
Intel Serv Robotics (2014) 7:121–131
DOI 10.1007/s11370-014-0156-8

SPECIAL ISSUE

Toward a user-guided manipulation framework for high-DOF
robots with limited communication

Calder Phillips-Grafflin · Nicholas Alunni ·
Halit Bener Suay · Jim Mainprice · Daniel Lofaro ·
Dmitry Berenson · Sonia Chernova ·
Robert W. Lindeman · Paul Oh

Received: 8 August 2013 / Accepted: 7 May 2014 / Published online: 2 July 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract This paper presents our progress toward a user-
guided manipulation framework for high degree-of-freedom
robots operating in environments with limited communica-
tion. The system we propose consists of three components:
(1) a user-guided perception interface that assists the user
in providing task-level commands to the robot, (2) planning
algorithms that autonomously generate robot motion while
obeying relevant constraints, and (3) a trajectory execution
and monitoring system which detects errors in execution.
We report quantitative experiments performed on these three
components and qualitative experiments of the entire pipeline
with the PR2 robot turning a valve for the DARPA robotics
challenge. We also describe how the framework was ported to

C. Phillips-Grafflin (B) · N. Alunni · H.B. Suay · J. Mainprice ·
D. Berenson · S. Chernova · R.W. Lindeman
Worcester Polytechnic Institute, Worcester, MA, USA
e-mail: cnphillipsgraffl@wpi.edu

N. Alunni
e-mail: nalunni@wpi.edu

H. B. Suay
e-mail: benersuay@wpi.edu

J. Mainprice
e-mail: jmainprice@wpi.edu

D. Berenson
e-mail: dberenson@wpi.edu

R. W. Lindeman
e-mail: gogo@wpi.edu

S. Chernova
e-mail: soniac@wpi.edu

D. Lofaro · P. Oh
Drexel University, Philadelphia, PA, USA
e-mail: dan@danlofaro.com

P. Oh
e-mail: paul@coe.drexel.edu

the Hubo2+ robot with minimal changes which demonstrates
its applicability to different types of robots.

Keywords Humanoid robotics · Manipulation · Motion
planning · Teleoperation · Robot software architecture

1 Introduction

We seek to create a user-guided manipulation framework for
high degree-of-freedom (DoF) robots such as humanoids
and mobile manipulators operating in environments with
limited communication. Application of our framework to
these robots is conducive to greater autonomy and enables
tasks ranging from home maintenance and care for the
elderly or disabled to disaster response in conditions that
are hazardous to humans. While a great deal of research
has explored methods for perception [12], error-recovery
[9], motion planning [12,27,28], and teleoperation [11,30]
for such applications, our goal was to unify existing algo-
rithms in a reliable general-purpose manipulation frame-
work.

This paper presents our progress toward such a frame-
work. We evaluate our framework by performing valve turn-
ing, which is one of the tasks required for the DARPA robotics
challenge (DRC) [17]. For a description of our DRC team’s
work on other tasks, see [15,22,33,37,43,54,55]. The valve-
turning task requires that a robot locate, approach, grasp, and
turn an industrial valve with two hands and thus presents a
challenging test case for our system due to the perception and
dexterous manipulation involved. Another core constraint is
the limited communications with the robot, making conven-
tional teleoperation infeasible.

Hence, the valve-turning task requires a straightforward
way for a user to command the robot to perform complex

123



122 Intel Serv Robotics (2014) 7:121–131

actions. These actions require accurate localization of the
valve relative to the robot, constrained motion planning
for closed-chain kinematic systems, and autonomous error
detection to report problems to the user. Thus, the system
we propose consists of three main parts: (1) a user-guided
perception interface which provides task-level commands to
the robot, (2) a planning algorithm that autonomously gener-
ates robot motion while obeying relevant constraints, and (3)
a trajectory execution and monitoring system which detects
errors in execution. Our goal was that all three of these parts
be usable on different robots in both the physical world and
simulated environments.

