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Abstract-This paper presents our progress toward a user
guided manipulation framework for High Degree-of-Freedom 
robots operating in environments with limited communication. 
The system we propose consists of three components: (1) a user
guided perception interface which assists the user to provide 
task level commands to the robot, (2) planning algorithms that 
autonomously generate robot motion while obeying relevant 
constraints, and (3) a trajectory execution and monitoring system 
which detects errors in execution. We have performed quanti
tative experiments on these three components and qualitative 
experiments of the entire pipeline with the PR2 robot turning a 
valve for the DARPA Robotics Challenge. We ran 20 tests of the 
entire framework with an average run time of two minutes. We 
also report results for tests of each individual component. 

I. INTRODUCTION 

We seek to create a user-guided manipulation framework 
for High Degree-of-Freedom (DOF) robots such as humanoids 
and mobile manipulators operating in environments with lim
ited communication. Application of our framework to these 
robots is conducive to greater autonomy and enables tasks 
ranging from home maintenance and care for the elderly or 
disabled to disaster response in conditions that are hazardous 
to humans. While a great deal of research has explored meth
ods for perception [1], error-recovery [2], motion planning 
[1, 3, 4], and tele-operation [5, 6], for such applications our 
goal is to unify existing algorithms in a reliable general
purpose manipulation framework. 

This paper presents our progress toward such a framework. 
We will evaluate our framework by performing valve turning, 
which is one of the tasks required for the DARPA Robotics 
Challenge (DRC) [7]. The task requires that a robot locate, 
approach, grasp, and turn an industrial valve with two hands. 
Valve turning presents a challenging test-case for our system 
due to the perception and dexterous manipulation required. 

A core constraint for the DRC is that communications 
with the robot are limited, making conventional tele-operation 
infeasible and necessitating the use of a framework such as 
ours. Thus, the valve-turning task requires a straightforward 
way for a user to command the robot to perform complex 
actions. These actions require accurate localization of the valve 
relative to the robot, constrained motion planning for closed
chain kinematic systems, and autonomous error detection to 
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Fig. 1: System diagram showing data flow through the frame
work. 

report problems back to the user. These goals align well with 
creating a general-purpose manipulation system. 

The system we propose consists of three main parts: 
(1) a user-guided perception interface which provides task
level commands to the robot, (2) planning algorithms that 
autonomously generate robot motion while obeying relevant 
constraints, and (3) a trajectory execution and monitoring 
system which detects errors in execution. Our goal is that all 
three of these parts be usable on different robots in both the 
real world and simulated environments. 

In the first component, a user roughly aligns a model of the 
relevant object (e.g. a valve) to a point cloud provided by the 
robot's sensors. While autonomous perception algorithms have 
previously been developed for such tasks, they are unsuitable 
for highly unstructured environments and underspecified tasks 
like those encountered in real world situations. Thus, we use 
Iterative Closest Point algorithms to reduce error and "snap " 
the rough user-generated alignment into place locally. Once 
satisfied with the alignment, the user commands the robot to 
perform the task. 

The manipulation planning component of the system con
sists of the CBiRRT algorithm [8], which is capable of gen
erating constrained quasi-static motion for High-DOF robots. 
Once a motion path is constructed by the planning component, 
it is executed by the execution monitoring component. The 
monitoring component compares the execution of the current 
trajectory to a library of previous executions of the same task 
(generated from previous runs) to detect errors. This compo
nent uses Dynamic Time Warping (DTW) [9] to compute an 
error metric between trajectory executions. We have found that 
our user interface has a success rate of 97% when given a good 



user guess at the object's posItIOn. The planning algorithm 
we used successfully generated feasible object manipulation 
trajectories under constraints 93.84% of the time, and our 
trajectory execution error detector correctly identified 88% of 
trajectories. I 

The rest of the paper is structured as follows: Section II 
gives a background on the relevant technologies and topics, 
Section III describes the system architecture and components. 
Section I V  shows the quantitative analysis of our framework 
and Section V shows the preliminary results on the PR2 and 
Hubo robots. In Section VI we discuss future work and finally 
Section VII concludes the paper. 

