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Absfracl-This paper proposes the indireet zero momen- 
tum position ( Z M P )  controller for biped robot systems and 
proves its disturbance Input-to-state Stability (ISS). The ZMP 
contml has been used as a standard method for stable walking 
control of biped robot systems. Since the Z M P  information 
consists of position and acceleration of the center of gravity 
(COG) for a biped robot system, the Z M P  can be indirectly 
controlled by the motion of COG. In this pape~, the refemnee 
COG Planner is developed by solving the reference Z M P  
differential equation. The indired ZMP controller is pmposed 
to derive the desired motion of COG from the reference ZMP 
trajedory and the COG ermr (the ditference between the 
reference and real COG). The I S  of the proposed Indirect 
ZMP controller is proved for the simplified biped robot model. 
The mbwtuem of the proposed indirect Z M P  controller is 
shown in simulation. 

I. INTRODUCTION 

The zero momentum position (ZMP) control is the 
most important factor in implementing stable biped robot 
walking. If the ZMP is located in the region of supporting 
sole, then the robot will not fall down during walking. 
To implement stable robot walking, ZMP planning meth- 
ods were first suggested by using the inverted pendulum 
model[l] and the fast fourier transformation[;?]. In order to 
compensate the error between the planned and actual ZMP, 
various ZMP control methods were suggested: for example, 
direct and indirect ZMP control methods[3]. [41, impedance 
control[5] and balance control[61. Recently, running pattern 
generation methods were suggested in [7], [XI. Moreover, 
whole body planning of humanoid robot based on ZMP 
were suggested in [9], [lo]. Despite many references to 
biped walking control methods, research on the stability of 
biped walking controllers is still lacking. The exponential 
stability of periodic walking motion was partially proved 
for a planar biped robot in [ l l l ,  [121. 

In this paper, we will propose the indirect ZMP control 
method and prove its disturbance input-to-state stability 
(ISS). Due to the modelling uncertainties and the com- 
plexity of the full dynamics for a biped walking robot, 
we will represent the dynamic walking robot as a simple 
rolling sphere model on a constraint surface. This paper 
is organized as follows: section Il introduces a simplified 
model for a biped walking robot, section III proposes 
the COG trajectory planning method from the reference 
ZMP trajectory, section IV proves the ISS of indirect 
ZMP control for the simplified biped model and section 

Fig. 1. Biped Waking Robol 

V concludes the paper. 

11. SlMPLlRED MODEL FOR DYNAMIC WALKING 
ROBOT 

The biped walking mechanism is an essential part of 
humanoid as shown in Figure I .  Since humanoid legs have 
high degrees of freedom (DOF) for human-like walking, it 
is difficult t6 use their dynamics to design controller and to 
analyze stability. Therefore, we will simplify the walking 
related dynamics of biped robot as the equation of motion 
for a point mass at COG. 

First, let us assume that the motion of COG is con- 
strained on the surface z = cz. Then the rolling sphere 
(mass = m) model on constraint surface ( z  = c,) can be 
obtained as the simplified model for biped walking robot as 
shown in Figure 2. In this figure, the motion of the rolling 
sphere on a massless plate is described by the position 
of COG, (c,,cy,c,), and the ZMP is described by the 
position on the ground, @ = , p V ,  0). The joint configurations 
of the supporting leg are determined by solving the inverse 
kinematics from the position of COG to the base foot 
position @FP) on the gronnd and those of shifting leg 
are determined by solving the inverse kinematics from the 
position of COG to the shifting foot position (SET). 

Second, the equations of motion of the rolling sphere 
(mass = m) in Figure 2 are obtained on the plane z = c. 
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Pig. 2. Rolling Sphere Model for Dynamic WaUring 

as: 

r2 = mgc, - mcyc, (1) 
ry = -mgc, +m%c, (2) 
rZ = -mczcy+mcvc, (3) 

where g is the acceleration of gravity, cz is a height 
constant and r, is the moment about i-coordinate axis, for 
i = x, y, z. Now, if we introduce the defmition of ZMP as 
following forms: 

to two equations ( 1 )  and (2). then ZMP equations can he 
obtained as two differential equations: 

(6) 
cs .. 