In the first component, a user roughly aligns a model of
the relevant object (e.g., a valve) to a pointcloud provided
by the robot’s sensors. While autonomous perception algo-
rithms have previously been applied for such tasks, they have
difficulty with highly unstructured environments and under-
specified tasks like those encountered in the DRC. How-
ever, given a good guess for the location of an object, these
algorithms can be quite effective. Thus, we use the iter-
ative closest point (ICP) algorithm [6] to “snap” a rough
user-generated alignment into place. Once satisfied with the
alignment, the user commands the robot to perform the
task.

The manipulation planning component of the system con-
sists of the CBiRRT algorithm [4], which is capable of gen-
erating constrained quasi-static motion for high-DoF robots.
Once a trajectory is constructed by the planning compo-
nent, it is executed by the execution monitoring compo-
nent. The monitoring component compares the execution
of the current trajectory to a library of previous execu-
tions of the same task (generated from previous runs) to
detect errors. This component uses dynamic time warping
(DTW) [48] to compute an error metric between trajectory
executions.

We have found that our user interface has a success rate of
97 % of finding the object’s real-world location, when given
a good user guess at the object’s position relative to the robot.
The planning algorithm we used successfully generated fea-
sible object manipulation trajectories under constraints 94 %
of the time within 25 s, and our trajectory execution error
detector correctly identified whether or not the valve was
successfully turned in 88 % of trajectories on the PR2 robot.1

The rest of the paper is structured as follows: Sect. 2 gives
a background on the relevant technologies and topics and
Sect. 3 describes the system architecture and components.
Section 4 shows the quantitative analysis of our framework
when applied on the PR2 robot and Sect. 5 shows the pre-
liminary results on the Hubo2+ robot. Section 6 describes
the extension of our framework to the Hubo2+ humanoid

1 A video of the framework in operation can be seen at: http://www.
youtube.com/watch?v=xRcUO2mXt3s.

robot. In Sect. 7, we discuss future work and finally Sect. 8
concludes the paper.

2 Background

2.1 Service-oriented architectures

A service-oriented architecture (SOA) is a system architec-
ture that consists of discrete software modules that commu-
nicate with each other. SOAs have become a popular choice
for robotics since they allow the software to be highly mod-
ular and adaptive [41]. There are many options for SOAs
currently available today, including Microsoft Robot Design
Studio (MRDS), Joint Architecture for Unmanned Systems
(JAUS), Hierarchical Attentive Multiple Models for Execu-
tion and Recognition (HAMMER) [46], and Robot Operating
System (ROS) [42].

ROS was chosen for this work due to its extensive
proven ability on the PR2, a high-DoF robot with two
arms and a mobile base. ROS has also been applied
to more anthropomorphic humanoid robots such as the
Nao [1], Robonaut 2 [19], and TU/e TUlip [25]. Addi-
tionally, ROS was chosen for its built-in visualization
tool (RVIZ), which allows for fast user interface devel-
opment, integration with a simulator (Gazebo) [29] for
both physics and sensor simulation, and a large reposi-
tory of open-source code. For more information on robotic
frameworks, both free and commercially available, please
see [14,24]. To the best of our knowledge, there is no
available framework for high-DoF robots, unlike UAVs or
rovers, that is tailored for user-guided object manipulation
in unstructured environments with limited connection to the
robot.

2.2 Low-bandwidth communication

Low-bandwidth communication covers a broad range of
research, which can be categorized by the amount of delay
that the system attempts to handle. Typically, these categories
are roughly 0–2, 2–10, and greater than 10 s latency [8]. For
example, many systems that operate between 0 and 2 s of
latency are surgical systems. Such systems can even oper-
ate across distant locations [32]. Latency greater than 2 s is
typically found in research related to earth orbit or farther
systems, such as Lunar robots [8,40]. Latency greater than
10 s extends even farther including the Mars rovers, which
have a delay of many minutes [7]. Low bandwidth can also
necessitate dynamically assigning resources between robots
in order to function in the limited communication environ-
ment [45].

Highly unstructured disaster environments provide a chal-
lenge where communication can be difficult due to the

123

http://www.youtube.com/watch?v=xRcUO2mXt3s
http://www.youtube.com/watch?v=xRcUO2mXt3s


Intel Serv Robotics (2014) 7:121–131 123

Fig. 1 System diagram
showing data flow through the
framework

unknown properties of the building materials, making trans-
mission and reception of signals unreliable [36]. The frame-
work we create is meant to operate with a latency between 0
and 5 s, with packet loss that will be analogous to communi-
cation in a demolished building. To address the shortcoming
of ROS when used over degraded networks, we have created
datalink software designed to ensure reliable communica-
tion with the robot. Additionally, in order to compensate for
the poor communication link, our datalink software allows
the user to dynamically adjust the bandwidth used by each
sensor’s data.

