
Toward A User-Guided Manipulation Framework
for High-DOF Robots with Limited Communication

Nicholas Alunni*, Calder Phillips-Grafftin*, Halit Bener Suay*, Daniel Lofarot

Dmitry Berenson*, Sonia Chernova*, Robert W. Lindeman*, Paul Oh t

*Worcester Polytechnic Institute
{nalunni, cnphillipsgrafft, benersuay, dberenson, soniac, gogo }@wpi.edu

tDrexel University
dan@danLofaro.com, paul@coe.drexel.edu

Abstract-This paper presents our progress toward a user
guided manipulation framework for High Degree-of-Freedom
robots operating in environments with limited communication.
The system we propose consists of three components: (1) a user
guided perception interface which assists the user to provide
task level commands to the robot, (2) planning algorithms that
autonomously generate robot motion while obeying relevant
constraints, and (3) a trajectory execution and monitoring system
which detects errors in execution. We have performed quanti
tative experiments on these three components and qualitative
experiments of the entire pipeline with the PR2 robot turning a
valve for the DARPA Robotics Challenge. We ran 20 tests of the
entire framework with an average run time of two minutes. We
also report results for tests of each individual component.

I. INTRODUCTION

We seek to create a user-guided manipulation framework
for High Degree-of-Freedom (DOF) robots such as humanoids
and mobile manipulators operating in environments with lim
ited communication. Application of our framework to these
robots is conducive to greater autonomy and enables tasks
ranging from home maintenance and care for the elderly or
disabled to disaster response in conditions that are hazardous
to humans. While a great deal of research has explored meth
ods for perception [1], error-recovery [2], motion planning
[1, 3, 4], and tele-operation [5, 6], for such applications our
goal is to unify existing algorithms in a reliable general
purpose manipulation framework.

This paper presents our progress toward such a framework.
We will evaluate our framework by performing valve turning,
which is one of the tasks required for the DARPA Robotics
Challenge (DRC) [7]. The task requires that a robot locate,
approach, grasp, and turn an industrial valve with two hands.
Valve turning presents a challenging test-case for our system
due to the perception and dexterous manipulation required.

A core constraint for the DRC is that communications
with the robot are limited, making conventional tele-operation
infeasible and necessitating the use of a framework such as
ours. Thus, the valve-turning task requires a straightforward
way for a user to command the robot to perform complex
actions. These actions require accurate localization of the valve
relative to the robot, constrained motion planning for closed
chain kinematic systems, and autonomous error detection to

978-1-4673-6225-2/13/$31.00 ©2013 IEEE

Robot User
r---, ,', ________ Q.!1J� 9Ar_(L _____ ,� co��;I���!�ion torkstation

Data Aggregation

GUI

---- � ----------------------_ .. /

Fig. 1: System diagram showing data flow through the frame
work.

report problems back to the user. These goals align well with
creating a general-purpose manipulation system.

The system we propose consists of three main parts:
(1) a user-guided perception interface which provides task
level commands to the robot, (2) planning algorithms that
autonomously generate robot motion while obeying relevant
constraints, and (3) a trajectory execution and monitoring
system which detects errors in execution. Our goal is that all
three of these parts be usable on different robots in both the
real world and simulated environments.

In the first component, a user roughly aligns a model of the
relevant object (e.g. a valve) to a point cloud provided by the
robot's sensors. While autonomous perception algorithms have
previously been developed for such tasks, they are unsuitable
for highly unstructured environments and underspecified tasks
like those encountered in real world situations. Thus, we use
Iterative Closest Point algorithms to reduce error and "snap "
the rough user-generated alignment into place locally. Once
satisfied with the alignment, the user commands the robot to
perform the task.

The manipulation planning component of the system con
sists of the CBiRRT algorithm [8], which is capable of gen
erating constrained quasi-static motion for High-DOF robots.
Once a motion path is constructed by the planning component,
it is executed by the execution monitoring component. The
monitoring component compares the execution of the current
trajectory to a library of previous executions of the same task
(generated from previous runs) to detect errors. This compo
nent uses Dynamic Time Warping (DTW) [9] to compute an
error metric between trajectory executions. We have found that
our user interface has a success rate of 97% when given a good

user guess at the object's posItIOn. The planning algorithm
we used successfully generated feasible object manipulation
trajectories under constraints 93.84% of the time, and our
trajectory execution error detector correctly identified 88% of
trajectories. I

The rest of the paper is structured as follows: Section II
gives a background on the relevant technologies and topics,
Section III describes the system architecture and components.
Section I V shows the quantitative analysis of our framework
and Section V shows the preliminary results on the PR2 and
Hubo robots. In Section VI we discuss future work and finally
Section VII concludes the paper.

