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Abstract- This paper proposes a two-phase learning frame­
work for human-robot collaborative manipulation tasks. A 
table-lifting task performed jointly by a human and a humanoid 
robot is considered. In order to perform the task, the robot 
should learn to hold the table at a suitable position and 
then perform the lifting task cooperatively with the human. 
Accordingly, learning is split into two phases. The first phase 
enables the robot to reach out and hold one end of the table. 
A Programming by Demonstration (PbD) algorithm based on 
GMM/GMR is used to accomplish this. In the second phase 
the robot switches its role to an agent learning to collaborate 
with the human on the task. A guided reinforcement learning 
algorithm is developed. Using the proposed framework, the 
robot can successfully learn to reach and hold the table and 
keep the table horizontal during lifting it up with human in a 
reasonable amount of time. 

Index Terms- Humanoids, Human-Robot Collaboration, Co­
operative Manipulation, Imitation learning, Reinforcement 
learning. 

I. INTRODUCT ION 

Human-robot collaboration (HRC) [1] is a research field 
with a wide range of applications and high economic impact. 
HRC can be realized through joint actions carried out by 
each of the collaborating individuals. To work cooperatively 
on something the partners need to agree on a common goal 
and a joint intention to reach that goal. Previous research 
has indicated that one of the key objectives for human-robot 
collaboration is to reduce the amount of time it takes a robot 
to accomplish a task [2]. 

Imitation learning and reinforcement learning are impor­
tant learning modalities for HRC. This paper propose a two­
phase framework which combines imitation learning and 
reinforcement learning to enable the robot to learn dynamic 
tasks in a reasonable amount of time. Imitation learning, also 
referred to as Programming by Demonstration (PbD), is a 
powerful mechanism to reduce the search-space complexity 
for learning [3]. PbD mainly consists of three steps: repre­
sentation, generalization and reproduction. The representation 
phase is for transferring skills across various agents and 
situations. The aim of the generalization phase is to extract 
the relevant characteristics of the demonstrated trajectories. 
At last, in the reproduction phase, the generalized trajectories 
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are adjusted to a new situation, which are then enacted by the 
robot. Several frameworks have been proposed for endowing 
robots with imitation learning abilities [4], [5]. 

If PbD is used alone, large number of demonstrations 
performed by human are needed, although an optimal so­
lution cannot be guaranteed [6]. For the table-lifting task, a 
generic feedback controller can be used. In [7], Gribovskaya 
et al. present a framework which combines programming 
by demonstration and adaptive control for physical human­
robot interaction (pHRI). Initially, the robot has to undergo 
a two-phase learning procedure. PbD is used to learn hu­
man's motion model and the corresponding robot-action. An 
adaptive controller is then applied to adjust for the physical 
inconsistencies present in the robot. 

Reinforcement learning can also be combined with PbD 
to solve the same problem. Using reinforcement learning an 
agent can learn behavior through trial-and-error by interacting 
with the environment [8], [9]. Outcome of the performed 
action is used as a reinforcement for updating the agent's 
state-action policy [10]. We chose to use a controller learned 
from reinforcement learning for the following reasons: 

• It is possible to learn a good controller in a short time. 
• It compensates for the time needed to manually tune the 

parameters of a feedback controller. 
• Objective of the task is very simple in the current 

experiment. However, in the future, we will consider 
complex tasks such as keeping a bowl in the center of the 
table while performing the table lifting task. Complex 
tasks like these, have a long term reward to maintain for 
which reinforcement learning is most suited. Also, such 
high level objectives are much easier to specify using 
reinforcement learning. 

We use the Q-learning algorithm with a guided exploration 
strategy to learn the optimal state-action policy [11]. 

The proposed framework reduces the complexity of the 
table lifting task by combining PbD with reinforcement 
learning. In the first phase, PbD is used for reaching out 
to the table and in the second phase, reinforcement learning 
is used for keeping the table horizontal. 

The paper is organized as follows; in Section II, we 
present the experimental platform. In Section III, we discuss 
the methodology of the proposed framework. In Section IV 
experimental results are provided and discussed. Section V 
concludes the paper with proposed future works. 