2.3 Robot teleoperation

There have also been many architectures that attempt to
tackle the problem of manipulation performed by a robot
with a mobile base [26]. The problems present in these mobile
manipulation tasks include where to place the robot in rela-
tion to the object to be manipulated [51], how to grasp the
object [35], and how to plan the robot’s movements [4]. This
framework is designed for a mobile robot manipulating an
object whose general shape, but not size and location, is
known a priori. Due to these unknowns, the framework must
be able to place the robot in a location, where the object can
be manipulated, grasp locations must be determined, and tra-
jectories must be generated dynamically for an object whose
size and pose are unknown before being specified by a user.

High-level supervision [20] has become a popular way of
controlling mobile robots compared with conventional tele-
operation or full autonomy. This shift has happened due to a
variety of reasons, including the difficulty of the perception
problem, issues with navigating in an unstructured environ-
ment, and problems that arise when attempting to teleoper-
ate a high-DoF system such as a humanoid [8]. In high-level
supervision, the robot performs autonomous actions that are
specified by a user to overcome these challenges. The role of
the user has therefore shifted from an operator, who dictates
every movement, to a supervisor, who guides at a high-level
[49]. This approach is often used for unmanned systems con-
trolled from a central command post [3,23,34]. The user will
act as a supervisor when using our framework by specifying
the pose of an object to be manipulated. Traditional teleop-
eration would be challenging for the tasks we consider due

to the many DoF to control and the latency and packet loss
when communicating with the robot.

3 Architecture

Our framework, shown in Fig. 1, is implemented using ROS
[42] for communication with the robot and the user inter-
face, and OpenRAVE [18] for motion planning. The frame-
work consists of a set of modules that provide data aggrega-
tion, user interface, motion planning, and trajectory execu-
tion. Below we describe each module in Fig. 1.

3.1 Data aggregation

The primary function of the data aggregation package is to
format data coming from the robot. The data aggregation
package takes in sensor data, which varies depending on the
robot, and re-publishes it in a standard format so that the
framework can be easily implemented on a variety of robots.
As shown in Fig. 1, data aggregation is the only component
of the framework that receives data such as pointclouds and
values from accelerometers and encoders directly from the
robot’s sensors. This design allows the system to be highly
modular and quickly adapted to different robots, including
switching between robots operating in real and simulated
environments. If necessary, this component can be recon-
figured during operation to handle changes in the available
sensor data, such as changing which pointcloud sensor to use
throughout the system.

This package also provides synthesized information, such
as collision maps and object proximity, that is derived from
raw sensor data. This information synthesis is performed
onboard the robot to reduce the need for communication. For
instance, depth images generated from downsampled point-
clouds reduce the data transmission need by nearly 90 %. For
more details on the implementation and performance of the
data aggregation system, see [39].

3.2 User interface

Due to the difficulty of autonomous perception, we created
a graphical user interface (GUI) to aid in the detection of

123



124 Intel Serv Robotics (2014) 7:121–131

(a) Misaligned Marker (b) ICP-Aligned Marker

Fig. 2 Iterative closest point being used to align an object in RVIZ. a
The object before ICP has been run, b the final translation after ICP has
finished

objects. Using the GUI, as shown in Fig. 2a, the user manipu-
lates an interactive marker [21] to hint at an object’s location.
The interactive marker displayed to the user can be a rectan-
gle, disk, or a triangle mesh. Object alignment is then per-
formed using the ICP algorithm which minimizes the error
between two specified groups of points. ICP is a standard
algorithm for computing the alignment between 3D shapes,
and an easy-to-use implementation is provided in PCL [44].
ICP “snaps” a given input to the target world, as shown in
Fig. 2b, by iteratively computing the best alignment between
points on the surface of the object model and nearby points
in the pointcloud. To decrease computation time, we use a
bounding box to extract a subset of the pointcloud that is near
the user’s guess.

