilistic framework based on Gaussian Mixture
Models and Gaussian Mixture Regression to encode the local
correlations between different variables that characterize
collaborative tasks and use the encoded data to reproduce
demonstrated tasks. We aim at investigating whether this
learning technique can encapsulate all the complexity of col
laborative tasks, including the dynamics of the motions and
the communication process that takes place between the part
ners to negotiate a common control strategy. In this paper, we
focused on the case of one dimensional collaborative lifting
task, with two sets of stereotypical demonstrated scenarios,
corresponding to two different role distributions among the
human and robotic partners. We investigated whether the
proposed probabilistic framework allows the learning and re
production of this simplified scenario. The first experimental
results are promising: almost all subjects could perform the
lifting task smoothly, and the model showed some robustness
to behaviors that were not demonstrated. This generalization
capability is limited though, and deeper investigations are
needed to extend the model so that more complex situations
can be addressed with the proposed method. Future work
will focus on quality assessment of the proposed controller,
extension to more complex 3D scenarios, improvement of
the overall task performance, and assessment of the model
of dyad interaction based on homotopy switching.
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