Human's left wrist (HLW) Table's Frame 
(TAB) 

Fig. 1: Experimental Setting. 

II. EXPERIMENTAL PLATFORM 

This section presents the experimental platform developed 
to evaluate the proposed framework. The hardware includes 
the motion capture system, the humanoid robot and the 
dummy table. Fig. 1 illustrates the experimental setting. 

The goal is to extract the task constraints from multiple 
human demonstrations andn further map these constraints 
to the robot's control frame. The demonstrations collected 
are in the task-space. Markers are attached and rigid-bodies 
are created to collected trajectories of interest. The position 
vector and the rotation matrix of each rigid-body is defined 
in table I 

The convention we follow in this paper are: the X-Y-Z co­
ordinate vector (position) of a rigid body 'A' with respect to 
rigid body 'B' is denoted as APE and the rotation of body 
'A' with respect to body 'B' is denoted by ARE 

Totally four frames are used; the world frame W, the 
table's frame TAB and the robot's internal RI and external 
frame RE. The world frame is the frame of the Vicon 
system in which the position vectors and rotation matrices are 
measured. The table's frame is used to observe the human's 
hand motion with respect to table during the demonstration. 
Human's demonstrations are mapped onto the robot's external 
frame which is converted to the robot's internal control frame 
by calibration. 

A. Motion Capture System 

The motion capture system used for our experiments is the 
Vicon MX motion capture system [12]. It is one of the most 

TABLE I: Co-ordinate Frames Involved 

Rigid Body Notation 

Human left wrist HLW 
Robot left wrist RL W 
Table TAB 
Robot's external frame (torso) RE 
World frame W 
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advanced optical motion capture systems available commer­
cially. The system consists of 12 Vicon T-40 cameras. Each 
camera can capture a 10 bit grayscale image at a resolution of 
4 megapixels. We can capture data at speeds upto 100 frames 
per second. However this speed is limited by the speed of 
robot to perform commanded actions. Atmost, the robot can 
acquire 10 frames per second. The system is equipped with 
sophisticated dynamic reconstruction algorithms for real time 
tracking. A Gigabit Ethernet port is provided for connecting 
the cameras to the system. With the given system, we can 
track any optical marker within a tolerance of 0.7 mm. 
We can create rigid bodies which are nothing but markers 
attached to a solid body in a specific pattern. The Vicon 
Tracker software is used for capturing the rigid-body data. 
The algorithms used in Tracker are optimized for tracking 
rigid bodies. 

B. Humanoid Robot 

The Nao humanoid robot [13] shown in Fig. 1 is used 
for the experiment. It is an autonomous, programmable and 
medium-sized humanoid robot which has 21 degrees of 
freedom (DO F), developed by Aldebaran Robotics. The robot 
can be controlled remotely using telnet-like commands on 
a wireless network. The SDK provided by the company 
includes an inverse kinematics procedure to control end­
effector positions with respect to a frame of reference located 
in its torso. 

C. Calibration 

The robot's end-effector has to be controlled with respect 
to its internal frame of reference. But the data obtained from 
motion capture, is for the markers placed on the robot's body. 
Hence, a correspondence between the externally attached 
markers and the controllable points on the robot has to be 
found out. The robot's SDK can provide the position of 
the robot's end effector with respect to its internal frame 
of reference. Hence we can obtain a model for transforma­
tion given the motion capture data and the corresponding 
robot's data. We model this transformation as a homogenous 
transformation which takes care of scaling, translation and 
rotation. The homogenous transformation takes the form of 
a 4x4 matrix. 

For calibration, the robot waves its hand in random tra­
jectories trying to cover all the possible joint configurations 
of its arms. While it is doing so, positions are collected 
simultaneously from motion capture (denoted by A) and 
forward kinematics applied to robot's internal joint encoders 
(denoted by B). The linear least squares formula used to 
calculate this homogenous transformation (H) can be given 
as 

H = (AT A)-lATB 

III. METHODOLOGY 

(1) 

This section discusses the methodology for the proposed 
framework. 
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Fig. 2: The block diagram of the imitation learning phase. 