In addition to user input and feedback, the GUI controls
data flow over the unreliable link to the robot. Data from the
robot is transmitted only when specifically requested to min-
imize communication. This architecture takes advantage of
the assumption that the robot inhabits a largely static envi-
ronment, such as the DRC’s valve-turning task.

3.3 Motion planning

The motion planning component generates collision-free
manipulation trajectories for high-DoF robots which respect
balance and end-effector pose constraints. The initial place-
ment of the robot is critical to the resulting motion. Indeed,
the robot must be able to reach and manipulate the object
for the entirety of the task while maintaining balance, avoid-
ing self-collisions, and collisions with the environment. For
each manipulation task, initial and goal configurations are
first computed using inverse kinematics.

The second phase consists of planning trajectories betw-
een the current configuration and the inverse kinematic solu-
tions. This step is performed by the CBiRRT algorithm
[4], which is capable of generating constrained quasi-static
motion for high-DoF robots with balance constraints. While
a number of motion planning algorithms are capable of plan-

ning constrained motion [50,53], we chose CBiRRT for its
explicit incorporation of balance and closed kinematic chain
constraints in addition to support for end-effector constraints.
All three types of constraints are essential to the valve-turning
problem—without any one of them, the robot would fall over,
fail to turn the valve, or damage itself. CBiRRT generates
collision-free paths by growing rapidly exploring random
trees (RRTs) in the configuration space of the robot while
constraining configurations to configuration-space manifolds
implicitly defined by the constraints.

3.4 Trajectory execution

The trajectory execution package executes a planned trajec-
tory and detects errors encountered during execution. For
this error detection, trajectories are recorded during execu-
tion using only the data available from joint encoders. No
other contextual data, such as the output from the planner or
the pose of the object being manipulated, is required.

Errors in trajectory execution are identified by using the
dynamic programming technique Dynamic Time Warping
(DTW) to match executed trajectories against a library of
known successful and unsuccessful trajectories. DTW itera-
tively calculates the best alignment between elements of two
or more time sequenced data [48] and produces a metric that
quantitatively represents the similarity of those sequences to
each other. DTW has previously been applied to the problem
of assessing similarity between trajectories [5]. In our frame-
work, DTW provides a distance metric between end-effector
pose trajectories, allowing the trajectory execution system
to find the closest trajectory in the library. To account for
trajectories significantly different from those in the library,
cases in which the computed DTW metric is greater than an
experimentally determined threshold can be automatically
identified as error conditions.

This method of error detection using DTW is well suited
to our task as it requires no complex visual feedback and
no special sensors and is thus applicable to a wide range of
robots using only the data already available from basic joint
encoders. In particular, this method is appropriate for the
DRC where it may not be possible to determine the state of
the valve through other means. However, the method may not
generalize well to tasks where a library of executions would
be difficult to generate (e.g., if the shape of the object is
completely unknown). For our testing, we used this approach
to determine whether the valve manipulated by the PR2 was
successfully turned.

3.5 Teleoperation datalink

To support operations in environments with limited band-
width and unreliable networks, we have developed a set of
ROS tools specifically for communications in networks with

123



Intel Serv Robotics (2014) 7:121–131 125

(a) PR2 in RViz (b) PR2 in OpenRAVE (c) The real PR2

Fig. 3 The PR2 Robot as seen in a the RVIZ visualization engine performing valve alignment, b OpenRAVE for motion planning, and c the real
world performing valve turning

low bandwidth, dropouts, and high latency. Our teleoperation
link package consists of a number of tools based on those
provided by the topic_tools package built into ROS, with
several improvements and extensions to enable higher reli-
ability, simpler configuration, and use in single-master and
multi-master systems. Our teleoperation datalink software is
available as an open-source ROS package [39].

In particular, the primary components of our teleoperation
datalink system are relays and rate controllers that allow fine-
grained control over the network demands of our system. A
set of generic relays, suitable for all ROS message types, is
provided to handle relaying data over an unreliable network
link. These relays extend the simple equivalents provided in
ROS with automatic detection of network problems, notifi-
cation and warnings to the user, and automatic recovery of
broken network sockets. These relays enable reliable ROS
datalinks that are robust to network dropouts.

