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Abstract— This paper proposes the walking pattern generation
method, the kinematic resolution method of CoM(center of mass)
Jacobian with an embedded motion, and the walking controller
design method for humanoid robots. First, the walking pattern is
generated using the simplified model for bipedal robot. Second,
the kinematic resolution of CoM Jacobian with embedded motion
makes a humanoid robot balanced automatically during the
movement of the all other limbs. Actually, it offers the ability
of whole body coordination to the humanoid robot. Third, the
walking controller is composed of the CoM controller minus the
ZMP(zero momentum position) controller. Also, we show that the
proposed walking controller brings the disturbance input-to-state
stability (ISS) for the simplified bipedal walking robot model.
Finally, the effectiveness of the proposed kinematic resolution
method and walking controller is shown through experiments in
regard to humanoid robot dancing and walking.

I. INTRODUCTION

Recently, there have been many researches about humanoid
motion control, for example, walking control [1]–[6], running
control [7] and whole body coordination [8], [9]. Especially,
the whole body coordination (WBC) algorithm with good
performance becomes the essential part in the development of
humanoid robot because it offers the enhanced stability and
flexibility to the humanoid motion planning. In this paper, we
suggest the kinematic resolution method of CoM Jacobian with
embedded (walking or dancing) motion, actually, which offers
the ability of WBC to the humanoid robot. For example, if the
humanoid robot stretches two arms forward, then the position
of CoM(center of mass) of humanoid robot moves forward
and its ZMP(zero momentum point) swings back and forth. In
this case, the proposed kinematic resolution method of CoM
Jacobian with embedded motion offers the configurations of
supporting limb(s) which is(are) calculated automatically to
maintain the position of CoM fixed at one point.

Also, the walking controller design with good performance
becomes the important part in the development of humanoid
robot. In the walking control, the ZMP control is the most
important factor in implementing stable bipedal robot walking
or dancing. If the ZMP is located in the region of supporting
sole, then the robot will not fall down during walking. To

implement stable robot walking, the desired ZMP planning
methods were first suggested by using the inverted pendulum
model [2] and the fast fourier transformation [5]. In order to
compensate the error between the desired and actual ZMP,
various ZMP control methods were suggested: for example,
direct/indirect ZMP control methods [1], [3], [10] and the
impedance control [4]. Despite many references to bipedal
walking control methods, research on the stability of bipedal
walking controllers is still lacking. The exponential stability
of periodic walking motion was partially proved for a planar
bipedal robot in [6]. Also, the ISS of the indirect ZMP
controller was proved for the simplified bipedal robot model
in [1]. In this paper, we will propose the walking control
method and prove its ISS. Due to the modelling uncertainties
and the complexity of the full dynamics for a bipedal walking
robot, we will represent the dynamic walking robot as a simple
rolling sphere model on a constraint surface.

This paper is organized as follows: section II introduces
a simplified model for a bipedal walking robot, section III
proposes the walking pattern generation method by planning
the desired CoM trajectory from the desired ZMP trajectory,
section IV explains the kinematic resolution method of CoM
Jacobian with an embedded walking or dancing motion, sec-
tion V proves the ISS of the proposed walking control for
the simplified bipedal robot model, section VI shows the
experimental results about the stable robot walking and the
WBC functions obtained by using the kinematic resolution
method of CoM Jacobian with embedded walking and dancing
motions, and section VII concludes the paper.

II. SIMPLIFIED MODEL FOR BIPEDAL ROBOT

The bipedal walking mechanism is an essential part of
humanoid as shown in Fig. 1. Since humanoid legs have high
degrees of freedom for human-like walking, it is difficult to
use their dynamics to design controller and to analyze stability.
Therefore, we will simplify the walking related dynamics of
bipedal robot as the equation of motion for a point mass at
CoM.

