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ABSTRACT 

This contribution treats definitions, dynamic aspects, and stability concepts of 
anthropomorphic systems. In addition to general conclusions about the new method of 
two-legged systems modelling, there are given some characteristic schemes of perturbed 
steady-gait regime stabilization. 

METHOD OF ARTIFICIAL SYNERGY SYNTHESIS 

The basic problem of the artificial locomotion-system synthesis consists 
in the elaboration of corresponding synergies, enabling one to reduce the 
number of control coordinates. This problem reduces to the elaboration 
of control algorithms, which have to ensure relative movement of the whole 
locomotion system or of its parts, according to some prescribed law. 

It is known that the legged locomotion systems represent complex 
space systems with a great number of degrees of freedom. The attempt to 
synthetize a locomotion mechanism, reproducing with great similarity the 
human locomotion system, would lead to infinitely complex systems, 
particularly from the control standpoint. 

It is sufficient to remind of the fact that the upper extremities of man 
contain 52 muscle pairs, the lower extremities 62 pairs, back-l 12 pairs, 
chest part-52 pairs, pelvic part-8 pairs. The neck contains 16 pairs and 
the head itself 25 pairs of muscles. The whole muscular system is able to 
control human motions with amazing complexity, enabling man to per- 
form an almost arbitrary skeletal activity. 

It is understandable that at the present level of technical progress it is 
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not possible to control an artificial system containing about 400 double- 
acting actuators (800 muscles). 

Evidently, there arises the problem of how to reduce the total number 
of degrees of freedom at the dynamic level of the locomotion-manipulation 
system. In connection with this, there exist different attempts to reduce the 
dimensionality during the synthesis of the system for artificial skeletal 
activity, as compared with the natural system. 

One of these [l] reduces the skeletal activity to a very limited number of 
movements, using the electrical stimulation of the natural locomotion 
system. Another approach studies the legged-locomotion dynamics on a 
rigid body model with six degrees of freedom [2, 31, moving under the 
effect of alternate force impulses. These impulses arise as the result of 
alternate leg contact with the supporting surface. The limitation of this 
approach evidently lies in the fact that leg masses have not been taken 
into account, although, as it is known, they represent roughly half of the 
total system mass. 

In the proposed method the synergy of some type of gait is being 
realized as well as the synthesis of the compensating system, which is 
necessary to maintain the prescribed synergy [4, 51. The synergy supposes 
the synchronization of the system parts relative movement and it is equiv- 
alent to introducing supplementary connections (constraints) in the 
locomotion-system mechanism. Due to these connections the total number 
of degrees of freedom diminishes considerably, and with a prescribed 
algorithm the system does not possess “ freedom ” in the classical sense; 
it moves according to a preselected law. 

The synergy in question is being realized in different ways for the lower 
extremities and the upper part of the body. For the lower extremities a 
periodic algorithm is prescribed, imitating human gait. The upper body 
algorithm can be acquired from the gait repeatability conditions [4]_ 

With the synthesis of artificial synergy, an important role is played by 
the dynamic links. Therefore, we will nominate some differential relations 
to be satisfied during the gait. They can be in the form of some relations, 
based upon reactions on the support surfaces of the feet. 

In Fig. 1 an example of force distribution across the foot is given. As 
the load has the same sign all over the surface, it can be reduced to the 
resultant force R, the point of attack of which will be in the boundaries 
of the foot. Let the point on the surface of the foot, where the resultant R 
passes, be denoted as the zero-moment point, or ZMP in short. 

In the case of the double-support phase, ZMP can find itself outside 
the support surface of the feet (dashed zone in Fig. 2). In the boundaries 
of this zone ZMP can move according to various laws, which define the 
gait to a considerable extent. The basic idea in the synthesis of synergy lies 
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in prescribing the ZMP movement laws in advance. For instance, in the 
single-support phase, ZMP is in the center of the support surface of the 
foot, while in the double support-phase, it translates itself gradually or 
stepwise into the other foot surface center. If we denote with i the point 
ZMP, according to d’Alambert’s principle the sum of the external and 

FIG. 1. Zero-moment point (ZMP). 

inertial forces’ moments relative to that point should be zero. Analogously, 
the law of the friction forces change can be prescribed, demanding for 
instance that the friction forces moment be zero at point, 1,. This renders 
one more equation of dynamic connections. 

FIG. 2. Admissible region of ZMP position. 

For the model considered we shall set motion laws of the model 
“ legs ” [that is, all coordinates Pi(t), see Fig. 31 and from equations of 
dynamic connections with respect to the coordinates of the body upper 
portion (coordinates $, I). Then, differential equations of the dynamic 
connections (for more details see Eqs. 12 and 13) can be written in the 
following symbolic form: 

QY+Ql=O 

Y = (ti, 9, $9 0) (1) 
where Y-vector of phase coordinates. 

Matrices Q and Q1 depend on vector Y and on set synergy pi(t), as 
well : 

Q = QC K P, 8, i$ 
QI = QICK B, ,k i3. 
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Let T be the step period. Let us denote 

Y(0) = Y” and Y(T) = YT 

the phase coordinates at the beginning and end of the step. 
Now the repeatability conditions can be presented by the following 

functional relation : 
YT = x(YO). (2) 

Only those solutions of system 2, satisfying conditions 3 are of interest for 
consideration. The phase coordinate vector at the beginning of the step 
for that case we will denote with L”. 

X 

FIG. 3. Mechanical biped model. 

Keeping in mind that the boundary conditions are given in the form 
of the functional relation 2 it is necessary to form an algorithm for auto- 
matic solution of the coupled system [ 1, 21, for the case when these solutions 

exist. 
For this reason let us introduce the performance index for fulfilling 

conditions 2. 
Let P(t) be some solution of 1 not satisfying relation 2. As before, let 

us denote 
P(0) = To j?(T) = PT. 
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As the performance index, let us introduce the relation: 

J = IlPT - x(P”)II. (3) 

As 8’ and 7’ are correlated by differential Eq. 2, J is a function of To 
only : 

J = J(B’). 

It is evident that the repeatability conditions are now equivalent to: 

J(F”) = mm J(t’) = 0. (4) 

In order to solve 4, the gradient method can be applied: 

P,“+, = P; - sVJ (5) 
where VJ = grad J(P”) 

i - number of iteration steps. 

In the cases when the phase coordinate vector To is sufficiently near 
to the nominal value F’, the following local method can be introduced. 

Let the deviation A Y” = P” - To be sufficiently small. This deviation 
causes a small deviation AYT = yT - PT at the end of the step. The 
expression 2 can be written as: 

y= + AYT = x(P” + AY’). (6) 

The correlation between the deviation at the beginning and end of the 
step can be expressed as: 

AYT = $AY” (7) 

where the members of the matrix ~~Y’/~Y”l are calculated in the point 
L” = yo. 

By solving systems 6 and 7 the sought value Ar” can be found 

AT = c/@‘). (8) 
If J is changing strictly monotonously, the method explained can be used 
also in the cases in which the value of the phase coordinate y0 differs 
considerably from the nominal value F”. Obtaining the repeatability 
conditions in such a case is effected more efficiently by the gradient method 
(see Eq. 5). The monotonous change of J can be ascertained by choosing E 
sufficiently small in the following relation: 

a:+ 1 = PP+t$(Ypj. (9) 

In order to accelerate the process of obtaining the repeatability conditions, 
it is advisable to combine criteria 6 and 10. The transfer from criterion 5 
to 9 should be done when J becomes smaller than J*, where J* is a pre- 
determined value of the performance index 3. 