II. BACKGROUND

There are a variety of robot frameworks and simulation
sofware that is freely and commercially available [10, 11].
Different robot control architectures are made based on these
frameworks or designed from scratch for different purposes
such as remote teleoperation and control of unmanned vehicles
from a command post [12, 13, 14]. Although previous research
has covered the effects of limited bandwidth communication
channels [15], and planetary exploration with limited com
munication [16], to the best of our knowledge, there is no
available framework for high degree of freedom robots, unlike
UAVs or rovers, that is tailored for user guided object manip
ulation in unstructured environments with limited connection
to the robot.

III. ARCHITECTURE

Our framework, shown in Figure 1, is implemented using
ROS [17] for communication and robot control and Open
RAVE [18] for motion planning.

A. Data Aggregation

The principle function of the data aggregation package is
to format data coming from the robot. The data aggregation
package takes in sensor data coming from the robot, which
varies depending on the robot, and re-publishes it in a standard
format so that the framework can be easily implemented on
a variety of robots. As shown in Figure 1, data aggregation
is the only component of the framework that receives data
such as point clouds, encoders, and accelerometers directly
from a robot's sensors. This design allows the system to be
highly modular and quickly switch between different robots,
including switching between robots operating in real and
simulated environments. If necessary, this component can
be reconfigured online to handle changes in the available
sensor data, such as changing which point cloud topic to use
throughout the system.

The aggregation package also provides synthesized informa
tion such as collision maps and object proximity that is derived
from raw sensor data. This information synthesis is performed
on-board the robot to reduce the need for communication.
For instance, collision maps generated from downsampled

I A video of the framework in operation can be seen at:
http://www.youtube.comiwatch?v=xRcU02mXt3s

(a) Misaligned Interactive Marker (b) Auto-aligned Interactive
Marker

Fig. 2: Iterative Closest Point being used to align an object
in RVIZ. (a) the object before ICP has been run, (b) the final
translation after ICP has finished.

point clouds reduce the data needs by nearly 90%, and object
proximity information provides an even greater reduction.

B. User Interface

Due to the difficulty of autonomous perception, a graphical
user interface (GUI) was created to aid the detection of objects.
Using the GUI, as shown in Figure 2a, the user manipulates
an interactive marker [19] to hint at an object's location.
Object alignment is performed using the Iterative Closest
Point (ICP) algorithm which minimizes the error between
two specified groups of points. ICP "snaps " a given input
to the target world, as shown in Figure 2b, by iteratively
computing the transformation between the two groups of
points. Larger transformations can be found by increasing the
number of iterations performed. To decrease computation time,
a bounding box is used to extract a subset of the point cloud.
For our testing, the point cloud from the robot is generated
using an ASUS Xtion RGBD camera.

In addition to user input and feedback, the GUI controls the
flow of data over the unreliable link to the robot. Data from
the robot is only transmitted when specifically requested to
minimize communication. This architecture takes advantage
of the assumption that the robot inhabits a largely static
environment, such as the DRC's valve turning task, while still
remaining suitable for use in more dynamic environments.

C. Planning

The planning package plans trajectories for high degree of
freedom robots so that they can perform object manipulation.
The initial configuration of the robot is critical to manipulation
because the robot must be able to:
(1) reach and manipulate the object for the entirety of the
desired trajectory,
(2) maintain balance during execution,
(3) avoid self-collisions and collisions with the environment.

Motion planning is provided by the Constrained BiDirec
tional Rapidly-exploring Random Tree (CBiRRT), an effi
cient and probabilistically complete manipulation planning
suite. CBiRRT consists of three main components: constraint
representation, constraint-satisfaction, and a general planning

Fig. 3: The PR2 Robot as seen in the RVIZ visualization engine performing valve alignment (left), OpenRAVE for motion
planning (middle), and the real world performing valve turning (right).

algorithm. For full details of CBiRRT and its implementation,
see [8].