II. BACKGROUND 

There are a variety of robot frameworks and simulation 
sofware that is freely and commercially available [10, 11]. 
Different robot control architectures are made based on these 
frameworks or designed from scratch for different purposes 
such as remote teleoperation and control of unmanned vehicles 
from a command post [12, 13, 14]. Although previous research 
has covered the effects of limited bandwidth communication 
channels [15], and planetary exploration with limited com
munication [16], to the best of our knowledge, there is no 
available framework for high degree of freedom robots, unlike 
UAVs or rovers, that is tailored for user guided object manip
ulation in unstructured environments with limited connection 
to the robot. 

III. ARCHITECTURE 

Our framework, shown in Figure 1, is implemented using 
ROS [17] for communication and robot control and Open
RAVE [18] for motion planning. 

A. Data Aggregation 

The principle function of the data aggregation package is 
to format data coming from the robot. The data aggregation 
package takes in sensor data coming from the robot, which 
varies depending on the robot, and re-publishes it in a standard 
format so that the framework can be easily implemented on 
a variety of robots. As shown in Figure 1, data aggregation 
is the only component of the framework that receives data 
such as point clouds, encoders, and accelerometers directly 
from a robot's sensors. This design allows the system to be 
highly modular and quickly switch between different robots, 
including switching between robots operating in real and 
simulated environments. If necessary, this component can 
be reconfigured online to handle changes in the available 
sensor data, such as changing which point cloud topic to use 
throughout the system. 

The aggregation package also provides synthesized informa
tion such as collision maps and object proximity that is derived 
from raw sensor data. This information synthesis is performed 
on-board the robot to reduce the need for communication. 
For instance, collision maps generated from downsampled 

I A video of the framework in operation can be seen at: 
http://www.youtube.comiwatch?v=xRcU02mXt3s 
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Fig. 2: Iterative Closest Point being used to align an object 
in RVIZ. (a) the object before ICP has been run, (b) the final 
translation after ICP has finished. 

point clouds reduce the data needs by nearly 90%, and object 
proximity information provides an even greater reduction. 

B. User Interface 

Due to the difficulty of autonomous perception, a graphical 
user interface (GUI) was created to aid the detection of objects. 
Using the GUI, as shown in Figure 2a, the user manipulates 
an interactive marker [19] to hint at an object's location. 
Object alignment is performed using the Iterative Closest 
Point (ICP) algorithm which minimizes the error between 
two specified groups of points. ICP "snaps " a given input 
to the target world, as shown in Figure 2b, by iteratively 
computing the transformation between the two groups of 
points. Larger transformations can be found by increasing the 
number of iterations performed. To decrease computation time, 
a bounding box is used to extract a subset of the point cloud. 
For our testing, the point cloud from the robot is generated 
using an ASUS Xtion RGBD camera. 

In addition to user input and feedback, the GUI controls the 
flow of data over the unreliable link to the robot. Data from 
the robot is only transmitted when specifically requested to 
minimize communication. This architecture takes advantage 
of the assumption that the robot inhabits a largely static 
environment, such as the DRC's valve turning task, while still 
remaining suitable for use in more dynamic environments. 

C. Planning 

The planning package plans trajectories for high degree of 
freedom robots so that they can perform object manipulation. 
The initial configuration of the robot is critical to manipulation 
because the robot must be able to: 
(1) reach and manipulate the object for the entirety of the 
desired trajectory, 
(2) maintain balance during execution, 
(3) avoid self-collisions and collisions with the environment. 