In compliance with the physical nature of gait, condition 2 can be 
written in the form: 

Y”= VYT (10) 
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where the lower index denotes the number of the phase coordinate. In the 
general case matrix ye has the form: 

II= 

SYNERGY GENERATION 

1 

-1 

. 0 

0 * . 
1 

(11) 

In order to investigate gait stability we are going to form the mathe- 
matical model describing the locomotion structure dynamics represented 
in Fig. 3. 

The upper part of the locomotion structure is regarded as being in the 
form of an inverted pendulum. The lower extremities have feet and each 
extremity has three degrees of freedom; the segments are interconnected 
by simple joints. For leg movement a “ real ” gait algorithm is adopted. 

In Fig. 4 some of the diagrams representing gait upon level ground, 
upstairs and downstairs, which have been synthesized from data acquired 
from biometrical investigations, are given. The chosen gait types are char- 
acterized by a very “ smooth ” behavior of the locomotion-system 

5MOOIH LEVEL WALK 

FIG. 4. Typical synthetic gait algorithms. 
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pelvic part. This supposition is of a purely practical nature, because the 
applicability of these results to exoskeleton-type biped robots is kept in 
mind. 

According to the chosen gait algorithm, the supporting foot transfers 
from heel to toes as illustrated in Fig. 5. In this case, three phases can be 
separated, corresponding to the positions in Fig. 5. Let us designate with 
t,, the moment of support passing from heel to the whole foot and with t,, 
the corresponding moment of support passing from whole foot to the toes 
(0 < tab < t,, < T/2) where T--full step period. 

t = 0 - tab t=t,b- tbc t=tbc_ ; 

FIG. 5. Supporting point changes. 

During the half-period, the zero-moment point “jumps” three times to 
a new position : at the end of the first phase from the heel to the “center” of 
the foot, and at the end of the second phase from that position to the toes 
(Fig. 5). At the end of the half-period, the zero-moment point is shifted 
under the other foot, which is in contact with the ground. It should be 
stressed that such a transfer of the point of support has made the gait 
smoother to a certain extent. However, an even more natural gait* can be 
realized by prescribing the zero-moment point trajectory corresponding 
to the double-support phase; this approach is not treated here. 

Under the supposition that we dispose with the kinematic algorithm 
(chosen-gait type) and the zero-moment point trajectory (ZMP) we can 
proceed to obtain the upper part dynamic algorithm. Let us write the 
equations of dynamic connections using d’Alambert’s principle. These 
equations are formed according to the general form of Eq. 1. For the chosen 
gait algorithm (Fig. 4), angular displacements of the structure pelvic part 
are practically nonexistent. If we additionally suppose that the friction 
moment on the supporting foot is sufficiently great to ensure planar motion 
of the lower extremities, we can neglect the third differential equation of 
system 1, describing the system dynamic equilibrium round the z-axis. 
Here Xi, yi, Zi are coordinates of the center of mass of the i-th segment. 
Other denotations are evident from Fig. 3. 

* In this case, the gait comprises the movement of the lower extremities themselves 
(kinematic algorithm), as well as the movement of the locomotion system compensation 
part (dynamic algorithm). 
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M, = 9 f mi(V,zi-Rixi) 
[ 

+$ f mi(Wizi-Sixi) 
i=l 1 [ i=l 

+ Jy4 + J,, + J,, + J,, + J,, 
1 

+ ill mi(PiZi-T,Xi)-g ~ miXi 
i=l 

+~ ~ miSiyi+ ~ mi(T,yi-CiZi)+g lo miyi = 0, (13) 
i=l i=l i=l 

where 

Vl = - a sin 9 sin pzL, 
V, = 2V, - b sin 9 sin flIL, 
V, = V, - b sin 9 sin filL, 
v, = v,, v, = v,, v, = v,, v, = v,, v, = v, 
V9 = V, - b sin 9 sin filR, 

V,, = V, - (2b sin PIR + a sin pZR) sin 9, 
VI, = V, - (2b sin PIR + 2a sin PzR + h sin fiSR) sin 9, 

w, = 0, w, = 0, w, = 0, 

w, = c cos s;, W, = (R - e) cos $, 
W, = (R - 2e) cos $ - S cos c( sin $, 

w, = w,, w, = w,, w, = 0, w,, = 0, WI1 = 0, 

Pl = - aG2 cos 9 sin jlzL - aGjzL sin 9 cos j?2L 
+ a~2,cos$cosj?2, - afi2L9sin8cos/?,, 
- ajgL cos 9 sin flzL, 

P, = 2P1 - bg2 cos 9 sin filL - b&?,, sin 9 cos plL 
+b~lLcos~~~~j?1L-b~1L~sin9cos~,L-b~~,cos9sin~,,, 

P3 = P2 - Q2b cos 9 sin filL - 8/?,, b sin 9 cos flIL + bPIL cos 9 cos /I, L 
- bfilLl# sin 9 cos plL - b&, cos 9 sin B 

P4 = P3 - CI,$~ sin $, P5 = P3 - (R - e)$” sin $, 
P6 = PJ - (R - 2e)$’ sin $ - $” cos c( cos $, 
P, = P,, P, = P,, 
P, = P3 - bg2 cos 9 sin PIR - 2b$fi,, sin 9 cos DIR 

+ bjlR cos 9 cos DIR - b&, cos 9 sin PIR, 

Pl,, = P3 + (2bjlR cos /llR - 2b&, sin BIR + abzR cos AR 
- a& sin pZR) cos 9 - 28(2b/j,, cos PIR 
+ ubzR cos PZR) sin 9 - Q2(2b sin ljlR + a sin B2J cos 9, 
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P,, = P3 + (2bj1, cos fiIR - 2b&, sin filR + 2afizR cos PZR 
- 2a&, sin PZR + hj,, cos bSR - hj& sin PSR) cos 9 
- 2&2b BIR cos PIR + 2afl,, cos PZR + h& cos &) sin V 
- @(2b sin ljlR + 2a sin PZR + h sin /I& cos 9, 

Al = acosfiZRcos3, 
AZ = 2A1 + b cos plL cos 3, 
A, = A2 + b cos fllL cos 3, 
A, = AS, A5 = AS, A6 = AS, A7 = AS, A, = AS, 
A9 = A3 - b cos plR cos 3, 

A 10 - - A3 - (26 cos DIR + a cos /I& cos 3, 
A 11 = A3 -(2acos/?,, + 2bcosp,, + hcos/?,,)cos3, 

Cl = - ajzL sin pzL sin 3 - a& cos pzL sin 3 - ajzL9 sin pzL cos 3 
- a9fizL sin pzL cos 3 - a$” cos pzL sin 3, 

C2 = 2C, - bjlL sin pIL sin 3 - bj:, cos plL sin 3 
- 2b/jlLQ sin PI L cos 3 - b@ cos plL sin 3, 

C3 = C2 - b#lLsin~,Lsin3 - b&,cosj3,,sin3 
- 2bb, LQ sin PI L cos 3 - b!J2 cos plL sin 3, 

c, = c3, c5 = es, cs = c,, c, = c3, c7j = ca, 
Cg = C3 + bjlR sin BIR sin 3 + b& cos PIR sin 3 