D. Trajectory Execution

The trajectory execution package executes a planned tra
jectory and detects errors encountered during execution. For
this error detection, trajectories are recorded during execution
using only the data available from joint encoders. No other
contextual data, such as the planned trajectory or the pose of
the object being manipulated, is required.

Error in trajectory execution is identified by using the
dynamic programming technique Dynamic Time Warping
(DTW) to match executed trajectories against a library of
known successful and unsuccessful trajectories. DTW iter
atively calculates the best alignment between elements of
two or more time sequenced data [9] and produces a cost
metric that quantitatively represents the similarity of those
sequences to either the successful or unsuccessful class, which
facilitates error detection during execution. To account for
trajectories significantly different from those in the library,
cases in which the computed DTW cost metric is greater than
an experimentally-determined threshold can be automatically
identified as error conditions.

This method of error detection using DTW is ideal as it
requires no complex visual feedback and no special sensors,
and is thus applicable to a wide range of robots using only the
data already available from basic joint encoders. In particular,
this method is well-suited for the DRC where it may not
be possible to determine the state of the valve though other
means. For our testing, we used this approach to determine if
the valve manipulated by the PR2 was successfully turned.

IV. FRAMEwORK VALIDATION

The framework we have developed allows for a user to
hint at the location of an object in the world and have the
robot approach and manipulate the object. In order to perform
this action the pose of the object needs to be determined, a
trajectory generated to manipulate it from a start position, and
finally the trajectory must be monitored for errors. Quantitative
experiments were performed on the three aforementioned
components of the architecture, and qualitative experiments

were run with the PR2 robot turning a wheel in both simulation
and the real world (see Figure 3). Additionally, we report on
preliminary validation experiments performed using the Hubo
humanoid robot.

A. Valve Alignment

To enable semi-automated testing, the GUI provides an
option to automatically generate an object alignment with
a configurable amount of noise. This testing configuration
includes the number of tests to run, a maximum amount
of translation error, and a maximum amount of rotational
error. We used the semi-automated tester to evaluate the valve
alignment system by randomly perturbing the valve's position.
A simulated user guess error is calculated by adding the
total translation offset in cm to the total quaternion angle
offset in degrees. The true position of the valve is denoted
as Vo = [Xo, Yo, Zo] and the guessed position of the valve is
denoted as Vg = [Xg, Yg, Zg]. The total translation value Et
is calculated as the euclidean distance between the two points.
Each valve's pose also contains a quaternion that represents
its orientation in space. The difference in angle between the
quaternion representing the valve's position and the guessed
position is represented.

Eq = arccos(2*((xo*xg)+(Yo*Yg)+(zo*Zg)+(Wo*Wg))2_1)
(1)

Finally, the user guess error is calculated by the sum of
the translational error and rotational error, and is denoted by
E = Et + Eq.

Figure 4 shows the success rate of 450 sample alignments
with random perturbations, where success is defined as a final
error of less than .3 units. The "user guess error " is the
amount of error that was present when the semi-automated
tester requested ICP to align the valve to the point cloud. We
qualitatively categorized the results through experimentation.
One to five error units is considered a good user guess, six
to ten error units is considered an acceptable user guess, and
eleven to fifteen error units is a "poor " user guess. ICP was
capable of matching the interactive marker to the point cloud
97% of the time for a good guess, 79% of the time for an

1
Success Rate of Valve Alignment

0.75

0.5

0.25

� � � � � � �
� � � � �

User Guess Error

Fig. 4: Success rate (final error less than .3 units) of Iterative
Closest Point to find the actual valve position given a randomly
generated perturbation in the user's estimated position.

(a) Initial Configuration (b) Start Pose (c) Goal Pose

Fig. 5: Configurations for valve turning path.

acceptable guess, and 58% of the time for a poor guess. The
number of ICP iterations, 500, remained constant throughout
all tests. The number of iterations was determined so that ICP
returns with a new valve alignment in under one second. The
number of iterations ICP runs can be increased, allowing larger
transformations to be found at the cost of longer runtime.

B. Planning

We tested the CBiRRT trajectory planner's performance
with the constraints described in Section III under different
sensing disturbances of the object (in this case, the valve). We
first fixed the position of the object to a point in space, where
we knew the planner was able to succeed. We then added
random translation and rotation perturbations to the transform
of the valve and tried to generate a trajectory plan for the
translated and rotated model of the valve.