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 2655



Body Center�
Frame�

CoM�

X�
Y�

Z�

World Coorinate�
Frame�

ZMP�

CoM(c x,cy,cz)

Shifting FootY

X

Z

O

Walking
Direction

-mg

Supporting Foot

World Coordinate
Frame

Body Center
Frame

Fig. 1. Rolling Sphere Model for Dynamic Walking

First, if we assume that the motion of CoM is constrained
on the surface z = cz , then the rolling sphere model with the
concentrated point mass m can be obtained as the simplified
model for bipedal robot as shown in Fig. 1. In this figure, the
motion of the rolling sphere on a massless plate is described
by the position of CoM, c = [cx, cy, cz]T , and the ZMP is de-
scribed by the position on the ground, p = [px, py, 0]T . In the
robot walking motion, the joint configurations of supporting
leg are firstly determined by using the kinematic resolution
method of CoM Jacobian with the embedded walking motion
and those of the shifting leg are secondly determined by
solving the inverse kinematics for the shifting leg motion
expressed in world coordinate frame. These will be explained
in the following section.

Second, from the equations of motion of the rolling sphere
(mass = m) expressed on the plane z = cz in Fig. 1, the ZMP
equations can be obtained as two differential equations:

px = cx − cz

g
c̈x (1)

py = cy − cz

g
c̈y. (2)

The state space realization of ZMP equations (1) and (2) can
be written as:

d

dt

[
ci

ċi

]
=

[
0 1
ω2

n 0

] [
ci

ċi

]
+

[
0

−ω2
n

]
pi, (3)

for i = x, y, where ωn =
√

g/cz and g is the gravitational
acceleration constant. These state space equations describe the
relation between the position of CoM and the ZMP, and they
will be used to prove the stability of the walking controller in
the following section.

III. DESIRED ZMP/COM TRAJECTORIES

To implement robot walking, first of all, the stepping
positions on the ground and the supporting phases are pre-
determined as shown in Fig. 2. In this figure, the stepping
positions are generally represented as periodic functions and
the supporting phases (double supporting and single support-
ing) are used in moving the ZMP. In a single supporting phase,
the ZMP should stay in the sole of supporting leg while the
shifting leg is making a step. In a double supporting phase,
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Fig. 2. Desired ZMP Trajectory

the ZMP should be moved to the sole of shifting leg. These
procedures should be repeated to make stable robot walking.
Also, the desired trajectory of CoM should be derived from
the desired ZMP in Fig. 2. In this section, we develop the
equations for the generation of the desired trajectories of CoM.

A. X Directional Planning

The X-directional ZMP trajectory in Fig. 2 is expressed with
a period time T as following forms:

for 0 ≤ t < td, px(t) = (Kx/td)t = cx(t)
for td ≤ t < T − td, px(t) = B (4)

for T − td ≤ t < T, px(t) = (2B − Kx)
+(Kx/td)(t − (T − td)) = cx(t),

where B is the half of step length and td means the time when
px(td) = Kx in the ZMP graph of broken line, namely, the
change time td from the double supporting phase to single
supporting one. Here, the desired trajectory of CoM should
be determined from Eq. (1) with Eq. (4), in other words, we
should solve the following differential equation for td ≤ t <
T − td:

c̈x − ω2
ncx = −ω2

nB.

The general solution is obtained as:

cx(t) = Cx1 cosh(ωn(t−td))+Cx2 sinh(ωn(t−td))+B, (5)

with the unknown coefficients Cx1 and Cx2. The unknown
coefficients satisfying the following boundary conditions

cx(td) = Kx

ċx(td) = Kx/td,

can be determined as :

Cx1 = Kx − B (6)

Cx2 =
Kx

tdωn
. (7)

Also, for cx(T − td) = 2B − cx(td) and ċx(td) = ċx(T − td),
the following constraint equation should be always satisfied:

Kx =
Btdωn

tdωn + tanh
(
ωn

(
T
2 − td

)) . (8)

Therefore, if we arbitrarily determine the change time td of
supporting phases with the positive constants ωn and B, then
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Fig. 3. X- and Y-Directional Desired ZMP/CoM Trajectories

the Kx is determined from Eq. (8), and then, the unknown
coefficients Cx1 and Cx2 can be determined from Eq. (6) and
(7). Now, the X-directional desired trajectory of CoM can be
obtained by the smooth function as schematically depicted in
Fig. 3.