+ 2bjlRQ sin PIR cos 3 + bg2 cos BIR sin 3, 

Cl0 = C3 + (2bjlR sin BIR + 2b&, cos PIR + ajzR sin /lZR 
+ a#& cos f12R) sin 3 + 2&2bB1, sin filR + afi2R sin PZR) cos 3 
+ Q2(2b cos filR + a cos PZR) sin 3, 

C,, = C3 + (2ab,, sin jLR + 2a&, cos fizR + 2bj,, sin filR 
+ 2b&, cos PIR + hj,, sin BsR + h& cos &) sin 3 

+ 28(2afizR sin /I& + 2bfilR sin PIR + h& sin &) cos 3 
+ 9’(2a cos BZR + 2b cos DIR + h cos /lSR) sin 3, 

RI = - acosfl,,sin3, 
R, = -(2a cos j32L + b cos filL) sin 3, 
R, = R, - b cos filL sin 3, 
R4 = RJ, R5 = R3, R6 = RJ, R, = R5, R8 = R,, 
Rg = R3 + bcosp,, sin3, RIO = R, + (b cos PIR + a cos /I& sin 3 

R,, = RIO + a cos PIR sin 3, 

S, = S2 = S3 = 0, S4 = - c sin $, 
S5= -(R-e)sin$, S6= -[(R-2e)sin$+scosacos$], 
s, = sg, ss = sg, sg = SIO = sll = 0, 

Tl = - a[BzL sin pzL cos 3 + fizL cos p2L cos 3 - 2/j2=Q sin p2L sin 3 
+ 9’ cos p2L cos 31, 

T2 = - (2aj2, sin P2L + 2a& cos /32L + bfllL sin /llL 
+ b#f, cos plL) cos 3 + 2&2a/?,, sin p2L 
+ Z$, L sin BIL) sin 3 - @(2a cos /32L + b cos fllL) cos 3, 
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T3 = T, - bj,, sin fllL cos 3 - b&, cos plL cos 3 

+ 2b@,, sin /jlL sin 3 - bg2 cos fllL cos 3, 

T4 = T3 - c$’ cos $, 

T5 = T3 - $‘(R - e) cos p, 

T6 = T3 - I,$~[(R - 2e) cos $ - S cos CI sin $1, 

T7 = T5, T, = T,, 

T9 = T3 + bj,, sin PiR cos 3 + b&, cos /lIR cos 3 
- 2bgj,, sin jIIR sin 3 + bg2 cos PIR cos 3, 

T,, = T9 - 2fi(b/?,, sin ,BIR + aDzR sin /3& sin 3 

+ (bj,, sin BIR + b&, cos PIR - ajzR sin rBZR 
- a/& cos PZR) cos 3 + Q2(b cos filR + a cos PIR) cos 3, 

Tll = T,, + ab2R sin f12R cos 3 + a/& cos bZR cos 3 
- 2aQtl,, sin ljzR sin 3 + a$’ cos PzR cos 3. 

These equations have been written for a support point when ZMP corres- 
ponds to the contact with the “whole” foot. As ZMP displaces itself 
according to the already mentioned law (Fig. 5), the translation of the 
coordinate system should be taken care of. 

It has to be noted, as well, that the eqs. 12 and 13 for the model shown 
in Fig. 3, are presented for the purpose of illustrating the method of set 
synergy. At the same time, such a model can also completely satisfy the 
practical objectives of locomotion study. 

To obtain a complete mathematical model it is necessary in compliance 
with Fig. 5 to change the z coordinate of the center of gravity, that is, 
foot joint, while the coordinates xi due to the change in point of moment 
should be translated by + I, (contact of heel) and -1, (contact by toes) 
with respect to the adopted zero moment point that corresponds to the 
contact by full foot. Finally, when the support passes to the other foot, 

b 

FIG. 6. Schematic presentation of coordinates changes. 
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the x-coordinates should be reduced by the value d and’the y-coordinates 
should change their value abruptly by d, (Fig. 6). The segment abc in 
Fig. 6 corresponds to a full step (period T), whilst segment ub corresponds 
to a half step. 

Due to system symmetry only half of the step can be considered. The 
repeatability conditions in that case will be: 

(14) 

where 

In this case the performance index J and the expressions for J have the 
form : 

J(YO) = [(Y~+Yy+(Y,0-Y;)2+(Y~+Y~)2+(Y:-YqT)2]1’2 

VJ = (V,J, V,J, V,J, V,J}, (15) 

V,J = [(Y;+Y:)(l+g)-(Y;-Y;)g+ 

V,J = 
: 

+ (y”3 + y:);+2 -(Y: - 

(16) 

V,J = (Y;+Y@;-(Yq-r:)*&F 
3 3 

V,J = (Y; + Y$+;-(Y; - Y;gi 
4 
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Starting from these expressions, the function CJ~ from the relation 8 be- 

comes : 
4 = C4-‘q 

where 

4 = [-YT-YY, r;- Y;, - r;- r;, r;- Yf’, (17) 
and 

A= 

AY; AY; AYT AY: 
,+I 

1 E AYo, AYo, -1 
AY; AY;_, AY; AY: 

z, A?, AY; AY: 

AY; AY; AZ;; AY; ’ 
-_ 

__ Ax+’ z ) AY; AY; 

(18) 

AY,T AY,T AY4’ AY; 1 
~ - __- 

,AYo, AY; AY; AY; 

By simultaneously solving systems 12-14 and the sensitivity Eqs. 8, using 
expressions 17 and 18, the locomotion system upper body algorithm 
can be obtained, satisfying the repeatability conditions. 

On the basis of the described method, repeatability conditions can be 
obtained, representing in fact the calculated synergy of the rest of the 
system (dynamic algorithm), based upon the prescribed synergy of one part 
of the system (kinematic algorithm). One of the characteristic diagrams 
in the phase plane of two compensating coordinates II/ and 9 in the form of 
a closed curve, represents in fact the satisfied repeatability conditions 
(Fig. 7). The curve has been obtained for characteristic parameters of the 
locomotion system S = 1, T = 2 set, where S is the coefficient of kine- 
matic algorithm amplitude scaling (parameter of step length), and T is the 
step period (parameter of gait speed). 

t 
T: 2s~. 5~1 

FIG. 7. Nominal gait trajectory for biped model with fixed upper extremities. 



ANTHROPOMORPHIC SYSTEMS 13 

In the preceding text it was shown in short how the synergy of the 
complete system is being formed. For one part the synergy was prescribed 
and for the other part it was calculated using the dynamic analysis. 
Consequently we possess the relative coordinates q,(t), i.e. the complete 
synergy ensuring periodic gait. This synergy has been defined for “ideal” 
conditions, under the supposition that no perturbations are acting on the 
locomotion system under consideration. 

Under ideal conditions there exist periodic change laws pi(t), corres- 
ponding to the vi(t) laws, where Pi(t) as compared with cpi(t) define the 
positions of the locomotion-system elements in relation to a fixed absolute 
coordinate system. For this reason, let us introduce the concept of internal 
synergy for vi(t) and external synergy for Pi(t). 

In the event of perturbation, even with very strict fulfilling of the inter- 
nal synergy vi(t), the external synergy can be perturbed. For instance, the 
whole system can rotate around the supporting foot, which causes the 
angles Pi(t) to change. 