Pz = c, - -c, 
9 

(7) 
c9. .. 

p ,  = cy - -cy. 
9 

The state space realization of ZMP equations (6) and (7) 
can be wrinen as: 

for i = x,y. These state space equations describe the 
relation between the position of COG and the ZMP, and 
they will he used as a part of the indirect ZMP controller 
in  the following section. 

111. RBFERENCE TRAJECTORY OF COG 
To implement robot walking, first of all, the stepping 

positions on the ground and the supporting phases should 
be predetermined as shown in Figure 3. In this figure, the 
stepping positions are generally represented as periodic 
functions and the supporting phases (double supp6rting 
and single supporting) are used in moving the ZMP. In 
a single supporting phase, the ZIvlP should stay in the 
center of the sole of supporting leg while the shifting leg 
is making a step. Io a double supporting phase, the ZMP 
should he moved to the center of the sole of shifting leg. 
These procedures should be repeated to make stable robot 

Single Suppaning Phase 
Double Suwrtmg Phase 

(3 -- Dotted : Single Supponing Phase 
- Sold : Double Supporting Phase 

Fig. 3. % Stcpping Positions and Reference u l P p Z ' ( t )  a n d p F f ( t )  

walking. Also, the reference trajectory 0: COG should he 
derived from the reference ZMP in Figure 3. In this section, 
we develop the equations for the generation of the reference 
trajectory of COG. 

A. Exact Solution 

transfer function: 
From the equations (6) and (7), we can get the following 

1 
Ci (S)  = [pt(~) - (cz/g)ci(o)s 

1 - ( c z / s ) s  
-(s/s)~i(o)l (9) 

for i = x,y. where C,(s) and Pi(s) are the Laplace 
transfomations of q ( t )  and p;( t ) ,  respectively, q(0) and 
&(O) are the initial conditions of trajectory of COG. The 
reference ZMF' shown in Figure 3 can he expressed as: 

m 

m 

p;"(t) = A . l ( t ) + 2 A ~ ( - l ) h . l ( t - k T o ) ( l l )  
k=l 
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where l(t - kTo) is the unit-step function staning at 
t = kTo. I f  we apply the Laplace transformations of the 
equations (10) and (1 1) to the equation (9) with zero initial 
conditions, then we get the followings: 

 ow, by letting w; 2 g/c,, since we h o w  that 

we get the following rearranged transfer functions: 

+B e-ZToa 

+B + . . . 

C,(s) = A 

+2A 

Finally, we can obtain the exact reference trajectories of 
the COG by using the inverse Laplace transformations as: 

c,(t) = B [l -cosh w,(t - To)] . l(t - To) + 
B [l -'cosh w,(t - ZTo)] . I(t -WO) + 
B [l -cosh w,(t - 3To)] . l ( t  - 3To) + 

m 

= BE [l -cosh w,(t - kTo)l . l( t  - kTo) 
k=l  

cs ( t )  = A [l -cosh wn(t)] - 
2A[l-coshw,(t-To)].l( t-To)+ 
2A [I -cosh w,(t - ~ T O ) ]  . l( t  - 2To) - . 
A [l - cosh wn(t)] + = 

2A c(-l)k [ l  - cosh wn(t - kTo)] . l ( t  - kTo) 
m 

k=l  

Even though these reference trajectories of COG are 
exact solutions for ordinary differential equations (6) and 
(7), they are difficult to be used robustly for a real 
biped walking robot system since they are composed of 
the unbounded functions cosh(.). In addition, they are 
numerically unstable and very sensitive to the variation of 
U". Therefore, we will suggest an altemative robust COG 

trajectory planning method by using the approximate solu- 
tion composed of the bounded functions in the following 
section. 

B. Planning by Approximate Solurion 

First, we introduce the following odd function with 
period To from the x-directional reference ZMP p a f ( t )  
of equation (10): 

n p L ( t )  = p: ' f ( t ) -  

- - -"(t-:) and p j ( t + T o ) = p : ( t ) .  
To 

Then, if we assume that the x-directional reference tra- 
jectory of COG has the following form by using Fourier 
series: 

c:''(t) = B (t-?) 

then we get the following equation by applying the above 
equation to the ZMP differential equation (6): 

where 
m 

d ( t )  = [." (I + S) cos (gt) "=I o n  

+b, (1 + s) sin (Et)] . 