Our teleoperation link software provides both a set of rate-
limiting repeaters and a ROS service API for rate control.
Using the rate-limiting repeaters allows for data published at
a “native” rate of 200 Hz onboard the robot to be forwarded
to the user’s workstation at a low rate of 10–20 Hz, reduc-
ing network demands and data usage. Additionally, the same
repeaters provide for single-message requests for data that
will not be streamed continuously. The service API provided
allows for the integration of rate and request control within
other software, such as sensor drivers, to remove the need for
a dedicated rate-control node. An RVIZ plugin in our user
interface, shown in Fig. 7, provides a simple GUI for a user
to modify the rate at which the sensor data are transmitted.

4 Framework validation

The framework we have developed allows for a user to hint
at the location of an object in the world and have the robot
approach and manipulate the object. In order to perform this

Fig. 4 Successful alignment of a rectangular interactive marker to a
ladder rung using ICP

action, we must determine the pose of the object, generate
a trajectory to manipulate it from a start configuration, and
monitor the trajectory for errors during execution. We per-
formed quantitative experiments on the aforementioned com-
ponents of the architecture separately, and qualitative tests of
the entire framework using a Willow Garage PR2 perform-
ing the valve-turning task both in simulation and in the real
world. The PR2 is a large mobile manipulator with two seven-
DoF arms, a sensor head, and a holonomic mobile base. The
robot is equipped with cameras, depth sensors, and an IMU.
The main stages of our framework using the PR2 are shown
in Fig. 3.

4.1 Object alignment

To enable semi-automated testing of ICP object alignment,
the user interface provides an option to automatically gener-
ate “noisy” object alignments. We used this automated tester
to evaluate the valve alignment system by randomly perturb-
ing the valve’s position. The “error” of each simulated user
guess, E is calculated by adding the total translation offset,

123



126 Intel Serv Robotics (2014) 7:121–131

Fig. 5 Success rate (final error
less than 0.3 units) of ICP to find
the actual valve position given a
randomly generated perturbation
in the value’s position

Et , to the total rotational offset, Eq . The true position of the
valve is denoted as Vo = [Xo, Yo, Zo] and the guessed posi-
tion of the valve is denoted as Vg = [Xg, Yg, Zg]. The total
translation value Et is calculated as the Euclidean distance,
in cm, between the two frame origins. Each valve’s pose also
contains a quaternion of the form (x, y, z, w) that represents
its orientation in space. The difference in angle between the
quaternion representing the valve’s position and the guessed
position, Eq , is calculated using the equation below:

Eq =arccos(2∗((xo∗xg)+(yo∗yg)+(zo∗zg)+(wo∗wg))
2−1)

(1)

Figure 5 shows the success rate of 450 sample alignments
with random perturbations, where success is defined as a
final error of less than 0.3 units. The “user guess error” is
the amount of error introduced by the automated tester. We
qualitatively categorized the 450 sample alignments: one to
five error units was considered a “good” user guess, six to ten
error units was considered an “acceptable” user guess, and
eleven to fifteen error units was a “poor” user guess. ICP was
capable of producing a successful alignment 97 % of the time
for a good guess, 79 % of the time for an acceptable guess,
and 58 % of the time for a poor guess. The number of ICP
iterations, 500, remained constant throughout all tests. This
number of iterations was determined so that ICP returns with
a new valve alignment in under 1 s; however, the number of
iterations can be increased, allowing larger transformations
to be found at the cost of longer runtime.

To further test the alignment system, we created a scene
with different items that would require object alignment for
manipulation. These items included a ladder, valve, cinder
block, cutting tool, and a door with a handle. The interactive
marker can be a rectangle, a disk, or a user-specified mesh to
better represent different objects in the scene, and aligning to

those objects was tested using ICP. Figure 4 shows the ICP
output of an alignment to a ladder rung using the system.