For illustration purposes, the side view of the locomotion system is 
shown in Fig. 8. Due to some external perturbation the model can pass to 
some position, in which support is on the edge of the foot. Let us denote 
the angle between the foot and support with 5. If in the case of absence of 
perturbations the external synergy pi(t) was defined by the internal synergy 
vi(t) only, for instance for the model upper part: 

in the presence of perturbations, Pi(t) becomes 

p = ;-q-t. 

If due to any reason the internal synergy cpi(t) is not being realized, this 
state reflects itself on the external synergy Pi(t). On the other hand, 
external synergy (and not internal) defines a repeatable gait in relation to 
an absolute coordinate system. 

Consequently, under stable gait we will understand such a gait, in 
which external synergy tends to the “ideal” synergy, which has been 
defined in the absence of perturbations. 

Let us now formalize this concept and make it more precise. We 
introduce the following designations. With the upper index “0” denote 
the coordinate change laws, obtained from ideal conditions. We will call 
them “ideal” coordinates. Consequently, 9” and p” represent the ideal 
synergy, whilst cp and /I correspond to the real synergy. 

Let us suppose that for some reason the internal synergy of the system 
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has been perturbed and that cp differs from cp”. Two cases can be disting- 
uished. In the first one, the model can possess a stability margin [8] due to 
its geometrical properties, i.e. it will be tending to the ideal external 
synergy in the case of small perturbations. 

FIG. 8. Side view of the locomotion system. 

The second case is characterized by the fact, that the stability reserve is 
insufficient (or even nonexistent) so for maintaining dynamic equilibrium 
special compensating movements of the system are needed. The systems 
with stability margin will be treated later. Now we will examine the second 
case. 

GAIT STABILITY AND CONTROL ALGORITHMS 

The compensating actions of the system represent internal forces and 
modify the q(t). In the other words, an influence on the external synergy is 
possible only by means of an internal synergy change, representing a 
specificity of the legged systems under consideration. 

Here we can distinguish two basically different cases. In the first one, 
we can choose a new internal synergy cp”, starting from the real external 
synergy /3, in such a way, that the real synergy corresponds to the new 
ideal synergy p”. 

In the second case, we can change the internal synergy in such a way, 
that the external synergy approaches the ideal synergy p”. 

Each of these two cases will be more thoroughly examined. Be any 
of the two compensation methods adopted, there remains the criterion 
problem of deviation of the real external synergy from the ideal synergy. 
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The task of the elaboration of such a criterion presents one of the basic 
problems in gait-stability analysis. 

The actuators produce forces (driving torques) during compensation, 
and as a direct consequence, change in the accelerations of the locomotion 
system parts is produced. To judge the efficiency of the compensating 
actions, the criterion must contain, besides the coordinates, their first and 
second derivatives too. 

To achieve this, let us introduce the following criterion of the deviation 
between the real and ideal synergy: 

Ji(t) = coi[IBi(t) - PPCt)l + cli[bi(t) - #?I + C2i[Bi(t) - BPCt)12 (19) 

where cOi, c1 i, cZi are weighting coefficients, and i’s segment number of the 
anthropomorphic model. 

The performance index for each separate element of the locomotion 
system will be considered as a component of vector J: 

J = (Jl, . . .) .I,)‘. (20) 
The task of the compensating system is to reduce the value of the per- 
formance index to minimum. 

Now it is necessary to find such compensating moments in the driving 
system, able to reduce to zero the performance index 19 in the course of a 
sufficiently small time interval 2. 

Let us write the relations between /I and /i in the time moments tI and 
t2 = tl + T: 

P(t2) = Pod + &I> * T, 
&tJ = r&l> + B(td * 7. (21) 

Having in mind the size of the time interval t we will assume the accelera- 
tions b as constant during z: 

I@&) = P(t1). (22) 

Let us now write the performance index 19 for t = t2 and introduce 
expressions 21 and 22. Now we will have: 

Ji(tZ) = coi[Pi(tl> + SiCtlb - PPCt2)1 + cIi[Bi(tI) + Bi(tI)t 
- P”Ct2)l + c,2i[8iCtI) - PCt2)1 = O- (23) 

Starting from the supposition that the ideal synergy is known, i.e. the laws 
of change in p(t), p(t), and j?‘(t), and that the values of the phase coordin- 
ates can be measured by means of some transducers, the only unknown 
value in the expression 23 will be &tl). 

Solving expression 23 for &tJ, we find the acceleration values which 
must be applied to the locomotion system elements, in order to reduce 
the performance index 19 to zero after time interval r: 

10‘iCtl> = Cc2iPP(t2> - coi(Bi(tl) + BiCtlb - PPCt2>> 

-cIi@i(tI) - Po(t2)1/(CIiZ + c2i)* (24) 
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The nominator in expression 24 is evidently always positive and different 
from zero. 

The compensating system cannot change the external synergy directly, 
but only indirectly by means of the internal synergy. For that reason let us 
find the relation between ilii(tl) and ji(tJ. Since the values of @ and p are 
considered in the same time interval, the arguments can be left out in 
further elaboration. 

For the purpose of simplifying the denotation, let us extend the cp 
vector with (n + 1) component 5 and denote the new vector by CJJ* 

VP” = (cpl, 402, * * *> cp.3 0 

It is evident that for a locomotion structure the relation between angles 4* 
and b can be presented in the form: 

fi = Bcp* + const. (25) 

Since matrix B is not a function of time, differentiating twice by time we 

get : 
@% = B-‘/j. 

(26) 

Now the problem is to establish the torque values needed at each actuator, 
to ensure the demanded accelerations ;iT to the system. The relation be- 
tween the torques M, and accelerations @J can be obtained from the 
differential equations of the locomotion system, which for this purpose 
can be presented in a general form: 

Mi = C Uij+j* + f (q*, (i)*>, 
j=l 

(27) 

where Mi = moments produced by actuators, 

aij = a coefficient, depending on values cp”(i = I, . . ., n + 1). 

These equations can be obtained analogously to Eqs. 12 and 13 ; the 
only difference is that the former are formed based on dynamic equilibrium 
around the centers of all the joints, and not around the fixed zero-moment 
point which, in fact, represents the first joint of the anthropomorphic 
mechanism. The advantage of expressing the dynamic equations in terms 
of the internal synergy is in the fact that the complete system regulation is 
done by changing the internal synergy and appropriate driving torques, as 
well. 

The method of obtaining these equations and the computing algorithm, 
as well are considered in Ref. 9. In total we shall have IZ differential 
equations of the second order with n corresponding driving torques. It is 
important to underline that the (n + I)-th coordinate cp,*+ 1 = 5 is “non- 
controllable” since it does not possess the drive. Due to this, stabilization 
of VP,*+ 1 poses the basic problem in the regulation of perturbed regimes of 
motion of the anthropomorphic mechanisms. 
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From the system 27 the partial derivatives are: 

aM 

a7 = aij. 

By the matrix A = I)aijjl let us denominate the sensitivity matrix. Let us 
write the relations between the driving torques and the angular accelera- 
tions needed, using the stated matrix: 

AM = A-‘A$*. (29) 

Introducing expression for 26 into 29 we get: 

AM = A-lB-‘Aj, (30) 

where AM-vector of compensating moments. 
In this way the compensating actions are defined such that they are 

able to diminish the performance index 20 to zero during time interval T, 

exact to second-order small values. 
The choice of the time interval 7 is to a certain extent arbitrary. It 

cannot be too large, because in that case supposition 22 does not hold. 
However, interval 7 also cannot be too small, because in that case the 
compensating moment AM can grow to unacceptable values. Basically 
the value of 7 can be understood as an adjustable system parameter, and 
its choice should be effected experimentally from the contradictory de- 
mands of system compensation quality and power demand. 