B. Y Directional Planning

The Y-directional ZMP trajectory in Fig. 2 is also described
as following forms:

for 0 ≤ t < td, py(t) = (Ky/td)t = cy(t)
for td ≤ t < T − td, py(t) = A (9)

for T − td ≤ t < T, py(t) = −(Ky/td)(t − T ) = cy(t)

where A is the half of the distance between both feet and
td means the time when py(td) = Ky in the ZMP graph of
broken line. Here, the desired trajectory of CoM should be
obtained by solving the following differential equation :

c̈y − ω2
ncy = −ω2

nA, for td ≤ t < T − td

The general solution is also obtained as:

cy(t) = Cy1 cosh(ωn(t−td))+Cy2 sinh(ωn(t−td))+A (10)

with the unknown coefficients Cy1 and Cy2. The unknown
coefficients satisfying the following boundary conditions

cy(td) = Ky

ċy(td) = Ky/td,

can be also determined as:

Cy1 = Ky − A (11)

Cy2 =
Ky

tdωn
. (12)

Also, for cy(td) = cy(T − td) and ċy(td) = −ċy(T − td), the
following constraint equation should be always satisfied:

Ky =
Atdωn tanh

(
ωn

(
T
2 − td

))
1 + tdωn tanh

(
ωn

(
T
2 − td

)) . (13)

Therefore, from the determined td, ωn and A, the Ky is
determined from Eq. (13), and then, the unknown coefficients
Cy1 and Cy2 are determined from Eq. (11) and (12). The Y-
directional desired trajectory of CoM can be obtained by the
smooth function as schematically depicted in Fig. 3.

To implement the desired CoM motions of Fig. 3 in the
real humanoid robot, the CoM inverse kinematics is required
to resolve them kinematically according to the driving motor
axes. That is derived from the CoM Jacobian between the
velocity of CoM and the joint velocity of the supporting
leg(s). The concrete resolution method will be explained in
the following section.

IV. KINEMATIC RESOLUTION OF COM JACOBIAN WITH AN

EMBEDDED MOTION

Let us derive the partitioned CoM Jacobian to embed a
desired motion. Let a robot has n limbs and the first limb
be the base limb. The base limb can be any limb but it should
be on the ground to support the body. Each limb of a robot is
considered as an independent limb, hereafter. In general, the
i-th limb has the following relation:

oẋi = oJ iq̇i (14)

where oẋi is the velocity of the end point, q̇i is the joint
velocity, and oJ i is the usual Jacobian matrix. The leading
superscript o implies that the elements are represented on the
body center coordinate system shown in Fig. 1, which is fixed
on a humanoid robot.

In our case, the body center is floating, and thus the end
point motion about the world coordinate system is written as
follows:

ẋi = X−1
i ẋo + Xo

oJ iq̇i (15)

where ẋo = [ṙT
o ; ωo

T ]T is the velocity of the body center
represented on the world coordinate system, and

Xi =
[
I3 [Ro

ori×]
03 I3

]
(16)

is a (6× 6) matrix which relates the body center velocity and
the i-th limb velocity. I3 and 03 are an (3 × 3) identity and
zero matrix, respectively. Ro

ori is the position vector from
the body center to the end point of the i-th limb represented
on the world coordinate frame. [(·)×] is a skew-symmetric
matrix for the cross product. The transformation matrix Xo is

Xo =
[
Ro 03

03 Ro

]
(17)

where Ro is the orientation of the body center represented
on the world coordinate frame, and hereafter, we will use the
relation J i = Xo

oJ i.
From Eq. (15), we can see that all the limbs should satisfy

the compatibility condition that the body center velocity is
the same, and thus i-th limb and j-th limb should satisfy the
following relation:

ẋo = Xi(ẋi − J iq̇i) = Xj(ẋj − Jj q̇j). (18)

From Eq. (18), the joint velocity of any limb can be rep-
resented by the joint velocity of the base limb and desired
cartesian motions of limbs. Actually, the base limb should
be chosen to be the supporting leg in the single supporting
phase or one of both legs in the double supporting phase. Let
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us express the base limb with the subscript 1, then the joint
velocity of any limb is expressed as:

q̇i = J−1
i ẋi − J−1

i Xi1(ẋ1 − J1q̇1), (19)

for i = 2, · · · , n. Here,

Xi1
�
= X−1

i X1 =
[
I3 [Ro(or1 −o ri)×]
03 I3

]
. (20)

Note that if a limb is a redundant system, any null space
optimization scheme can be added in Eq. (19). Now, let us
rewrite the conventional CoM Jacobian explained in [9] as
follows:

ċ = ṙo + ωo × (c − ro) +
n∑

i=1

Ro
oJci q̇i. (21)

where n is the number of limbs, c is the position vector of
CoM represented on the world coordinate system, namely,
c = [cx, cy, cz]T , and oJci means CoM Jacobian of i-th limb
represented on the body center coordinate frame. Here, the
motion of body center frame can be obtained by using Eq. (15)
for the base limb as follows:

ẋo = X1 {ẋ1 − Xo
oJ1q̇1}[

ṙo

ωo

]
=

[
I3 [Ro

or1×]
03 I3

] {[
ṙ1

ω1

]
−

[
Ro

oJv1

Ro
oJω1

]
q̇1

}
, (22)

where oJv1 and oJω1 are the linear and angular velocity part
of the base limb Jacobian. Now, if Eq. (19) for other limbs is
applied to Eq. (21), the CoM motion is rearranged as follows:

ċ = ṙo + ωo × (c − ro) + Ro
oJc1 q̇1

+
n∑

i=2

Ro
oJciJ

−1
i (ẋi − Xi1ẋ1) +

n∑
i=2

Ro
oJciJ

−1
i X i1J1q̇1.

Here, if Eq. (22) is applied to above equation, then the CoM
motion is only related to the base limb:

ċ = ṙ1 + ω1 × rc1 − Ro
oJv1 q̇1 + rc1 × Ro

oJω1 q̇1

+ Ro
oJc1 q̇1 +

n∑
i=2

Ro
oJciJ

−1
i (ẋi − Xi1ẋ1)

+
n∑

i=2

Ro
oJciJ

−1
i X i1J1q̇1 (23)

where rc1 = c − r1. Also, if the base limb is stuck to the
ground (ṙ1 = 0 and ω1 = 0), then Eq. (23) is simplified as
follows:

ċ = −Ro
oJv1 q̇1 + rc1 × Ro

oJω1 q̇1 + Ro
oJc1 q̇1 (24)

+
n∑

i=2

Ro
oJciJ

−1
i (ẋi − Xi1ẋ1) +

n∑
i=2

Ro
oJciJ

−1
i X i1J1q̇1.

Finally, all the given desired limb motions, ẋi are embedded
in the CoM Jacobian. Thus the effect of the CoM movement
generated by the given limb motion is compensated by the
base limb. Eq. (24) can be rewritten like the usual kinematic
Jacobian of base limb:

ċemc = Jemcq̇1 (25)

where

ċemc = ċ −
n∑

i=2

Ro
oJciJ

−1
i (ẋi − Xi1ẋ1), (26)

J emc = Ro [−oJv1 + rc1 ×o Jω1 + oJc1 ]

+
n∑

i=2

Ro
oJciJ

−1
i Xi1J1. (27)

The CoM motion with embedded limb motions, ċemc, consists
of two relations: a given desired CoM motion(the first term)
which is derived in the previous section, and the relative effect
of other limbs(the second term). The CoM Jacobian with
embedded limb motions, Jemc also consists of three relations:
the effect of the body center(the first and the second term),
the effect of the base limb(the third term), and the effect of
other limbs(the last term).

The CoM Jacobian with embedded motion J emc is a (3×n1)
matrix where n1 is the dimension of the base limb, which
is smaller than that of the original CoM Jacobian, thus the
calculation time can be reduced. After solving Eq. (25), the
joint motion of the base limb is obtained. The resulting base
limb motion makes a humanoid robot balanced automatically
during the movement of the all other limbs. With the joint
motion of the base limb, the joint motion of all the other limbs
are obtained by Eq. (19). The resulting motion follows the
given desired motion, regardless of the balancing motion of the
base limb. In other words, the suggested kinematic resolution
method offers the WBC(whole body coordination) function to
the humanoid robot automatically.

V. STABILITY OF WALKING CONTROLLER

Since a bipedal walking robot is an electro-mechanical
system including many electric motors, gears and link mecha-
nisms, there exist many disturbances in executing the motions
of the pre-generated desired trajectories of CoM and ZMP
for a real bipedal robot system. To show the robustness of
the controller against disturbances, we apply the following
stability theory to a bipedal robot control system. The control
system is said to be disturbance input-to-state stable (ISS) [11],
if there exists a smooth positive definite radially unbounded
function V (e, t), a class K∞ function γ1 and a class K
function γ2 such that the following dissipativity inequality is
satisfied:

V̇ ≤ −γ1(|e|) + γ2(|ε|), (28)

where V̇ represents the total derivative for Lyapunov function,
e the error state vector and ε disturbance input vector.