For each test generated, we defined six pose constraints
and two path constraints in the CBiRRT framework. For the
valve turning task, we designed a path that consists of four
trajectories:
(1) From initial pose (in it) to valve grasping configuration
(start),

(2) From valve grasping configuration (start) to the configura
tion right after clockwise turning the valve 45 degrees (turned),

(3) From turned back to start,

(4) From start back to init.

Init, start and goal configurations are shown in Figure 5.
For all four trajectories, there were three positions that each
hand must pass through: an initial position, a start position and
a goal position. There was one path constraint for each end
effector for turning the valve about its axis of rotation during
trajectories (2) and (3).

We used random quaternion angle difference perturbations
between zero and 85 degrees and translational perturbations
between 0 and .1 meters. The randomly generated poses were
first validated by the inverse kinematics (IK) solver to ensure
that the start and end configurations necessary for the robot
were collision-free; 422 points were confirmed valid by the
IK solver and used for testing. Of those 422 points in the
space, the trajectory planner succeeded in planning all four
trajectories 93.84 percent of the time.

C. Trajectory Execution

We generated a library of known valid and invalid tra
jectories to test the validity of the execution of planned
trajectories. When both hands maintained contact with the
object throughout the entire trajectory it was considered valid,
if either hand missed or lost contact with the valve it was
considered invalid.

We introduced random rotational noise between 0 and 10
degrees and translational noise between 0 and .025 meters.
These values were selected to represent reasonable valve
misalignments given the observed noise and error of the
sensors on the PR2.

We manually created an initial library of 22 known valid and
invalid example trajectories by providing correct and incorrect
alignments of the valve to the planner, and tagged the resulting
trajectory as either successful or not. The library was then
grown to 526 trajectories through experiments.

In this system, DTW is sufficiently fast to enable online
evaluation of individual trajectories. Each evaluation against
the 526-element library is completed in less than four seconds,
whereas execution of the actual trajectories requires approxi
mately 32 seconds. We performed leave-one-out testing of the
library itself in which each known trajectory in the library
was compared against the other trajectories in the library to
test the ability of the error detector to correctly identify if
an error was encountered. This testing resulted in an overall
correct identification rate of 88%, the false positive rate was
10% and the false negative rate was 16%.

This discrepancy between identification rates is acceptable
because the cost potentially incurred from a false negative
identification (which would result in a retry of the alignment
and planning) is significantly lower than that from a false
positive (which would result in prematurely terminating the
valve turning task).

D. Full Framework Testing

In order to test the communication and data collection
across the system, we ran 20 complete test cycles of the full
framework. The test procedure was as follows: we manually
drove the PR2 to a random location in the room from where
it could see the valve, then an expert user identified the
location of the valve using the GUI, and sent the location of
the valve to the planning component. Once the PR2 received
the valve's location, it approached the valve autonomously,
planned valve turning trajectories, and then executed those
trajectories. The average time to run the entire framework from

Fig. 6: Hub02 Plus turning a valve.

start to finish was approximately two minutes. On average,
turning towards the valve and driving to a location where it
could be manipulated took 30 seconds, planning took two to
three seconds depending on the PR2's position relative to the
valve, and turning the valve took approximately 90 seconds.
Trajectory execution accounted for 64 of those seconds, tra
jectory classification with DTW took 12 seconds, and closing
and opening the grippers accounted for the remainder.

V. ROBOT EXPERIMENTS

We have applied this framework to a Willow Garage PR2
performing the valve turning task. We created a valve analog
from a commercially available force feedback racing wheel.
We tested our framework on the PR2, after validating the
safety of all tests in a simulation environment. The distance the
PR2 started away from the valve was varied randomly between
one meter and three meters. The orientation of the PR2 was
also varied so that it was not directly facing the wheel, with the
requirement that the wheel be in the point cloud. The addition
of a search algorithm to find valves not visible in this starting
position is discussed in the Future Work section.

Observed performance of the trajectory execution system
on the PR2 shows that false negative identifications correlate
to cases where the compliance in the PR2's arms can cause
the same trajectory to either succeed or fail. Notably, the
overall correct identification rate for unsuccessful trajectories
is higher than that for successful trajectories, most likely a
result of known unsuccessful trajectories outnumbering known
successful trajectories in the library.