Since above functionp',(t) is an odd function with a period 
TO, the coefficients a, = 0 and b,, can be obtained by 
solving the following equation: 

Finally, we get the coefficient b,, as the following form: 

B T O w i ( 1  + cosns) 
b, = 

ns(T;w: + n2.2) 
As a result, the x-directional reference trajectory of COG 
can be obtained by using the bounded function sin(.) as 
follows: 

BT;w:(l+cosns) . 
n s ( T ~ w ~  +n2sz) sin (g -t ) 4 2 )  

"=I 

Also, since the y-directional reference Z M P  p F f ( t )  of 
the equation (1 1) is the odd function with a period To. we 
can get the following y-directional reference trajectory of 
COG by using the Fourier series: 
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Fig. 6. Indim1 Z M P  ConmUer for a Biped Walking' K o h l  
( 1 , 2 3 4 5 6  

Time ,a] 

Fig. 4. 
ZMP when n = 12 

Reference Trajectory of COG @ ( t )  and Its Companding 

Fig. 5.  
ZMP when n = 12 

Reference Trajectory of COG @ ( t )  and I& Companding 

In fact, since these reference trajectories of equations 
(12) and (13) are composed of infinity series, we get the 
approximate solution with a positive constant n. 

The resulting plots in Figures 4 and 5 show the ef- 
fectiveness of the reference trajectory planning of COG 
by using approximate solution. lu these figure, we used 
W: = 10 (c, = 0.9086[m] and g = 9.806[m/s]), 
2'0 = l[s], A = 0.3[m], B = 0.3[m] and n = 12. 
The corresponding ZMPs in figures represent the ZMPs 
generated by using approximate solution. In fact, we can 
express the difference between the reference ZMP in Figure 
3 and the corresponding ZMP in Figures 4 and 5 as follows: 

pyf = cy - l/w2c:.'ef " l  +4 (141 

where 6 is the difference between the reference ZMP 
and corresponding ZMP. As n increases, the difference 6 
becomes smaller. Also, it is known that 6 is the bounded 
value, 161 < 13, for i = x, y, where 0 is a positive constant. 
The reference trajectories (12) and (13) of COG with a 
constant n will be used for the indirect Z M P  controller in 
the following section. 

IV. INDIRECT ZMP CONTKOL LAW 

Since a biped walking robot system is an electm 
mechanical system including many electric motors, gears 
and link mechanisms, there exist many disturbances in 
executing the motions of the pre-generated reference trajec- 
tories of COG and ZMP for a real biped robot system. To 

show the robustness of the controller against disturbances, 
we apply the following stability to a biped robot control 
system. The control system is said to be disturbance input- 
to-state stable (ISS) [13], if there exists a smooth positive 
definite radially unbounded function V(x, t), a class K, 
function 71 and a class K function 72 such that the 
following dissipativity inequality is satisfied: 

v 5 -71(lXl) +72(ldl)> (15) 

where V represents the total derivative for Lyapunov 
function, x state vector and d disturbance input vector. 

In this section, we propose the indirect Z M P  controller 
for biped robot systems as shown in Figure 6. In this 
figure, first, the ZMP Planer generates the reference tra- 
jectories (IO) and (11). Second, the COG Planer generates 
the reference trajectories (12) and (13) with a suitable 
positive constant n. Third, we assume that the Desired 
COG Generator has the following form by using the state 
space equation (8): 

d 

where w i  = g/ct. c; is the desired trajectory of COG 
and U, is the ZMP control input, for i = x, y. Notice that 
this equation can also be expressed as cf - l/w;e: = 
ut. Fouah, the real biped walking robot has the following 
dynamics: 

(17) 

where ei is the real control error, c: and pi  are the real 
positions of COG and Z M P  of the real biped robot, respec- 
tively. Note that the control error always exists in real robot 
systems and its magnitude depends on the performance of 
embedded local servos. In addition, we assume that the 
ZMP disturbance (q = ei-l/uiii) produced by the control 
error is bounded and its differentiation is also bounded, in 
other words, 171 < a and 191 < b for positive constants a 
and b. The following theorem proves the stability of the 
indirect ZMP controller for a real biped walking robot. 

c, = cp + e: 
pi = ci - l/w& for i = x,y, 

a 

Theorem I: Let us define the ZMP and COG error for 
the real biped walking robot (17) as follows: 

A e, = p T e f  - p i  
e, = A -q. 
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If the ZMP control input ui in Figure 6 has the following the above Lyapunov function 

for 0 < oi < &, then the indirect ZMP controller in 
Figure 6 gives the disturbance input(q, f13 b)-to-state(e,, e,) 
stability (ISS) to a real biped walking robot. 
Pmoj First, we get the ZMP error dynamics from 
equations (14) and (17) as follows: 

(20) 2 e ,  = w,(e. - e, + 6). 