In this section, we propose the walking controller for bipedal
robot systems as shown in Fig. 4. In this figure, first, the ZMP
Planer and CoM Planer generate the desired trajectories in Fig.
3 which are satisfying the following differential equation:

pd
i = cd

i − 1/ω2
nc̈d

i for i = x, y. (29)

Second, the simplified model for the real bipedal walking robot
has the following dynamics:

ċi = ui + εi

pi = ci − 1/ω2
nc̈i for i = x, y,

(30)
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Fig. 4. Walking Controller for a Bipedal Walking Robot

where εi is the disturbance input produced by actual control
error, ui is the walking control input, ci and pi are the actual
CoM and ZMP positions of the real bipedal robot, respectively.
The real bipedal robot makes the kinematic resolution from
the walking control input to the motor driving joint velocity
as explained in the previous section. Concretely speaking, the
walking control input is applied to the term ċ in Eq. (26) by
replacing ċi with ui, for i = x, y. Also, the real bipedal robot
offers the ZMP information from force/torque sensors attached
to the ankles of humnaoid and the CoM information from the
encoder data attached to the motor driving axes, respectively,
as shown in Fig. 4. Here, we assume that the the disturbance
produced by control error is bounded and its differentiation
is also bounded, namely, |εi| < a and |ε̇i| < b with positive
constants a and b. Also, we should notice that the control error
always exists in real robot systems and its magnitude depends
on the performance of embedded local servos. The following
theorem proves the stability of the walking controller for the
simplified walking robot model.

Theorem 1: Let us define the ZMP and CoM error for
the simplified bipedal walking robot control system (30) as
follows:

ep,i
�
= pd

i − pi

ec,i
�
= cd

i − ci, for i = x, y.

If the walking control input ui in Fig. 4 has the following
form:

ui = ċd
i − kp,iep,i + kc,iec,i (31)

under the gain conditions:

kc,i > ωn and 0 < kp,i <

(
ω2

n − β2

ωn
− γ2

)
(32)

with the positive arbitrary numbers satisfying the following
conditions:

β < ωn and γ <

√
ω2

n − β2

ωn
,

then the walking controller gives the disturbance input(εi, ε̇i)-
to-state(ep,i, ec,i) stability (ISS) to a simplified bipedal walk-
ing robot, where, the kp,i is the proportional gain of ZMP
controller and kc,i is that of CoM controller in Fig. 4.
Proof. First, we get the error dynamics from Eq. (29) and
(30) as follows:

ëc,i = ω2
n(ec,i − ep,i). (33)

Second, another error dynamics is obtained by using Eq. (30)
and (31) as follows:

kp,iep,i = ėc,i + kc,iec,i + εi, (34)

also, this equation can be rearranged for ėc:

ėc,i = kp,iep,i − kc,iec,i − εi. (35)

Third, by differentiating the equation (34) and by using
equations (33) and (35), we get the following:

ėp,i = 1/kp,i (ëc,i + kc,iėc,i + ε̇i)
= ω2

n/kp,i(ec,i − ep,i)
+kc,i/kp,i(kp,iep,i − kc,iec,i − εi) + (1/kp,i)ε̇i

=

(
ω2

n − k2
c,i

kp,i

)
ec,i −

(
ω2

n − kp,ikc,i

kp,i

)
ep,i

+
1

kp,i
(ε̇i − kc,iεi). (36)

Fourth, let us consider the following Lyapunov function:

V (ec,i, ep,i)
�
=

1
2

[
(k2

c,i − ω2
n)e2

c,i + k2
p,ie

2
p,i

]
, (37)

where V (ec, ep) is the positive definite function for kp,i > 0
and kc,i > ωn, except ec,i = 0 and ep,i = 0. Now, let us
differentiate the above Lyapunov function