Motion planning is provided by the Constrained BiDirec
tional Rapidly-exploring Random Tree (CBiRRT), an effi
cient and probabilistically complete manipulation planning 
suite. CBiRRT consists of three main components: constraint 
representation, constraint-satisfaction, and a general planning 



Fig. 3: The PR2 Robot as seen in the RVIZ visualization engine performing valve alignment (left), OpenRAVE for motion 
planning (middle), and the real world performing valve turning (right). 

algorithm. For full details of CBiRRT and its implementation, 
see [8]. 

D. Trajectory Execution 

The trajectory execution package executes a planned tra
jectory and detects errors encountered during execution. For 
this error detection, trajectories are recorded during execution 
using only the data available from joint encoders. No other 
contextual data, such as the planned trajectory or the pose of 
the object being manipulated, is required. 

Error in trajectory execution is identified by using the 
dynamic programming technique Dynamic Time Warping 
(DTW) to match executed trajectories against a library of 
known successful and unsuccessful trajectories. DTW iter
atively calculates the best alignment between elements of 
two or more time sequenced data [9] and produces a cost 
metric that quantitatively represents the similarity of those 
sequences to either the successful or unsuccessful class, which 
facilitates error detection during execution. To account for 
trajectories significantly different from those in the library, 
cases in which the computed DTW cost metric is greater than 
an experimentally-determined threshold can be automatically 
identified as error conditions. 

This method of error detection using DTW is ideal as it 
requires no complex visual feedback and no special sensors, 
and is thus applicable to a wide range of robots using only the 
data already available from basic joint encoders. In particular, 
this method is well-suited for the DRC where it may not 
be possible to determine the state of the valve though other 
means. For our testing, we used this approach to determine if 
the valve manipulated by the PR2 was successfully turned. 

IV. FRAMEwORK VALIDATION 

The framework we have developed allows for a user to 
hint at the location of an object in the world and have the 
robot approach and manipulate the object. In order to perform 
this action the pose of the object needs to be determined, a 
trajectory generated to manipulate it from a start position, and 
finally the trajectory must be monitored for errors. Quantitative 
experiments were performed on the three aforementioned 
components of the architecture, and qualitative experiments 

were run with the PR2 robot turning a wheel in both simulation 
and the real world (see Figure 3). Additionally, we report on 
preliminary validation experiments performed using the Hubo 
humanoid robot. 

A. Valve Alignment 

To enable semi-automated testing, the GUI provides an 
option to automatically generate an object alignment with 
a configurable amount of noise. This testing configuration 
includes the number of tests to run, a maximum amount 
of translation error, and a maximum amount of rotational 
error. We used the semi-automated tester to evaluate the valve 
alignment system by randomly perturbing the valve's position. 
A simulated user guess error is calculated by adding the 
total translation offset in cm to the total quaternion angle 
offset in degrees. The true position of the valve is denoted 
as Vo = [Xo, Yo, Zo] and the guessed position of the valve is 
denoted as Vg = [Xg, Yg, Zg]. The total translation value Et 
is calculated as the euclidean distance between the two points. 
Each valve's pose also contains a quaternion that represents 
its orientation in space. The difference in angle between the 
quaternion representing the valve's position and the guessed 
position is represented. 

Eq = arccos(2*( (xo*xg)+(Yo*Yg)+(zo*Zg)+( Wo*Wg) )2_1) 
(1) 

Finally, the user guess error is calculated by the sum of 
the translational error and rotational error, and is denoted by 
E = Et + Eq. 

Figure 4 shows the success rate of 450 sample alignments 
with random perturbations, where success is defined as a final 
error of less than .3 units. The "user guess error " is the 
amount of error that was present when the semi-automated 
tester requested ICP to align the valve to the point cloud. We 
qualitatively categorized the results through experimentation. 
One to five error units is considered a good user guess, six 
to ten error units is considered an acceptable user guess, and 
eleven to fifteen error units is a "poor " user guess. ICP was 
capable of matching the interactive marker to the point cloud 
97% of the time for a good guess, 79% of the time for an 
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Fig. 4: Success rate (final error less than .3 units) of Iterative 
Closest Point to find the actual valve position given a randomly 
generated perturbation in the user's estimated position. 
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Fig. 5: Configurations for valve turning path. 

acceptable guess, and 58% of the time for a poor guess. The 
number of ICP iterations, 500, remained constant throughout 
all tests. The number of iterations was determined so that ICP 
returns with a new valve alignment in under one second. The 
number of iterations ICP runs can be increased, allowing larger 
transformations to be found at the cost of longer runtime. 

