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Abstract— This paper proposes the indirect zero momen-
tum position (ZMP) controller for biped robot systems and
proves its disturbance input-to-state stability (ISS). The ZMP
control has been used as a standard method for stable walking
control of biped robot systems. Since the ZMP information
consists of position and acceleration of the center of gravity
(COG) for a biped robot system, the ZMP can be indirectly
controlled by the motion of COG. In this paper, the reference
COG Planner is developed by solving the reference ZMP
differential equation. The indirect ZMP controller is proposed
to derive the desired motion of COG from the reference ZMP
trajectory and the COG error (the difference between the
reference and real COG). The ISS of the proposed indirect
ZMP controller is proved for the simpfified biped robot model.
The robustness of the proposed indirect ZMP controller is
shown in simulation,

I, INTRODUCTION

The zero momentum position (ZMP) control is the
most important factor in implementing stable biped robot
walking. If the ZMP is located in the region of supporting
sole, then the robot will not fall down during walking.
To implement stable robot walking, ZMP planning meth-
ods were first suggested by using the inverted pendulum
model[1] and the fast fourier transformationi2]. In order to
compensate the error between the planned and actual ZMP,
various ZMP control methods were suggested: for example,
direct and indirect ZMP control methods[3], {4], impedance
control[5] and balance controi[6]. Recently, running pattern
generation methods were suggested in [7], [8]. Moreover,
whole body planning of humanoid robot based on ZMP
were suggested in [9], [10]. Despite many references to
biped walking control methods, research on the stability of
biped walking controllers is still lacking. The exponential
stability of periodic walking motion was partially proved
for a planar biped robot in {11], [12].

In this paper, we will propose the indirect ZMP conirol
method and prove its disturbance input-to-state stability
(SS). Due to the modelling uncertainties and the com-
plexity of the full dynamics for a biped walking robot,
we will represent the dynamic walking robot as a simple
rolling sphere model on a constraint surface. This paper
is organized as follows: section I introduces a simplified
model for a biped walking robot, section III proposes
the COG trajectory planning method from the reference
ZMP trajectory, section IV proves the ISS of indirect
ZMP control for the simplified biped model and section
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Fig. 1. Biped Walking Robot

V concludes the paper.

II. SIMPLIFIED MODEL FOR DYNAMIC WALKING
ROBOT

The biped walking mechanism is an essential part of
humanoid as shown in Figure 1. Since humanoid legs have
high degrees of freedom (DOF) for human-like walking, it
is difficult to use their dynamics to design controller and to
analtyze stability. Therefore, we will simplify the walking
related dynamics of biped robot as the equation of motion
for a point mass at COG.

First, let us assume that the motion of COG is con-
strained on the surface z = c;. Then the rolling sphere
{mass = m) model on constraint surface {(z = c;) can be
obtained as the simplified model for biped walking robot as
shown in Figure 2. In this figure, the motion of the rolling
sphere on a massless plate is described by the position
of COG, (¢, ¢y,¢,), and the ZMP is described by the
position on the ground, (pz, py, 0). The joint configurations
of the supparting leg are determined by solving the inverse
kinematics from the position of COG to the base foot
position (BFP) on the ground and those of shifting leg
are determined by solving the inverse kinematics from the
position of COG to the shifting foot position (SFP).

Second, the equations of motion of the rolling sphere
(mass = ™) in Figure 2 are obtained on the plane z = ¢,
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Fig. 2. Rolling Sphere Model for Dynamic Walking
as:
Te = mMgcy —miyc, (1)
Ty = —Mgcy + Mz, 2}
Ty = —mégey +méycy {3)

where g is the acceleration of gravity, ¢, is a height
constant and 7; is the moment about z-coordinate axis, for
i = x,y, z. Now, if we introduce the definition of ZMP as
following forms:
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to two equations (1) and (2), then ZMP equations can be
obtained as two differential equations:

€y ..

Pz = cz—;zcx ©)
Cy ..

Py = cg.—;‘cy. )

The state space realization of ZMP equations (6) and (7)

can be written as:

d Ci 0 1 e 0

il = e Lol @
for ¢ = x,y. These state space equations describe the
relation between the position of COG and the ZMF, and
they will be used as a part of the indirect ZMP controller
in the following section.