It should be noted here, that the choice of interval 7 does not mean a 
discrete realization of the compensation with step 7. The delay of the 
compensating system is being defined by a totally different value-the 
information processing time, according to the described method. 

To avoid the application of a gyroscope, which the proposed method of 
stabilization requires, the regulation method by means of force measure- 
ment at the contact surface can be utilized in the cases of small pertur- 
bations. 

Expressions for reaction forces at the point of contact (ZMP) between 
the extremity and support can be written (Fig. 3): 

F, = F miXi = 9 z miPi7 
i=l i=l i=l i=l 

F, = F mijji = 3 f 

11 

m,A, + C nl,Ci, 
i=l i=l i=l 

F, = 5 nziifi + z m,g = 3 z m,R, + $ f m,S, 
i=l i=l i=l i=l 

+ f WZiTj + $J mig, 
i=l i=l 

(31) 

(32) 

(33) 
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where V,, Wi, Pi, A,, Ci, R,, Si and Ti are functions of the set prescribed 
(pi, fii> pi) and of the computed synergy ($, 9, 4, 9). It is evident that in 
that case there exists some relation between the force-vector: 

F = {F,, FY, FJ, 

and the corresponding dynamic moments round three axes are: 

M = W,, MY’ M,>. 

It should be pointed out that a possibility exists to express the reaction 
forces by means of analytical expressions, which can be symbolically 
written in the form: 

F, = .fi($, 9,$, 4, $9 9, j, k P), 

E; = f&k 9, $3 9, 9, 9, j, j, P), (34) 

F, = f&, 9, $9 9, $3 9,8, li, P). 

Knowing that the components of reaction forces F, and F,, affect only the 
moment M,, and supposing that the latter mainly influences the direction 
of motion of the locomotion structure, we restrict ourselves to the obser- 
vation of the vertical reaction components Fz only. 

It is also supposed that the “internal” algorithm* of the locomotion 
system is being realized sufficiently exactly and that perturbations appear 
only in the external coordinates of the system. 

Let the transducers, measuring the vertical reaction force be arranged 
as shown in Fig. 9. According to this scheme, the moment equations due 
to the vertical components of the reaction forces in relation to the nominal 
position point of the resulting force, can be written as follows: 

SW,; - Fc,) = M,, 

d,F,; - W’,, + Fc,) = MY. 
(35) 

where F,,, BBz, and F,-, are the measured values of the vertical reaction 
components. On the basis of 35, it is clear that M, and MY in the nominal 
regime reduce to zero. Due to perturbation of the vertical reaction com- 

ponents Fz, some disturbing moments AM, and AiVy result. If we 
suppose that the perturbations are small and start from the fact that 
accelerations are the most sensitive values, directly interconnected with 
the perturbing moments generated, the following generally based relations 

can be formed: 

Mu = M~($, $5 $7 $9 *5 9, ji, iii, Pi), (36) 

My = My(lj;, $3 4, 9, $2 $7 Bi, iii, Pi>* 

* “Internal” algorithm reveals the angles of the kinematic-dynamic algorithm, 
realized by appropriate drive systems. 
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where pi are coordinates of the kinematic algorithm (Fig. 3) 

19 

(37) 

At this point it is supposed that all components of the kinematic-dynamic 
algorithm vector are constant, so that the partial derivatives in the system 
37 are of the type: 

alM, aM, aM, ahf, aM, aM, 
7 ..)..) 

i 

I), jr, $, 8, /;, /3 = const. 
“Y ’ as ap a$ ’ a9 ’ ag 

It should be underlined that this is a realistic supposition, if we keep 
in mind the fact that the perturbations are small, as well as the fact, that 
the acceleration changes are a direct consequence of the corresponding 
change in the perturbing forces. 

f 
x 

FIG. 9. Schematic illustration of vertical reaction components measurement. 
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Due to the supposition of the constant “internal” algorithm of the 
locomotion structure, it is most natural to assume that the increments of 
all accelerations of its elements in one plane are equal, so that: 

A$ = A/,. 

In that case, by solving system 37 for acceleration increments in the sagittal 
and frontal planes, we will have: 

where 

aMX aMY A1 = AM,L7g - AMXaS- , 

(39) 

Keeping in mind the relations 27, which connect the accelerations of the 
“internal” coordinates of the kinematic-dynamic program with the corres- 
ponding driving moments, as well as the connection between the “internal” 
and “external” coordinates (Eq. 25), we can apply again relation 30 to 
calculate the compensating moments.* 

It has to be pointed out that the regulation method of force measure- 
ment is applicable while all three pressure transducers are under load. 
This means that at some greater perturbation, when the foot starts to 
separate from the support, the gyroscope version finds its application. 

The procedure described can ensure gait stability in the presence of 
small perturbations. As far as internal synergy is concerned, the supposi- 
tion of small deviations from the ideal synergy can be considered justified. 
At gait upon known terrain, the external synergy also has no reason to 
change much. However, all external factors cannot be known in every 
detail; consequently, the external synergy may undergo deviations which 
cannot be regarded as small. The attempt to compensate such deviations 
only by means of the method displayed, may lead to the opposite effect. 
In that case the compensating moments will be relatively great and in the 
case of greater deviations the nonlinearities of the system may become of 
deciding influence. 

In the case of greater deviations, it is much more appropriate not to try 
to compensate for them in one step, but to pass to a new ideal internal 

* In this comqensation.method there exist only two increment types of accelerations 
of the system: A$ and A,!?. 
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synergy in the course of a time interval and then gradually return to the 
old one. According to this approach, for the compensation of such devia- 
tions it is necessary to apply the first control method, from which a new 
ideal synergy is chosen. 

Let p” be the ideal synergy in the absence of perturbations. For the 
sake of stability maintaining in the case of great deviations let us tempo- 
rarily choose another ideal synergy, which we will denote with p*. 

Let us suppose the existence of a family of external synergies /?* 
depending on the parameter vector p 

B”(P) 

P = (PI? Pz, . * .>P,>’ (40) 

where m is the number of system parameters. 
The permissible values of the parameters can be geometrically repre- 

sented as some region of a m-dimensional parametric space. Let us denote 
this region the working region. To each point of this working region there 
corresponds a certain vector function /3*. The values of p* should be chosen 
in such a way, that in the first place a greatest possible approach to the 
real synergy p is effected, and then to ensure a gradual approach to the 
original ideal synergy p”. 

First the synergy is assessed, which is nearest to the real synergy j?, 
from the family 40. Let us denote this synergy with /3* and write a criterion 
of the form: 

Ji = +[COi(~i - PA) + C,i(,di - fif)]” (i = 1 2 ...) n)e (41) 

Now let us find the minimum of the expressions 41: 

J, = min J,, (42) 
P 

where 

J, = i Ji. 
i=l 

Let us form the expressions of the partial derivatives of Jz with respect to 
parameters: 

ap. - jl 33 
aJ, - 

, J 

ZJi 

( 

(43) 

apj 

- -[coi(Pi - PS> + cli(Bi - pf)] 

The condition of minimum is represented by: 

aJ, 

api = 0, 
(j = 1, 2, . . . . m). 