B. Planning 

We tested the CBiRRT trajectory planner's performance 
with the constraints described in Section III under different 
sensing disturbances of the object (in this case, the valve). We 
first fixed the position of the object to a point in space, where 
we knew the planner was able to succeed. We then added 
random translation and rotation perturbations to the transform 
of the valve and tried to generate a trajectory plan for the 
translated and rotated model of the valve. 

For each test generated, we defined six pose constraints 
and two path constraints in the CBiRRT framework. For the 
valve turning task, we designed a path that consists of four 
trajectories: 
(1) From initial pose (in it) to valve grasping configuration 
(start), 

(2) From valve grasping configuration (start) to the configura
tion right after clockwise turning the valve 45 degrees (turned), 

(3) From turned back to start, 

(4) From start back to init. 

Init, start and goal configurations are shown in Figure 5. 
For all four trajectories, there were three positions that each 
hand must pass through: an initial position, a start position and 
a goal position. There was one path constraint for each end 
effector for turning the valve about its axis of rotation during 
trajectories (2) and (3). 

We used random quaternion angle difference perturbations 
between zero and 85 degrees and translational perturbations 
between 0 and .1 meters. The randomly generated poses were 
first validated by the inverse kinematics (IK) solver to ensure 
that the start and end configurations necessary for the robot 
were collision-free; 422 points were confirmed valid by the 
IK solver and used for testing. Of those 422 points in the 
space, the trajectory planner succeeded in planning all four 
trajectories 93.84 percent of the time. 

C. Trajectory Execution 

We generated a library of known valid and invalid tra
jectories to test the validity of the execution of planned 
trajectories. When both hands maintained contact with the 
object throughout the entire trajectory it was considered valid, 
if either hand missed or lost contact with the valve it was 
considered invalid. 

We introduced random rotational noise between 0 and 10 
degrees and translational noise between 0 and .025 meters. 
These values were selected to represent reasonable valve 
misalignments given the observed noise and error of the 
sensors on the PR2. 

We manually created an initial library of 22 known valid and 
invalid example trajectories by providing correct and incorrect 
alignments of the valve to the planner, and tagged the resulting 
trajectory as either successful or not. The library was then 
grown to 526 trajectories through experiments. 

In this system, DTW is sufficiently fast to enable online 
evaluation of individual trajectories. Each evaluation against 
the 526-element library is completed in less than four seconds, 
whereas execution of the actual trajectories requires approxi
mately 32 seconds. We performed leave-one-out testing of the 
library itself in which each known trajectory in the library 
was compared against the other trajectories in the library to 
test the ability of the error detector to correctly identify if 
an error was encountered. This testing resulted in an overall 
correct identification rate of 88%, the false positive rate was 
10% and the false negative rate was 16%. 

This discrepancy between identification rates is acceptable 
because the cost potentially incurred from a false negative 
identification (which would result in a retry of the alignment 
and planning) is significantly lower than that from a false 
positive (which would result in prematurely terminating the 
valve turning task). 