III. REFERENCE TRAJECTORY OF COG

To implement robot walking, first of all, the stepping
positions on the ground and the supporting phases should
be predetermined as shown in Figure 3. In this figure, the
stepping positions are generally represenied as periodic
functions and the supporting phases {double supporting
and single supporting) are used in moving the ZMP, In
a single supporting phase, the ZMP should stay in the
center of the sole of supporting leg while the shifting leg
is making a step. In a double supporting phase, the ZMP
should be moved to the center of the sole of shifting leg.
These procedures should be repeated to make stable robot
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Fig. 3. The Stepping Positions and Reference ZMP p5™/ (2) and p}*7 (¢)

walking. Also, the reference trajectory of COG should be
derived from the reference ZMP in Figure 3. In this section,
we develop the equations for the generation of the reference
trajectory of COG.

A. Exget Solurion

From the equations (6) and (7), we can get the foilowing
transfer function:

Cs) = Ty (PO~ (ee/a)e s
—{cz/g)é:(0)] )
for ¢ = z,y, where Ci(s) and Pi(s) are the Laplace

transformations of ¢;{t) and p;(t), respectively, ¢;{0) and
¢&;(0) are the initial conditions of trajectory of COG. The
reference ZMP shown in Figure 3 can be expressed as:

) = Bil(t—kTg) (10)
k=1
i) = A~1(t)+2Ai(—l)'°-l(t-—kTo)(ll)

k=1
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where 1(t — kTp) is the unit-step function starting at
it = kTp. If we apply the Laplace transformations of the
equations (10} and (11) to the equation (9} with zero initial
conditions, then we get the followings:

1 B —Tos B —2Tas
Cz(3) T (e./g) 5 [ e + .~
+Ee'3Tﬂ~" 4o ]
8
1 A 24 _p,
Cols) 1~ (c/g)s? [; e
+.2_ée—2ToS .. ] .
8

Now, by letting w? 2 g/cz, since we know that
1 1 1 3

1—(cof/q)s? s s s2—uwi’

we get the following rearranged transfer functions:

Culs) = B(%—ngw%)e_ns
. +B(1_ I 2)6—2%’
s s2—w?
il
Culs) = A(%_.ﬁjwﬁ)

Finally, we can obtain the exact reference trajectories of
the COG by using the inverse Laplace transformations as:

c{t) = B[l—coshw,(t—Tp) 1 -Tp) +
B[l ='cosh wnli — 2To)] - 1(t ~ 2T} +

Bl — cosh wn(t — 3Tp)| - 1{t ~ 3Tp) + - -+
= B [1-cosh walt — kTp)] - 1{t — kTp)

ety = A Fl:l— cosh wy(8)} —
2A[1 — cosh wy(t—Tp)] - 1{t ~ To) +
2A[1 — cosh wy(t — 2T0)] - 1(t — 2Tp) — - -

= All — cosh w,(t)] +
24 Z( B

Even though these reference trajectories of COG are
exact solutions for ordinary differential equations (6) and
(7), they are difficult to be used robustly for a real
biped walking robot system since they are composed of
the unbounded functions cosh(-). In addition, they are
numerically vnstable and very sensitive to the variation of
wn. Therefore, we will suggest an alternative robust COG

1 - cosh wy(t — KT)] - 1(t — kTp)

trajectory planning methed by vsing the approximate solu-
tion composed of the bounded functions in the following
section,

B. Planning by Approximate Solution -

First, we introduce the following odd function with
period Tp from the z-directional reference ZMP plef (¢)
of equation (10):

! " T
e 2 aro-g (- 3)
_ B D ' -
= -5 (t 5 ) and p. (¢t + To) = po(t).

Then, if we assume that the z-directional reference tra-
jectory of COG has the following form by using Fourier
series:

. B T
o = ﬁ(t‘?")

+Z [an cos (Tt) + by sin (E;t)]

n=1

then we get the following equation by applying the above
equation to the ZMP differential equation (6):

Pyt = rf (t— fg) + P (),

Pty = i an 1+ﬁ cos [ o
® = Tiwl To

2,9 T
b (1+T2 2 ) (5]

Since above function p () is an odd function with a period
Ty, the coefficients a, = 0 and b, can be obtained by
solving the following equation:

n? 2 (B far
by, (lJrT2 2) TTDv/u po(t}sin (?Ot) di.