A. Hubo Testing

In contrast to the more systematic testing on the PR2
robot described above, our preliminary experiments with the
Hubo were centered around validating our method of motion
planning for the robot and evaluating the robot's capabilities
in relation to the requirements of our DRC task (turning the
valve). These tests were performed on the Hub02 Plus at MIT,
housed in the lab of Professor Russ Tedrake.

Hub02 Plus is a 130 em (4'3//) tall humanoid robot com
monly refered to as Hubo, see Fig. 6. It was designed and
constructed by Prof Jun-Ho Oh at the Hubo Lab in the Ko
rean Advanced Institute of Science and Technology (KAIST)
[20, 21]. Hubo is anthropomorphic to a human meaning it

has two arms, two legs and a head. There are six degreese of
freedom (DOF) in each leg, six in each arm, five in each hand,
three in the neck, and one in the waist, all totalling 38 DOF.

We executed several open-loop valve-turning trajectories
generated by the planning system on the Hubo. Our exper
iments confirmed that the planning system enabled control of
the Hubo and that the Hubo was physically capable of turning
the valve.

VI. FUTURE WORK

Our framework provides significant room for expansion to
the user interface, planning system, and trajectory execution
monitor. The current interface provides neither a method of
searching for an object nor autonomous object detection.
Future versions will combine these with a variety of improve
ments to increase user situation awareness.

Our current motion planning system is dependent on the
manual generation of both initial configurations and task
constraints. Automatic generation of these is an important
avenue for further work. We plan to develop an automated
configuration predictor using human-agent knowledge transfer
techniques that have been shown to be effective for teaching
agents different types of tasks [22, 23].

For trajectory execution, which is the final stage in our
system, we will extend our implementation to identify different
kinds of error conditions. We plan to improve the performance
of the underlying DTW implementation using a variety of
established [9] and novel techniques [24] to use not only larger
trajectory libraries, but also to increase the resolution at which
we evaluate the trajectories for errors.

VII. CONCLUSION

In this paper, we presented the foundation of a novel
framework for user-guided manipulation with High Degree-of
Freedom robots in environments with limited communication.
We described techniques for object identification, constrained
trajectory generation, and trajectory monitoring. We presented
a quantitative evaluation of all major components in simula
tion, and qualitative experiments on the framework as a whole.

ACKNOWLEDGEMENT

This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) award #N65236-12-1-
1005 for the DARPA Robotics Challenge. We would also like
to thank Russ Tedrake of CSAll." MIT for allowing us to use
his Hubo for testing.

REFERENCES

[1] S. Chitta, E. G. Jones, M. Ciocarlie, and K. Hsiao,
"Perception, planning, and execution for mobile manipu
lation in unstructured environments, " IEEE Robotics and

Automation Magazine, Special Issue on Mobile Manipu

lation, vol. 19, 2012.
[2] S. Butner and M. Ghodoussi, "Transforming a surgical

robot for human telesurgery, " Robotics and Automation,

IEEE Transactions on, vol. 19, no. 5, pp. 818 - 824, oct.
2003.

[3] Bayesian Grasp Planning, 2011.
[4] O. Khatib, "A unified approach for motion and force

control of robot manipulators: The operational space
formulation, " Robotics and Automation, IEEE Journal of,

vol. 3, no. 1, pp. 43 -53, february 1987.
[5] Strategies for Human-in-the-Loop Robotic Grasping,

Boston, MA, 2012.
[6] T. L. Chen, M. Ciocarlie, S. Cousins, P. Grice,

K. Hawkins, K. Hsiao, C. C. Kemp, C.-H. King,
D. A. Lazewatsky, A. Leeper, H. Nguyen, A. Paepcke,
C. Pan tofaru , W. D. Smart, and L. Takayama, "Robots
for humanity: User-centered design for assistive mobile
manipulation, " in IEEEIRSJ International Conference on

Intelligent Robots and Systems, oct. 2012, pp. 5434 -
5435.

[7] D. R. C. T. T. O. (TTO) , "Darpa robotics challenge, "
2012, [Online; accessed 16-Jan-2013).