A. Imitation Learning Phase 

The first phase is imitation learning. Firstly, the trajectories 
of interest have to be derived from the human demonstrations, 
then we have to extract critical constraints from the trajec­
tories. Gaussian Mixture Model (GMM) is used to encode 
the set of demonstrated trajectories (representation phase). 
Gaussian Mixture Regression (GMR) [14] is then applied to 
retrieve a smooth generalized version of these trajectories and 
associated variances (generalization phase). After mapping 
the constraints to the robot's perspective, the robot can 
generate his own trajectories based on the constraints, in the 
reproduction phase a position controller is derived from the 
generalized trajectories for the new position and orientation 
of the robot and the table. The block diagram of the proposed 
learning algorithm is shown in Fig. 2. The details of the block 
diagram are described next. 

1) Coordinate transformation: This section deals with 
the required coordinate transformations. HLW Pw, 

RE Pw 
and TAB Pw are all in the Vicon's world frame. The hu­
man's wrist trajectory with respect to the table (denoted 
by HLW PTAB is of interest for learning. So we need to 
transform the trajectory from the world frame to the table's 
frame. This transformation includes translation and rotation 
which is given by 

HLWp, TAB R (HLWp TAB P ) TAB = W W - W (2) 

2) Generalization: For imitation learning we adopt the 
probabilistic learning framework proposed by Calinon et al. 
[15]. Let {Cj} f=l denote the N demonstrations. Each demon­
stration is normalized to 100 time steps. Each datapoint Cj = {tj, cff} consists of a time step tj and a coordinate 
of position cff which is a point in trajectory of the human's 
left wrist with respect to the table, H LW PT AB. The dataset 
is first modeled by a Gaussian Mixture Model(GMM) of K 
components [16], each data point is defined by its probability 
density function 

K 

p(Ej) = L 7rkN(Ej; /-Lk, �k) k=l (3) 

where, 7rk are prior probabilities and N (Ej; /-Lk, �k) are 
Gaussian distributions defined by centers /-Lk and covariance 
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matrices �k, whose temporal and spatial components can be 
represented separately as 

(4) 

Based on the GMM, a generalized version of the trajecto­
ries is computed by applying Gaussian Mixture Regression 
(GMR). The procedure is as follows. For each component 
k, the expected distribution of likelihood of cff given a time 
step tj and gaussian mixture component k is defined by 

By taking the complete GMM into account, the expected 
distribution is defined by 

K 

p(Effltj) = L (3k,jN(Eff; E�, t�s) (8) k=l 
where (3k,j is the probability of the component k respon­

sible for t j. By using the linear transformation property 
of Gaussian distribution, and estimation of the conditional 
expectation of Eff given tj is thus defined by p( Eff Itj) ex N (Eff, tffS), where the parameters of the Gaussian distribu­
tion are defined by 

K 

tss - '" (32 tss j - � k,j k k=l (9) 

By evaluating { Eff, tffS} at different time steps tj, a gen­

eralized form of the trajectories E = {tj, Eff} and associated 

covariance matrices t = { tffSJ representing the constraints 

along the task can be compute [17]. 



3) Correspondence problem: In the next step, the con­
straints derived from H LW PT AB will be applied to the robot. 
Since the human's dimension is different from the robot, the 
constraints derived for H LW PT AB have to be mapped to the 
robot's end effector with respect to the table RLW PT AB. This 
problem can be simplified if we consider only the position 
of the human's wrist with respect to the table. Then, it only 
needs to compensate for the dimension difference shown in 
Fig. 3 between the human's wrist and the robot's end effector. 
The dimension difference is nothing but a constant bias. 
A simple method is proposed to calculate this dimension 
difference. We put markers on a fixed object, then we let 
human with markers on the wrist and robot with markers on 
the end effector touch the same point on the box respectively. 
The coordinates with respect to the fixed object are obtained. 
The difference of these two coordinates is the dimension 
difference. 

Fig. 3: Dimension difference between human'hand and 
robot's hand. 