Finally, we get the coefficient b,, as the following form:
b BT3w2(1 + cosnw)
" onw(TEw? 4 nla?)
As a result, the z-directional reference trajectory of COG
can be obtained by using the bounded function sin(-) as

follows:
B Ty
T0 (t _2') +

2 BT2W2(1 + cosn) s
~ nn(Tjwi + nin?)

i) =

nmT
n (T;t) (D

Also, since the y-directional reference ZMP p;ef {t) of
the equation (11) is the odd function with a period Tp, we
can get the following y-directional reference trajectory of
COG by using the Fourier series:

sin (%t) LS

o 2AT3w2(1 —cos
C;ef(t)=z Q n( c TL?T)

— nn(Tgw? +nlr?)
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In fact, since these reference wajectorics of equations
(12) and (13) are composed of infinity series, we get the
approximate solution with a positive constant n.

The resulting plots in Figures 4 and 5 show the ef-
fectiveness of the reference trajectory planning of COG
by using approximate solution. In these figure, we used
wl = 10 (¢, = 0.9086[m| and g = 9.808[m/s]),
To = 1¢, A = 03[m|, B = 03|m] and n = 12
The corresponding ZMPs in figures represent the ZMPs
generated by using approximate solution. In fact, we can
express the difference between the reference ZMP in Figure
3 and the corresponding ZMP in Figures 4 and 5 as follows:

pi = — 1/w2E 45, (14)

where 4 is the difference between the reference ZMP
and corresponding ZMP. As n increases, the difference &
becomes smaller. Also, it is known that § is the bounded
value, |8| < S, for i = x,y, where § is a positive constant.
The reference trajectories (12) and (13) of COG with a
constant n will be used for the indirect ZMP controller in
the following section.

IV. INDIRECT ZMP CONTROL LAW

Since a biped walking robot system is an electro-
mechanical system including many electric motors, gears

and link mechanisms, there exist many disturbances in

executing the motions of the pre-generated reference trajec-
tories of COG and ZMP for a real biped robot system. To
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Fig. 6. Indirect ZMP Controller for a Biped Wa.lk.iné Robot

show the robustness of the controller against disturbances,
we apply the following stability to a biped robot control
system. The control system is said to be disturbance input-
to-state stable (ESS) [13], if there exists a smooth positive
definite radially unbounded function V{=, £), a class Koo
function v and a class K function -y such that the
following dissipativity inequality is satisfied:

V < —millel) + m(ld), (13)

where V represents the total derivative for Lyapunov
function, > state vector and d disturbance input vector.

In this section, we propose the indirect ZMP controller
for biped robot systems as shown in Figure 6. In this
figure, first, the ZMP Planer generates the reference tra-
jectories (10) and (11). Second, the COG Planer generates
the reference trajectories (12) and (13) with a suvitable
positive constant n. Third, we assume that the Desired
COG Generator has the following form by using the state
space equation (8):

dfef] _fo 1][f 0

& [é;-‘ =lez o) | T ez 09
where w2 = g/c, ¢f is the desired trajectory of COG
and u; is the ZMP control input, for £ = x,y. Notice that
this equation can also be expressed as ¢f — 1/w2éd =

u;. Fourth, the real biped walking robot has the following
dynarnics:

Cg +€;
e —1/wié for i=ux,y,

c; =

1
o= un

where ¢; is the real control error, £; and p; are the real
positions of COG and ZMP of the real biped robot, respec-
tively, Note that the control error always exists in real robot
systems and its magnitude depends on the performance of
embedded local servos. In addition, we assume that the
ZMP disturbance (n £ g—1 /wﬁé‘,-) produced by the control
error is bounded and its differentiation is also bounded, in
other words, |r7] < a and {1j| < & for positive constants a
and b. The following theorem proves the stability of the
indirect ZMP controlier for a real biped walking robot.

Theorem I: Let us define the ZMP and COG error for
the real biped walking robot (17) as follows:

€p P?f —pi

— -

e e

€ et
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If the ZMP control input w; in Figure 6 has the following
form:

1 .
u; = p:e'f - = [2§7ec + (72 + wi)ec] (18)
n
under the gain conditions:

d <{<1, (19)

W 1
D> an —_
L rerreay Vi-of
for 0 < o < \/5, then the indirect ZMP controller in
Figure 6 gives the disturbance input(z, 1, §)-to-state{e,,, e.)
stability (ISS) to a real biped walking robot.
Proof. First, we get the ZMP error dynamics from
equations (14) and (17) as follows:

&, = wllec —ep+8). 20)

Second, we obtain another ZMP error dynamics by using
equations (16), (17) and {18} as follows:

ep = 1/wd (2éc+ (¥ +wile) —m, (21
also, this equation can be rearranged for é.:
éc = 1/(207) (wiep — (7* +oldectwin).  (22)

Third, by differentiating the equation (21} and by using
equations (20) and (22), we get the following:

€ = 1/ (2C7éc +(¥+ wrﬂz)éC) -1
= 20v(ec—ep+ 6)
2 .2
T+ w .
e nee — (7 elec b wim) =

2 232 2 2

2078+ (FF +wd) /(27— 7
4¢Pyl — (v + wR)?)
20w ¢
(8 — (V¥ +wi))
20y

ep+d 23)

where d 2 2¢v6 + {(#? + w2}/ (2¢v)n — 7. Fourth, let us
consider the following Lyapunov function:

Gy, 2

& 2
V(ec:ep) = (C’Y)ec + (,},2 1 w%)g _ 4(272'&)’% Cps

24

where V(e., ep) is the positive definite function for 0 <
¢ <1 except e, = 0 and e, = 0. Now, let us differentiate

the above Lyapunov function
: 20wy .
2(?7)3636 + (72 + w%)g An4<-2,ygw’z; Eplp
= wlece,— (¥ +wllel +wlen
e AT — (PR
N L
2y od
7+ B — 47wt
414¢272 _ (2 2
= (Y +wi)ed - wp[4C* — (v +Wn)]ez
(VP +wi)? - 4G} P
2(ywi o d
(P ¥ ) = 4P

= (P 4ud)el— wald®y = (" + W%HCQ
e T Ty wi)T — 4C2yPw2 P
o

2 2 * 1 2
Fon ey — + Z"]
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I S
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1
€c 277
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— 2
T e I
2 2

2 e 2 L2
wn ec 27’ + 4 7?
4 2
w 1
— L — —d
O+ wd)? Ao |7 2a
Wy 2

I S ) -
Since d = 2073 + (y* + w})/(2¢1)n — 1, if we apply the
Schwartz inequality (ja +b 4 ¢|? < 3|a|® + 3[6% + 8|¢|®)
to d? term, then we get the following inequality:

Vo< -l wal(4— )Y — (Y2 +wi)] o

R R R e
2 4
< 2 w; :
+ g + 10272 + w2 ) _44272“,%}3!
4 242 2 2
2, 2 Walld—a®)C2 — (P + i) o
= el - (12 + w2)? — 402y2w2 = ol
+ w_?p, ¥ Swi(,¥2+wg)2 |n12
¢ B + R — 1]
. 12""’:4272 | |2
T+ ) — A
3w,

-2
Ry LA
where |ep|? term is negative definite under the given condi-
tions (19). Therefore, since the inequality (25) follows the
ISS property (15), we concludes that the indirect ZMP con-
troller gives the disturbance input(n, 7, §)-to-state(e,, €.)
stability (ISS) to a real biped walking robot. O
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Remark 1: In Figure 6, the COG Controller is a simple
PD (Proportional-Derivative) controller as follows:

1 .
= [2¢vé, + (¥ + wl)e] .

In addition, since we get the COG error dynamics by using
(20) and (21) as:

Ec+ 2yée + YPec = wi(6— ),

we can prove the disturbance input(d, 7)-to-state(e., €.}
stability for a real biped walking robot. ’

In order to demonstrate the effectiveness of indirect
ZMP controller proposed in this section, we simulated
the controller using the reference trajectory of COG from
Figures 4 and 5. If we set @ = 1 and { = 0.707, the
controller gain condition of (19) becomes

v > V20,

With v = 10, we get the resulting trajectories for ZMP
and COG as shown in Figures 7 and 8. For large initial
conditions (p;(0} = 0.9[m] and p,(0) = 0.9[m]), these
simulation results demonstrate the stability and robustness
of the indirect ZMP controller while following the refer-
ence trajectories.

V. CONCLUDING REMARKS

In this paper, the reference COG trajectory planning
method and the indirect ZMP control method were pro-
posed for biped walking robots. The disturbance input-to-
state stability (ISS} of the proposed indirect ZMP controller

was proved to show the robustness against disturbances. Fi-
nally, we showed the effectiveness of the proposed indirect
ZMP controller in simulations.
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