4.2 Motion planning

We tested the CBiRRT trajectory planner’s performance with
the constraints described in Sect. 3 with a range of valve
poses. For each test run, we defined six pose constraints
and two path constraints in the CBiRRT framework. For the
valve-turning task, we designed a path that consists of four
trajectories:

1. From initial pose (init) to valve grasping configuration
(start),

2. From valve grasping configuration (start) to the configu-
ration right after turning the valve 45 degrees clockwise
(turned),

3. From turned back to start, and
4. From start back to init.

Init, start, and turned configurations are shown in Fig. 6.
Starting with a known successful valve pose, we generated

random valve poses with rotational offsets ranging from zero
and 85 degrees and translational offsets between 0 and 0.1 m.
These randomly generated poses were first validated by the
inverse kinematics (IK) solver to ensure that the start and
end configurations necessary for the robot were feasible; 422
poses were confirmed by the IK solver and used for testing. Of
these 422 poses, the trajectory planner succeeded in planning
all four trajectories 94 % of the time. The planner was given
a maximum time of 25 s to plan each of the four trajectories.

4.3 Trajectory execution

To test the trajectory execution system, we generated a library
of known valid and invalid trajectories. Valid trajectories

123



Intel Serv Robotics (2014) 7:121–131 127

Fig. 6 Configurations for
valve-turning path

(a) Initial Configuration (b) Start Configuration (c) Turned Configuration

were those in which both hands maintained a grasp on the
valve throughout the entire trajectory, and invalid trajectories
were those in which either hand failed to grasp or lost grasp
of the valve in mid-turn.

We manually created an initial library of 22 known valid
and invalid example trajectories by providing correct and
incorrect alignments of the valve to the planner and tagged
the resulting trajectory as either successful or not. The library
was then grown to 526 trajectories through further exper-
iments. In these experiments, we introduced random rota-
tional noise between 0 and 10 degrees and translational noise
between 0 and 0.025 m. These values were selected to rep-
resent reasonable valve misalignments given the observed
noise and error of the sensors on the PR2. Also note that
our data compression system induces errors no greater than
0.02 m. The executions of these trajectories were tagged by
hand. This process could be accelerated using a ground-truth
metric (e.g., an encoder that measured the true position of
the wheel) to provide automatic tagging of examples.

In our framework, DTW is sufficiently fast to enable
online evaluation of individual trajectories. Each evalua-
tion against the 526-element library is completed in less
than 4 s, whereas execution of the actual trajectories requires
approximately 32 s. We performed leave-one-out testing of
the library itself, in which each trajectory in the library was
compared against the other trajectories in the library to test
the ability of the error detector to correctly identify if an error
was encountered. This testing resulted in an overall correct
identification rate of 88 %. Of the trajectories identified as
successful, 10 % of these trajectories were actually unsuc-
cessful. Of the trajectories identified as unsuccessful, 16 %
of them were actually successful. This discrepancy between
identification rates is acceptable because the cost potentially
incurred from a false-negative identification (which would
result in a retry of the alignment and planning) is signifi-
cantly lower than that from a false positive (which would
result in prematurely terminating the valve-turning task).

4.4 Communications link testing

The communications link serves two distinct functions: lim-
iting the bandwidth used to send sensor data from the robot to
the operator(s) and ensuring that the communication between

robot and operator(s) is maintained despite degraded net-
work conditions. These degraded network conditions include
low bandwidth (down to 100 Kbit/s), high latency (up to 1 s),
packet loss, and periodic dropouts.

In order to test the bandwidth limiting capabilities, data
from different sensors on the robot was streamed through the
link at their default rate and downsampled to a rate specified
by a user. The streamed sensor data included data from joint
encoders, force-torque sensors, tilt sensors, and an RGB cam-
era. Table 1 shows the bandwidth used by the data of different
sensors after they have been downsampled by the communi-
cation link. The rate at which the sensor data is transmitted
can be increased or decreased through a RVIZ plugin shown
in Fig. 7.