Let us denote the value of parameterp obtained from 44 with pA. However, 
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let us choose the working point p* not in the point pA, but in another point, 
translated in the sense of p” of the working region: 

p” = pA + A(p” - PA), 0<2<1. (45) 

By means of 3, we are able to ensure a gradual approach to the synergy p. 
In the described method, the most difficult task is to define point pA. 

As the vector /? has many components and is function of several para- 
meters and of time, it is impossible to store all variants in the control 
computer memory. So for the sake of a practical realization of the method 
described, it is necessary to find an analytical approximation of the 
functions of the ideal synergies on parameters and time. By studying 
various human gaits, some characteristics of the synergies were noted. 
They can be represented sufficiently precisely by a two-parametric family 
of curves. These parameters are the following: 

S-step length parameter 

T-gait speed parameter. 

Based upon these parameters, sufficiently simple approximations can be 
formed. Let /P’ be some synergy (gait) chosen as the basic synergy. Now we 
can represent the mentioned family of synergies in the following form 
(let us denote the lower part of the locomotion system by the index d): 

As explained earlier for the upper part of the system the synergy was de- 
fined from the repeatability conditions 14. By varying the values of S and 
T we can acquire a series of graphs, which illustrate the upper locomotion 
system synergy change as a function of these parameters. Some of these 
graphs are illustrated in Fig. 10. 

The analysis of these graphs shows that for the system upper part the 
relation between pup and p can be approximately written in the form: 

pup = p:, + A,@ - so> + A,(T - T”), (47) 

where A, and A, are vectors, whose components are functions of time: 

(48) 

It is necessary now to find the partial derivatives 8gi/aS and api/aT. For 
the system lower part we ‘will have: 

(49) 

(50) 
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For the system upper part these derivatives can be written (48): 

23 

?HJ 
t 

a&,i _ Ai 

as 
a&=Ai 

SF aT T. 

LEVEL WALK 

vrnax 

45 _ A 

06 

a3 - 

0.2 - 

0.1 . 

0.2 a4 a6 0.8 S 

%W 
t 

LEVEL WALK 

(51) 

UPTHE STAIRS 
y'(kI 

I UP THE 

CJ r7la.x 
011 

- 0.4 
031 

03 

02 0 I6 

0.1 

FIG. 10. Upper part synergy in dependence on characteristic parameters. 
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Let us augment the matrices A, and A, by introducing into them the 
components, corresponding to the upper part of the model: 

Bj = 
S 

-if pj relates to the lower part 

-if pj relates to the upper part 

B’T = _/&$&)-if /Ij relates to the power part 

\A’, -if pj relates to the upper part. 

Now the arbitrary synergy can be written as: 

p = p” + &(S - SO) + B,(T - T”). (52) 

Introducing this expressions into 43 instead of /3A we get: 

aJi _ 
as - -[Coi(pi - pp - B,i(S - So) - B,i(T - T”)) 

+C,j$i - fir - Bsi(S - So) - B,i(T - T”))](c,iBsi + c,iBsi)y 

aJi_ 

dT 
- -[...](coiB,i + cliBTi). (53) 

By summing expressions 53 with respect to i and putting the results 
equal to zero according to relation 44 we get: 

alIS + al,T = bl, (54) 
a,,S + a,,T = b,, 

where 

all = $i CcoiBSi + CliBSi)2, 

a12 = $1 (coiB,i + CliB,i)(coiBSi + c,iBSi), 

azl = al,, a 22 = all, (55) 

‘I = 5 [c,i(pi - fly + BsiS’ + B,iT”) 
i=l 

+Cli(Pi - BP -f- BsiS” + ri,iT”)](C,iBsi + CliBsi), 

b2 = f [..e](CoiB,i + cliLjTi). 
i=l 

(56) 

The system of Eqs. 54 makes it possible to acquire values of S and T 
minimizing 44, i.e. to obtain point “A” in the working region. Point p* 
(S*, T*) is obtained by means of 45. 
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The system determinant 54 is always greater than zero: 

A = uT1 + & + & * u;, 

25 

so that it is always possible to obtain the values of S and T 

s= 
ha,, - haI, 

T= 
a,,& - a,,b, 

A ’ A ’ (57) 

Now it is possible to make one step more in the simplification of the 
described method. 

It should be remembered that the coefficients of Eq. 54, which define 
the necessary change of parameters, are time dependent. Therefore, for a 
practical realization of such a method it is necessary to store in the control 
computer memory the matrices B,(t) and B=(t) calculated for various 
moments of time. In Fig. 11 there are given the graphs of ideal synergy 
for the upper and lower part of the locomotion system. 

FIG. 11. Analytic presentation of locomotion external synergy. 

These graphs show that the ideal synergy of the model p” does change 
sufficiently smoothly, so that an acceptable analytical approximation can 
be adopted for its presentation: 

PI(t) = A sin (ret + v,,) + A,, 
/&(t) Z - ~/~lw-cw + B 

03 
fi3(t) = - C/e[d-b)P, 

P4(t) = D sin nt; /j4 = 9 

b5(t) = E sin (2nt + qf’) + E,,; p5 = $. (58) 
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PI, pz, j3 represent the lower part synergy of the locomotion system, 
p4 and p5 represent its upper part synergy. 

Placing these relations into expressions 47, 51, 55 and 56 we will obtain 
the relations of coefficients of the equations 54 as functions of time and 
after that, by means of 57 the required values of S and T can be acquired. 

In the case under consideration, Pi(t) have not been too complicated, 
so that a relatively simple approximation is allowable. However, with 
some other gait types or gait upon complex profiles, the Pi(t) coordinates 
may become complex, so that a sufficiently precise approximation cannot 
be found in that case. As already stated, a great number of B,(t) and 2&(t) 
matrices must be memorized, complicating the already delicate problem 
concerning the demands in the realization of the specialized, miniaturized 
control computer. 

For the cases, another method of ideal synergy choice is proposed 
here. It is based on the supposition that the greatest deviations from the 
ideal synergy (kinematic-dynamic program) occur in the upper part of the 
locomotion system. Accordingly, the ideal synergy will be chosen from the 
conditions of compensation of the system upper-part deviations. 

Let us consider the phase space vector Y: 

The values of Y at the beginning and end of half period let us denote with 
Y” and YT. The phase vectors values in the case of ideal synergy let us 
denote by a dash above the symbol. 

The repeatability conditions for upper part of the system can be written 
in the form: 

P” + AY” = y(pT + AYT), (60) 

where 

-10 00 

r= ;fi 
0 0 

1 I 

-1 0’ 
-00 01 

The phase vector deviation at the end of the half-period can be expressed 

as: 

s is the number of parameters. 
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By simultaneously solving 60 and 61 we get [7] 

DAp-d=O 

D= 

ar: ar: ar; -~ 
dP1 aPz ... aPs 

ar; ar; ay; - -_ 
dP1 apz ... ZPS 

ar; ar; ar; 
-~ . . . -~ 

dP1 aPz dPS 

a~,’ ar,T ar: 
7 
dP1 aPz ... aPs 

d= 

27 

(62) 

1 . (63) 

If the number of parameters s is equal to the number of phase coordinates 
from Eqs. 62, the values of Ap can be acquired directly. If, however, the 
number of parameters is smaller, condition 62 cannot be satisfied exactly. 
In this case let us introduce the performance index of the form [l 1] : 

J = (DAp - d)‘(DAp - d). (64) 
The increment of parameter Ap can be obtained from the condition of 
minimum of the expression 64: 

aJ 
- = 0, 
d(AP) 

wherefrom 
Ap = (D’D)-l D’d. (‘3) 

Now we can obtain the parameter values, at which the ideal synergy will 
be closest to the real one. Earlier (see 45) these parameter values we 

denoted by pA 
pA = po + Ap. (66) 

In the case that the first deviations have been too great, it is good practice 
to accomplish a few approximation steps and use, instead of 66, the 

relation : 

J$ = pt-1 + EAPip (67) 
where i is the number of iterations; and E is the positive multiplier (0 < E < 
1), and is introduced for improving the iterative process convergence. 