[8] D. Berenson, S. Srinivasa, and 1. Kuffner, "Task space
regions: A framework for pose-constrained manipulation
planning, " International Journal of Robotics Research

(lJRR) , vol. 30, no. 12, pp. 1435 - 1460, October 2011.
[9] P. Senin, "Dynamic time warping algorithm review, " In

formation and Computer Science Department University

of Hawaii at Manoa Honolulu, USA, pp. 1-23, 2008.
[10] A. Harris and 1. Conrad, " Survey of popular robotics

simulators, frameworks, and toolkits, " in Southeastcon,

20// Proceedings of IEEE, march 2011, pp. 243 -249.
[11] 1. Craighead, R. Murphy, 1. Burke, and B. Goldiez,

"A survey of commercial open source unmanned ve
hicle simulators, " in IEEE International Conference on

Robotics and Automation, april 2007, pp. 852 -857.
[12] A. A. D. Medeiros, "A survey of control architectures

for autonomous mobile robots, " Journal of the Brazilian

Computer Society, vol. 4, 04 1998.
[13] B. Hannaford, "A design framework for teleoperators

with kinesthetic feedback, " Robotics and Automation,

IEEE Transactions on, vol. 5, no. 4, pp. 426 -434, aug
1989.

[14] R. C. Arkin and T. Balch, "Aura: Principles and practice
in review, " Journal of Experimental and Theoretical

Artificial Intelligence, vol. 9, pp. 175-189, 1997.
[15] P. Rybski, S. Stoeter, M. Gini, D. Hougen, and N. Pa

panikolopoulos, "Effects of limited bandwidth commu
nications channels on the control of multiple robots, " in
IEEEIRSJ International Conference on Intelligent Robots

and Systems, vol. 1. IEEE, 2001, pp. 369-374.
[16] P. Pirjanian, T. Huntsberger, A. Trebi-Ollennu, H. Aghaz

arian, H. Das, S. Joshi, and P. Schenker, "Campout: A
control architecture for multi-robot planetary outposts, "
in Proc. SPIE Symposium on Sensor Fusion and Decen

tralized Control in Robotic Systems III, vol. 4196, 2000,
pp. 221-230.

[17] M. Quigley, B. Gerkey, K. Conley, 1. Faust, T. Foote,
1. Leibs, E. Berger, R. Wheeler, and A. Ng, "Ros: an
open-source robot operating system, " in ICRA workshop

on open source software, vol. 3, no. 3.2, 2009.

[18] R. Diankov and 1. Kuffner, "Openrave: A planning
architecture for autonomous robotics, " Robotics Institute,

Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34,2008.

[19] D. Gossow, A. Leeper, D. Hershberger, and M. Ciocarlie,
"Interactive markers: 3-d user interfaces for ros applica
tions, " Robotics & Automation Magazine, IEEE, vol. 18,
no. 4, pp. 14-15, 2011.

[20] B.-K. Cho, S.-S. Park, and 1. ho Oh, "Controllers for
running in the humanoid robot, HUBO, " in IEEE-RAS In

ternational Conference on Humanoid Robots, dec. 2009.
[21] D. Lofaro and P. Oh, "Humanoid throws inaugural pitch

at major league baseball game: Challenges, approach,
implementation and lessons learned, " in IEEEIRSJ Inter

national Conference on Intelligent Robots and Systems,

nov. 2012.
[22] B. D. Argall, S. Chernova, M. Veloso, and

B. Browning, "A survey of robot learning from
demonstration, " Robot. Auton. Syst. , vol. 57, no. 5,
pp. 469-483, May 2009. [Online). Available:
hup://dx.doi.org/10.1 016/j .robot.2008.1 0.024

[23] M. E. Taylor, H. B. Suay, and S. Chern ova, "Integrating
reinforcement learning with human demonstrations of
varying ability, " in The 10th International Conference

on Autonomous Agents and Multiagent Systems - Volume

2, ser. AAMAS ' 11. Richland, SC: International
Foundation for Autonomous Agents and Multiagent
Systems, 2011, pp. 617-624. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2031678.2031705

[24] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennat
trakul, "Accelerating dynamic time warping subsequence
search with GPUs and FPGAs, " in Data Mining (ICDM),

2010 IEEE 10th International Conference on, dec. 2010,
pp. 1001 -1006.