V̇ = (k2
c,i − ω2

n)ec,iėc,i + k2
p,iep,iėp,i

= −kc,i(k2
c,i − ω2

n)e2
c,i − kp,i(ω2

n − kp,ikc,i)e2
p,i

−(k2
c,i − ω2

n)ec,iεi + kp,iep,iε̇i − kp,ikc,iep,iεi

= −(kc,i − α2)(k2
c,i − ω2

n)e2
c,i

−kp,i[ω2
n − (kp,i + γ2)kc,i − β2]e2

p,i

−(k2
c,i − ω2

n)
∣∣∣∣αec,i +

1
2α

εi

∣∣∣∣
2

− kp,i

∣∣∣∣βep,i − 1
2β

ε̇i

∣∣∣∣
2

−kp,ikc,i

∣∣∣∣γep,i +
1
2γ

εi

∣∣∣∣
2

+

[
(k2

c,i − ω2
n)

4α2
+

kp,ikc,i

4γ2

]
ε2i +

kp,i

4β2
ε̇2i

Therefore,

V̇ ≤ −(kc,i − α2)(k2
c,i − ω2

n)e2
c,i

−kp,i[ω2
n − (kp,i + γ2)kc,i − β2]e2

p,i

+

[
(k2

c,i − ω2
n)

4α2
+

kp,ikc,i

4γ2

]
ε2i +

kp,i

4β2
ε̇2i (38)

where e2
c,i term is negative definite with the arbitrary positive

number satisfying α <
√

ωn and e2
p,i term is negative definite

under the given conditions (32). Here, since the inequality
(38) follows the ISS property (28), we concludes that the pro-
posed walking controller gives the disturbance input(εi, ε̇i)-to-
state(ep,i, ec,i) stability (ISS) to the simplified control system
model of bipedal walking robot. �

Remark 1: Note that the ZMP controller in above theorem
has the negative feedback different from the conventional
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controller. Also, for practical use, the gain conditions of
walking controller can be simply rewritten without arbitrary
positive numbers β and γ as follows:

kc,i > ωn and 0 < kp,i < ωn,

because the stability proof is very conservative in above
theorem.

VI. EXPERIMENTAL RESULTS

First, we experimented the humanoid robot dancing to
show the WBC(whole body coordination) function of the
kinematic resolution method developed in section IV. The
desired dancing motion shown in Fig. 5 is applied to the
dual arms, then the supporting (base) limb motion is generated
from the kinematic resolution method of CoM Jacobian with
embedded dancing motion. The initial positions of CoM are
cx = 0.034[m], cy = 0.0[m], cz = 0.687[m], respectively.
Though the joint configurations of dual arms are changed with
the dancing motion as shown in Fig. 5, the position of CoM is
not nearly changed at the initial position as shown in Fig. 6.
Also, we can see in Fig. 6 that the ZMP has the small changes
within the bounds of ±0.01[m] approximately. As a result, we
could succeed in implementing the fast dancing motion stably
thanks to the WBC function.
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Fig. 5. Experimental Result : Joint Trajectories of Arms while Dancing
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Fig. 6. Experimental Result : CoM and ZMP Trajectories while Dancing

Second, in order to demonstrate the effectiveness of walk-
ing controller proposed in section V, the desired ZMP/CoM
trajectories are generated by setting T = 1.0[s], td = 0.1[s],
A = 0.09[m], B = 0.1[m], m = 67.68[kg], cz = 0.687[m],
and ωn =

√
g/cz = 3.78, and the gains of walking controller

are set as kp,i = {3.0, 1.8}, and kc,i = {6.6, 3.8} for
i = x, y. And then, we experimented the proposed controller
with humanoid robot. The experimental results are shown in
Fig. 7. These results demonstrate the stability of the proposed
walking controller while following the desired CoM and ZMP
trajectories.
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Fig. 7. Experimental Result : CoM and ZMP Trajectories while walking,
where ci means the actual position of CoM, cd

i the desired position of CoM,
pi the actual ZMP, and pd

i the desired ZMP for i = x, y.

VII. CONCLUDING REMARKS

In this paper, the desired CoM/ZMP trajectory planning
method, the kinematic resolution method of CoM Jacobian
with an embedded walking or dancing motion, and the walking
control method were proposed for the humanoid robot. The
proposed kinematic resolution method with CoM Jacobian
offers the whole body coordination function to the humanoid
robot automatically. Also, The disturbance input-to-state sta-
bility (ISS) of the proposed walking controller was proved to
show the robustness against disturbances. Finally, we showed
the effectiveness of the proposed methods through the exper-
iments.
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