STABILITY MARGIN OF ANTHROPOMORPHIC SYSTEM 

A two-legged locomotion system possesses, due to its geometrical 
features, a certain stability margin. This makes possible the automatic 
compensation of small perturbations. We are going to illustrate this fact 
on the simplest model of the system (Fig. 12). 

The model is represented by a body of mass m and inertial moment J 
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connected with a massless “foot”. Let us suppose that for some reasons 
the “foot” is declined in relation to the ground for an angle c. In the case 
of sufficiently small perturbations 5 the system will return to the position 
of static equilibrium. 

FIG. 12. Simplest system with foot. 

An analogue case appears with the two-legged locomotion systems. 
The “foot” in this case is the foot of the leg, ensuring the model some 
stability margin, in the function of its surface. With some suppositions to 
be discussed later, the locomotion system stability margin obtaining can 
be reduced to the analysis of the simplest system, illustrated in Fig. 12. 

Let us suppose that internal synergy q(r) is being realized exactly and 
that the perturbation effects the model as a whole, “balancing” on the 
supporting foot, shifting the support from one foot edge to the other. 
Such a supposition is fully justified, if the maintenance of the internal 
synergy is ensured by special tracking systems. In that case the errors Acp 
will be sensibly smaller than the perturbations of the external synergy. In 
such a case the perturbations can be represented by angles, formed by the 
foot and the support surface, and the angular rates of these angles. 

The locomotion model can “balance” on the supporting foot in two 
planes: the sagittal and frontal ones. (Turning around the z-axis must not 
be considered, as this does not effect loss of stability, but merely the change 
of motion direction). From the stability standpoint the most dangerous 
perturbations are in the frontal plane, as the dimension of the foot is much 
smaller in this plane compared to its dimension in the sagittal plane. 
Besides, the deviations of the model movement in the sagittal plane can be 
to a certain extent limited by the presence of the other foot, coming in 
contact with the support plane earlier or later, depending on the perturba- 
tions. In the frontal plane, such a limitation (supporting) is in one of the 
possible motion directions excluded. 
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For this reason let us examine the stability margin in the frontal plane. 
However, the displayed approach can be broadened without difficulties to 
the case of deviations in two planes. 

With these suppositions, the stability margin analysis can be reduced 
to the analysis of the planar model from Fig. 12. 

Let us first consider the case of perturbed motion on the basis of the 
ideal synergy, obtained from the conditions of the locomotion system 
dynamic equilibrium. l This case can be of practical interest in very, very slow 
gait. Let us suppose that mass m equals the total mass of the locomotion 
system. The length of the stick I, should be chosen in such a way that 
position of mass m in relation to the foot corresponds to the position of 
the locomotion-system center of gravity, and the moment of inertia J is 
equal to the reduced-system moment of inertia, in relation to the center of 

gravity. 
The internal synergy q(t) being known, the position of the center of 

gravity can be calculated at all times, i.e. the value I, can be calculated. 
Let us write the expression for potential energy: 

EP = mgz,,,, (68) 
where z, is the vertical coordinate of mass m. It follows: 

‘% = I, sin (E + 0 + I, sin g sign 1. (69) 

In Fig. 12, a few graphs are presented which represent the dependance of 
the potential energy of the model from the angle 5, for various values of 
the length 12, corresponding to various instants of the imposed kinematic 
program. The critical values of angles 5 for 5 > 0 and 5 < 0 let us denote 
by ?j*. They can be obtained from expression 69. 

Let us now write the expression for the kinetic energy of the model: 

Ek = jJo,g2, (70) 
where Jo is the reduced moment of inertia with respect to the point of 
support. 

J, = J + m(x; -t 2;). (71) 

The potential energy values in the critical points let us denote by E,*. 
The condition for system stability will be now: 

E, + E, < E;. (72) 

From the graph in Fig. 13 and the relation 72 the speed [ can be obtained 
for every value of angle 5 for which the model will preserve its stability. 
Let us dispose of some value of angle 5 = r,. From the graph, Fig. 13, 
we can obtain the corresponding potential energy value Epl. In order 

1 It is supposed to be sufficiently accurate to take “frozen” coefficients that corre- 
spond to different times of the “legs” algorithm supposed. 
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FIG. 13. Stability margin presentation. 

for the model to be stable, the kinematic energy margin Ekl is needed: 

E,, < E; - E,,. (73) 

Introducing now the expression for the kinetic energy 70 the admissible 
value of speed e can be obtained: 

gt < +; - E,,). (74) 
0 

In this way, to every value of angle 5 there corresponds some critical value 
of 4. All admissible values 5 and [ form a closed region of the phase plane, 
as shown in Fig. 14. This region defines a stability margin corresponding 
to the case of a very slow gait. If the perturbations do not leave this region, 
they will be automatically compensated. In the cases, in which the point 
corresponds to the dashed region, it is indispensable to engage the com- 
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pensation system, based upon one of the described methods. In fact, the 
compensation system should be engaged earlier, in order to dispose with a 
certain stability margin coefficient. Such case of security in the disposable 
stability margin is illustrated in Fig. 14 by the dashed line. 

In the cases, when the transient process is insufficiently faster than the 
basic algorithm motion, a simultaneous dynamic analysis of the model 
motion according to the prescribed synergy is needed, as well as the per- 
turbed motion. 

FIG. 14. Potential energy in dependendence on perturbation 5. 

Such analysis can also be reduced to the analysis of an equivalent 
model. For this reason let us make the model (Fig. 12) more complex, 
supposing that the stick is connected with the “foot” by means of a simple 

joint and that the relative angle c( in that simple joint changes according 
to a known law (Fig. 15). This law is defined by the ideal synergy and a 
is obtained from the condition that the position of mass m relative to the 

FIG. 15. Equivalent biped model. 
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foot corresponds to the position of the mass center of the locomotion 
system relative to the supporting surface of the foot. 

As the internal synergy is known, it is possible to calculate the position 
of the center of system gravity in every moment, expressed in coordinates 
z’, Y’ (Fig. 15). 

(75) 

where n is the number of the locomotion system elements 

M is the total mass of the system. 
Knowing y; and z; we can obtain values of I, and CI for the equivalent 

model : 
I 

ct, = arc tan S 
YL ’ 

1, = J(yL2 + zL2>. 
(76) 

Equivalent moment of inertia can be obtained from the moment equation 

J,Ei, - mjiczc - (2, + g)y, = 0, 
wherefrom 

J, = g[U, + (% + g)y,l. (77) 

Let us write now the equation; of motion for the model from Fig. 15. The 

coordinates of the mass center are: 

ym = qzl cos t + I, cos (a + 0, 

z, = qZl sin 5 + 1, sin (rz + 0, (78) 

q = sign 5. 