4) Reproduction: In the reproduction phase, a new trajec­
tory for the robot's end effector RLW PRE has to be produced 
based on the generalized version of RL W PT AB. Given the 
TAB Pw during reproduction phase, RL W PRE can be derived 
as follows: 

We have RLW PTAB which is 

RLWn TAB R (RLWn TABp ) 
FTAB = W FW - W 

RLW Pw can be obtained as 

RLWp TABR -1 RLW n TAB p W = W FTAB + W 

Finally we can derive RLW PRE as 

RLWp RE R (RLW n RE p ) RE = W FW - W 

(10) 

(11 ) 

(12) 

RLW PRE is thus, the trajectory of the robot's left end 
effector with respect to its torso, which will be enacted by 
the robot. 

5) Mirroring the trajectory: In the imitation learning 
phase, only left hand demonstrations are provided to the 
robot. This trajectory is mirrored to obtain the corresponding 
trajectory of robot's right end effector. The mirroring process 
is keeping all the X and Z coordinates in the trajectory of 
the left arm as they are and reversing all the Y coordinates. 

B. Reinforcement learning 

For reinforcement learning, the state, action space and the 
rewards have to be defined. Instead of having a complex 
contact environment, the environment in our task is simpli­
fied. The inclination of the table object determines the state. 
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The action space consists of a predetermined discrete set 
of commands which move the robot's hand-tip up or down 
by specified distances. The objective of the task is to keep 
the table horizontal during the task. Accordingly, the reward 
structure has been designed to give a positive reward if the 
robot decreases the slope of the table or a negative reward if 
the robot increases the incline of the table. The reward r is 
calculated as 

r = (IZ2 - Zll)t - (IZ2 - Zl)l)t+1 (13) 

where Zl and Z2 represent the position of the human-end 
and the robot-end of the table respectively. 

The state definition for N states is shown in Fig. 4. In our 
task, we chose N = 5. 

The update for the Q-Iearning algorithm is given by 

6.Q(St, at) = ex[r + I max Q(St+1' a) - Q(St, at)] (14) 
a 

where ex is the learning rate, I is the discount factor. 
In order to speed up the reinforcement learning phase, 

a guided-exploration method is used. The guided learning 
algorithm is given below. 

Algorithm 1 Guided Q Learning 

1: Initialize Visit(Si, ai) = 0 'Vi E N 
2: Initialize Q-table Q( Si, ai) = 0 'Vi E N 
3: while Learning phase do 
4: t = timestep 
5: St = getStateO 
6: Select at +-- argmin(V isit( St, a)) 
7: Take action at 
8: Visit(St, at) +-- Visit(St, at) + 1 
9: r = getRewardO 

10: Update Q(St, at) using Eg. (14), based on reward r. 
11: end while 

V isit( Si, ai) is a counter which counts the number of visits 
to the state-action tuple (Si' ai). Given a state, the action 
selection for exploration is done on the basis of number of 
visits to the particular state-action pair. The state-action pair 
explored least is given more priority. 

IV. EXPERIMENTS AND RESULTS 

A. Calibration results 

The calibration matrix is obtained by moving the robot 
arm randomly, during which the coordinates of the robot's 

Fig. 4: State definition for the reinforcement learning. 
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Fig. 5: Data comparison before and after calibration. Solid 
line represents data in the Vicon's frame and the dash line 
represents data in the robot's internal frame. 

left arm with respect to its own torso is collected both in 
the Vicon system co-ordinate frame and the robot's internal 
frame. Then, the homogeneous transformation is used to 
calculate the calibration matrix. Fig. 5 shows the coordinates 
differences before and after calibration. It can be observed 
that using the calibration matrix the trajectories can be con­
verted from the motion capture frame to the robots internal 
frame. 