Second, we obtain another ZMP error dynamics by using 
equations (16), (17) and (18) as follows: 

e, = 1/4, (257e, + (7' + w:)ec) - q, (21) 

also, this equation can be rearranged for e,: 

e, = 1/(2cy) (.:e, - (7' +u:)e. + w2q) . (22) 

Third, by differentiating the equation (21) and by using + w: d2 
equations (20) and (22). we get the following: 

e, = l/L'Ji (ZCro, + (72 +.:)e.) - q 

4a2[(y2 + wz)2 - 4Czyzw2] 

Since d = 2576 + (7' + w2)/(257)17 - q, if we apply the 
Scbwartz inequality (la + b + cI2 5 3jaI2 + 3jbI2 + 3 1 ~ 1 ~ )  
to d' term, then we get the following inequality: = 257(e,  -e, + 6 )  

(23) 

A where d = 2cy6 + (r2 + w2)/(2C7)q - q. Fourth, let us 
consider the following Lyapnnov function: 

where V(e , ,  e,) is the positive definite function for 0 < 
5 5 1 except e, = 0 and e, = 0. Now, let us differentiate 

V 5 -?'e:- w3(4  - a2)C272 - (r2 + 4 1  2 

(72 + w y  - 452724  % 

4 d2 
WZ 

4 0 ~ [ ( 7 ~  + wt)2 - 4CZr2w;] + q q Z +  

w3(4 - a2)Czrz - ( 7 2  + 4 1  

12W:C272 
+4a2[(7? + w,!J2 - 4c2y2w,?,] "" 
+ 3 4  l * I 2 9  (25) 4a2[(72 + ~ 2 ) ~  - 4c2y2w:] 

where le,/2 term is negative definite under the given condi- 
tions (19). Therefore, since the inequality (25) follows the 
ISS properly (15). we concludes that the indirect ZMP con- 
mller gives the disturbance input(7, *, 6)-to-state(ep, e,) 

0 stability (ISS) to a real biped walking robot. 
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Fig. 7. Simulation Resulr : K d  ZMPp,(t) and COG ~ ( t )  

0 6  

...... ~, . . . . . . . , 

Time 131 

Fig. 8. Simula*ion Result : Real ZMP pv(t)  and COG +(t) 

Remark I: In Figure 6, tbe COG Controller is a simple 
PD (Propdonal-Derivative) controller as follows: 

1 -  CY& + (7’ + 4 ) e c ] .  4 
In addition, since we get the COG error dynamics by using 
(20) and (21) as: 

e, + 2Cyec + y2e, = w:(6 - q), 

we can prove the disturbance input(& 11)-to-state(e,, e‘=) 
stability for a real biped walking robot. 

In order to demonstrate the effectiveness of indirect 
ZMP controller proposed in this section, we simulated 
the controller using the reference trajectory of COG from 
Figures 4 and 5. If we set a = 1 and C = 0.707, the 
controller gain condition of (19) becomes 

y > m. 
With y = 10, we get the resulting trajectories for Z M P  
and COG as shown in Figures 7 and 8. For large initial 
conditions @,(0) = 0.9[m] and p,(O) = O.S[m]), these 
simulation results demonstrate the stability and robustness 
of the indirect ZMP controller while following the refer- 
ence trajectories. 

V. CONCLUDING REMARKS 
In this paper, the reference COG trajectory planning 

method and the indirect ZMP control method were pro- 
posed for biped walking robots. The disturbance input-tw 
state stability (IS) of the proposed indirect ZMP controller 

was proved to show the robusmess against disturbances. Fi- 
nally, we showed the effectiveness of the proposed indirect 
ZMP controller in simulations. 
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