The angle 5 will be considered as negative when the model is supported on 
the right edge of the foot (as illustrated in Fig. 15). 

By differentiating expression 78 twice, for every 5 except c=O, we get: 

j, = - z, + A,,[ 
p, = y,,ti + A,, 

(7% 

where 

A,, = - q1,g2 cos 5 + 1, cos (5 + cc) - 2i,(d + 4) sin (cz + 5) 

- I,% sin (IX + 5) - I,(& + [)’ cos (a + 5), (80) 

A, = - qE1t2 sin 5 + 2, sin (5 + CC) + 2&i + [) cos (a + 5) 

+ I,&! cos (a + 5) - I,(& + 5)’ sin (CI 

Now let us write the expressions for forces and 

FY = mz,t - A,m, 

F, = -my,[ - mA,, 

M = - .I,([ + ii). 

+ 0. 
inertial force moments: 

(81) 
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By putting the sum of external forces moments and the inertial forces 
equal to zero around the support point, we get the differential equations 
of motion in the form: 

[Jr + m(zi + y3]4 = m(zA, - yA,) - mgy, - J,E,. (82) 

The values i,., ‘f,, c?, t!i are obtained by differentiating 75 and 76. 
The moment of inertia J, in this method is assumed to change stepwise 

at the beginning of each step, and to stay constant during integration. 
It should be noted that the values 1 i 1 cc, &, ii, and J,. are obtained I> I9 I.9 

from the ideal synergy, and as this synergy is known, these values can be 
calculated for every moment of the program: 

2, = (y,2 + z,2)‘? 

YC 
cc, = arccos - , 0 1, 

i, = 
ZA + Yc3c 

1* ’ 

d, = 
I, cos u, - 3, 

1, sin u, ’ 

& = 0, cos c(, - i,i, sin tl, - jj,)Z, sin CI, 

1,2 sin’ or, 

(I, cos c(, - j,)(l, sin E, + Z,&, cos c(,) - 
1,” sin’ a, 

3 

Accordingly, conditions for overturning will be (Fig. 16) : For 

5>0 YC G 0, 3, < 0. (83) 

For 4 < 0 the calculation is prolonged to the moment when the other leg 

FIG. 16. Equivalent scheme of the criterion application for the obtaining of the 
dynamic stability margin. 
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of biped being-till then in the air-hits the ground. At the moment of 
contact the following conditions are imposed on the system: 

(1) T* = (1 - 6,)T, 

(2) E; = +J*$) < &E*, (84) 

where T’k-represents the time of contact of the other leg, 
S,---number given in advance, 
J*--moment of inertia of the equivalent system with respect to the 

contact point, 
[CT*,-velocity of perturbation at the moment of contact, 

E*-maximum value of potential energy for the time section 
corresponding to the time of accomplishing the contact, and 

6,-number given in advance. 
So from the set of initial conditions co, [, we are interested only in solu- 
tions that correspond to the requirements 83, and 84, for 4 > 0 and < < 0, 
respectively. 

Figure 17 illustrates the result of investigating the autonomous stability 
for the locomotion model shown in Fig. 3. 

~~‘ -0;9 -015 -0;1 -oo7 -A 00, ~~‘0;~~ dll &a 

FIG. 17. Results of gait stability for the model in Fig. 3. 

[rad /se-c] 

PRELIMINARY ORGANIZATION OF SPECIAL-PURPOSE 
COMPUTER FOR BIPED LOCOMOTION-SYSTEM CONTROL 

The gait to be performed is described by a set of algorithms {q,(t)), 
(j = 1, 2, . . ., 6) and is realized by local servos, cpj-servos positioning 
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the ankle, knee, and hip joint of each leg (Fig. 18). The actuators are 
pneumatic servo motors. Electronic function generators deliver a set of 
signals {cpj(t)} which represent the correspondent joint position, in accord- 
ance with the set of algorithms. Signals {cpj(t)} are independently generated 
but are properly timed and synchronized [7]. 

Foot 
transducer 

matrix 

W,-PROPORTIONAL 
FEEDBACK 

WjD’FERENT!AL N, N2N3- NONLINEAR OPERATORS 
FEEDBACK 

w 3‘ “FEER$3 AC K 

FIG. 18. Preliminary organization scheme of biped locomotion special purpose 
computer. 

Regarding the nature of the system, it is obvious that qj-servos are 
heavily loaded and that the load changes very much as a function of time. 
More than that, the changes of load are very fast in some phases of gait 
(landing of foot). On the other hand, the delicate problem of biped stability 
excludes the “high-gain servo” approach, to overcome the stability prob- 
lem. 

As the biped locomotion system is moved, forced by the kinematic 
dynamic algorithm, it is possible to solve the servo loads FLj(t) analytically, 
assuming that the system obeys the algorithm. Transforming the FLj(t) in 
the equivalent input signal K,(t) is accomplished and the result is supcr- 
imposed upon the signal qj(t) by a proper signal generator. This method 
permits the reasonable gain servo to overcome the fluctuations of Gus 
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in the vicinity of the estimated FLj(t). The difficulty in this method lies in 
the estimation of the nonlinear transfer function, which gives the equiv- 
alent input signal K,(t). 

It should be mentioned that in this way, in principle the realization of 
the “internal” coordinates according to the kinematic-dynamic program 
of the locomotion system can be ensured. However, in order to ensure stable 
gait, it is necessary, as already said, to ensure the correction of the per- 
turbed external coordinates. In order to achieve this, the compensating 
system must contain a supplementary feedback, representing some of the 
proposed compensations, linked to the fixed coordinates system.* 

In the case where we decide for the compensating system via force 
measurement, it is indispensable to form a supplementary pressure feed- 
back loop (Fig. 18). This compensating method requires pressure trans- 
ducers. At this, the realization of relations 35 must be ensured, enabling 
calculation of the moment increments AM, and AMy, due to the redistri- 
bution of the vertical reaction F, components. The mentioned supplement- 
ary compensating block, according to the proposed scheme (Fig. 18), 
also must ensure the realization of relations 25, 29, 30. The last relation 
gives the possibility of active moments AM corrections realization in the 
corresponding drives of the locomotion mechanism. 

In this case the supposition still holds that such perturbations are in 
question, enabling the consideration of only the perturbed accelerations 
of the corresponding angular locomotion system coordinates. The block 
scheme in Fig. 18 contains such limitations, namely the supposition about 
the constant system phase coordinate vector 

Y= 9’ 

I 

I 

II/. 7 
in the perturbed regime conditions. 

This block scheme of the control system represents one of its possible 
realizations. It has to be emphasized once again that this scheme is in fact 
characterized by an independent feedback with respect to acceleration and 
thus, under the supposition of instant or approximately instant response 
of the actuators, the correction of the locomotion system inertiality is 
made possible, not “impairing” thereby the state coordinates. 

Nevertheless, it should be pointed out that the regulating scheme 
demonstrated cannot be autonomous but should be integrated in a general 
scheme that would adjust the violated state coordinates of the Y-vector too 
[see Eqs. (23, 24)]. 

* In our case, that is the system, connected to the momentary foot contact with the 
support (or in the general case to the prescribed zero-moment point). 
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