B. Imitation learning results 

In the imitation learning phase, multiple demonstrations 
are given by the human. In each demonstration, the human 
tried to approach the same position of the table with his or her 
left hand from an arbitrary initial position. An open source 
code from http://www.calinon.ch/has been used 
to run the GMM/GMR. The GMM/GMR results are shown 
in Fig. 6. Generalized trajectories and constraints are thus 
obtained. From the results, it can be seen that the constraint 
on the human-hand's initial position is very loose. In contrast, 
the constraint on the human hand's final position is very 
strict, which indicates the final position of the robot's end 
effector respect to the table is constant. After compensating 
for the size different between human's hand and robot's hand, 
the robot can generate its own trajectory given the contraints 
extracted. Every time the table is moved to a new position, 
new trajectory is reproduced by the position controller so 
that the robot can successfully approach the table. Finally 
the calibration matrix is used to convert the trajectories from 
the robot's external frame to the robot's internal frame. In the 
imitation learning phase, only left hand demonstrations are 
provided to the robot. This trajectory is mirrored to obtain 
the corresponding trajectory of robot's right end effector. The 
results are shown in Fig. 7. The images (a)-(d) shows the 
robot replaying the generalized trajectories extracted from 
the demonstrations and the images (e )-(t) presents the robot 
reproducing the trajectories in a new situation (different pose 
of the table). It is observed that the trajectories generated 

155 

HLWRISTTABLE GMM GMR 

x- ::��;==1- ::: x- ::--
-� - -� 00 50 100 '---c,o-o --c,o-o --C,:C-o --C80O---C-:100 0 20 40 60 80 100 

XN
_::nN 
-400 
-600 o 50 100 

-200 -200 
-300 

t t 
,OO� 

N 
-10: .

. •.. . 
X -200 . . . 

-300 
-400 

00 100 20 � � W 100 t 

X

� 

-10: 
. 

-200 . 
-300 

100� 
X

� 20:��

_

::: 
. 

-40°0 50 100 --,---- 20 40 60 80 100 t 

Fig. 6: Trajectory encoding and generalization. 

are smooth, with which the robot success in approaching the 
table. 

(.) (b) (e) (d) 

(e) (f) (g) (h) 

Fig. 7: (a)-(d) Replaying the generalized trajectory. (e)-(h) 
Reproducing the generalized trajectory in an unknown table 
pose. 

C. Reinforcement learning results 

For state-action space consisting of 5 states and 5 actions, 
the performance of random exploration is compared with that 
of guided exploration. For training, in each experiment, the 
number of iterations is fixed to 100. To test the speed of 
convergence, the experiment was performed 100 times. Fig. 
8 show the speed of convergence for these two algorithms 
for a single experiment respectively. It is observed that the 
guided exploration policy converges much faster and is more 
stable than the random exploration policy. On average the 
random exploration took more than 100 trials to reach an 
optimal policy whereas the guided learning algorithm could 
reach the optimal policy within 40 trials. 

After learning the optimal policy, we apply it to the robot. 
Fig. 9 shows the positions of the ends of the table for human 
and robot side, the moving range of the table is within 20 
cm. Fig. 10 shows the whole process of the table lifting task. 
From these figures, we can see that the robot can follow the 
human's action and perform the table lifting task successfully. 



learning trials learning trials 

(a) (b) 

Fig. 8: (a) Random exploration learning performance. (b) 
Guided exploration learning performance. 

Fig. 9: Trajectory of the robot's movement and human's 
movement during lifting the table. 

However we could also observe some jerks during the task 
which are due to the imperfections in the position controlled 
end effector of the robot. Also the movement of the robot's 
end effector has some delays, since it takes some time for 
robot to realize the human's action. 

la) Ib) Ie) Id) 

Ie) II) Ig) Ih) 

Fig. 10: Snapshots of human robot performming the table 
lifting task. (a)-(d) the robot lifting the table up. (e)-(h) the 
robot putting the table down. 

V. CONCLUSION S AND FUTURE W ORKS 

This paper proposed a two phase learning framework 
which combines imitation learning and reinforcement learn­
ing. Using imitation learning the robot could reach out and 
hold the end of the table. Through reinforcement learning, the 
robot can learn to collaborate with human for the table lifting 
task. With the guided exploration strategy for Q-Iearning, the 
learning speed is improved. Using the entire framework, the 
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robot could learn to perform the collaborative table-lifting 
task quickly and successfully. 

However, in our task, the robot only behaves as a follower 
and simply reacts to the human's action. For future works, if 
the robot can predict human's motion, the performance can 
be improved. Also, in the reinforcement learning phase, the 
states and actions are discrete. Using continuous state-action 
representation can make the robot's action smoother. 
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