D. Full Framework Testing 

In order to test the communication and data collection 
across the system, we ran 20 complete test cycles of the full 
framework. The test procedure was as follows: we manually 
drove the PR2 to a random location in the room from where 
it could see the valve, then an expert user identified the 
location of the valve using the GUI, and sent the location of 
the valve to the planning component. Once the PR2 received 
the valve's location, it approached the valve autonomously, 
planned valve turning trajectories, and then executed those 
trajectories. The average time to run the entire framework from 



Fig. 6: Hub02 Plus turning a valve. 

start to finish was approximately two minutes. On average, 
turning towards the valve and driving to a location where it 
could be manipulated took 30 seconds, planning took two to 
three seconds depending on the PR2's position relative to the 
valve, and turning the valve took approximately 90 seconds. 
Trajectory execution accounted for 64 of those seconds, tra
jectory classification with DTW took 12 seconds, and closing 
and opening the grippers accounted for the remainder. 

V. ROBOT EXPERIMENTS 

We have applied this framework to a Willow Garage PR2 
performing the valve turning task. We created a valve analog 
from a commercially available force feedback racing wheel. 
We tested our framework on the PR2, after validating the 
safety of all tests in a simulation environment. The distance the 
PR2 started away from the valve was varied randomly between 
one meter and three meters. The orientation of the PR2 was 
also varied so that it was not directly facing the wheel, with the 
requirement that the wheel be in the point cloud. The addition 
of a search algorithm to find valves not visible in this starting 
position is discussed in the Future Work section. 

Observed performance of the trajectory execution system 
on the PR2 shows that false negative identifications correlate 
to cases where the compliance in the PR2's arms can cause 
the same trajectory to either succeed or fail. Notably, the 
overall correct identification rate for unsuccessful trajectories 
is higher than that for successful trajectories, most likely a 
result of known unsuccessful trajectories outnumbering known 
successful trajectories in the library. 

A. Hubo Testing 

In contrast to the more systematic testing on the PR2 
robot described above, our preliminary experiments with the 
Hubo were centered around validating our method of motion 
planning for the robot and evaluating the robot's capabilities 
in relation to the requirements of our DRC task (turning the 
valve). These tests were performed on the Hub02 Plus at MIT, 
housed in the lab of Professor Russ Tedrake. 

Hub02 Plus is a 130 em (4'3//) tall humanoid robot com
monly refered to as Hubo, see Fig. 6. It was designed and 
constructed by Prof Jun-Ho Oh at the Hubo Lab in the Ko
rean Advanced Institute of Science and Technology (KAIST) 
[20, 21]. Hubo is anthropomorphic to a human meaning it 

has two arms, two legs and a head. There are six degreese of 
freedom (DOF) in each leg, six in each arm, five in each hand, 
three in the neck, and one in the waist, all totalling 38 DOF. 

We executed several open-loop valve-turning trajectories 
generated by the planning system on the Hubo. Our exper
iments confirmed that the planning system enabled control of 
the Hubo and that the Hubo was physically capable of turning 
the valve. 

VI. FUTURE WORK 

Our framework provides significant room for expansion to 
the user interface, planning system, and trajectory execution 
monitor. The current interface provides neither a method of 
searching for an object nor autonomous object detection. 
Future versions will combine these with a variety of improve
ments to increase user situation awareness. 

Our current motion planning system is dependent on the 
manual generation of both initial configurations and task 
constraints. Automatic generation of these is an important 
avenue for further work. We plan to develop an automated 
configuration predictor using human-agent knowledge transfer 
techniques that have been shown to be effective for teaching 
agents different types of tasks [22, 23]. 

For trajectory execution, which is the final stage in our 
system, we will extend our implementation to identify different 
kinds of error conditions. We plan to improve the performance 
of the underlying DTW implementation using a variety of 
established [9] and novel techniques [24] to use not only larger 
trajectory libraries, but also to increase the resolution at which 
we evaluate the trajectories for errors. 

VII. CONCLUSION 

In this paper, we presented the foundation of a novel 
framework for user-guided manipulation with High Degree-of
Freedom robots in environments with limited communication. 
We described techniques for object identification, constrained 
trajectory generation, and trajectory monitoring. We presented 
a quantitative evaluation of all major components in simula
tion, and qualitative experiments on the framework as a whole. 
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