To test the resiliency of our communications link soft-
ware, we simulated network conditions using the Dummynet

Table 1 Data rate and bandwidth of sensors after the communication
link

Sensor Rate (Hz) Bandwidth (Kb/s)

Joint states 20 210

Force/torque sensors 20 60

IMU and tilt sensors 20 161

Camera color—compressed 30 160

Camera B & W—compressed 30 100

Fig. 7 The RVIZ plugin that allows the user to control the data rate of
the robot’s sensors through the graphical user interface

123



128 Intel Serv Robotics (2014) 7:121–131

Fig. 8 The Hubo2+ robot turning a valve (a) and shown in RViz (b)

traffic shaping tool [10]. Our communications link success-
fully transmitted camera images in conditions ranging from a
best case of 1 Gbit/s with minimal latency (less than 1 ms) to a
worst case of 50 Kbit/s with latency of 5 s, packet loss of 25 %,
and periodic dropouts of up to 20 s. In these network con-
ditions, our communications link significantly outperforms
the tools built into ROS; at 1 Mbit/s our software provides
approximately one-and-a-half times as many images per sec-
ond, at 100 Kbit/s two times as many, and at 50 Kbit/s three
times as many. As expected from these tests, our communi-
cations software performed reliably at the DRC Trials, where
bandwidth was limited between 1 Mbit/s and 100 Kbit/s with
latency of 100 ms to 1 s.

4.5 Full framework testing

In order to test the operation of the entire framework, we
ran 20 complete test cycles. Each test cycle consisted of
three major steps: (1) we manually drove the PR2 to a
random location in the room from where it could see the
valve, (2) an expert user identified the location of the valve
using the GUI and sent the location of the valve to the
planning component, and (3) the PR2 approached the valve
autonomously, planned valve-turning trajectories, and then
executed those trajectories. For these tests, we created a valve
analog from a commercially available force-feedback racing
wheel.

The average time to run the entire framework from start to
finish was approximately two minutes. On average, turning
toward the valve and driving to a location where it could
be manipulated took 30 s, planning took 2–3 s, and turning
the valve took approximately 90 s. Of the 90 s spent turning
the valve, trajectory execution accounted for 64 s, trajectory

classification with DTW took 12 s, and closing and opening
the grippers accounted for the remainder.

Observed performance of the trajectory execution system
on the PR2 shows that false-negative identifications corre-
late with “borderline” trajectories. These trajectories, due to
a combination of compliance in the PR2’s arm joints and
inaccuracy in sensing, maintain a grasp on the valve in some
executions and slip off in others. In practice, these border-
line trajectories would be unable to turn a valve requiring
significant torque to operate.

5 Hubo humanoid implementation

Hubo2+ is a 130 cm (4′3′′) tall humanoid robot shown in
Fig. 8a. It was designed and built by the Hubo Lab in
the Korean Advanced Institute of Science and Technology
(KAIST) [13,31]. The Hubo2+ has six DoF in each leg, six
in each arm, five in each hand, three in the neck, and one in
the waist, with a total of 38 DoF.

For our testing, we use Hubo-Ach, a real-time control dae-
mon that uses a high-speed, low-latency IPC called Ach [16]
to communicate with controllers. All of the joint controllers
are independent processes and are able to be terminated at
anytime without adversely affecting the Hubo-Ach daemon.
Hubo-Ach implements a real-time loop in which all of the
motor references and state data are set and updated, respec-
tively. Communication with motor controllers is provided
over CAN.

5.1 Framework implementation on Hubo2+

Our framework required a small number of changes in order
to apply it to the Hubo robot. First, the data aggregation com-
ponent, which is the only component to receive data directly

123



Intel Serv Robotics (2014) 7:121–131 129

from the robot itself, needed to be changed to topics specific
to the Hubo robot instead of the PR2. The planning pack-
age was modified to account for a robot with balance con-
straints by adding a support polygon determined from Hubo’s
feet. Due to the difference in the two-handed workspace of
the Hubo robot compared with the PR2, Hubo was placed
30 cm from the valve instead of 50 cm and turned the wheel
18 degrees instead of 32 degrees. Finally, the model displayed
to the user in the GUI was updated. Figure 8b shows the Hubo
robot in the RVIZ environment with the user-guided local-
ization marker.

6 ROS–Ach Interface

To apply our framework written in ROS to the Hubo robot,
we created a ROS package, hubo_ros_core, to support the
Hubo robot. In particular, this interface is designed to abstract
Hubo-specific implementation details and provide a common
interface similar to that of other robots using ROS. Using this
interface, the same software we have developed for the PR2
can be used on a radically different robot.

Hubo_ros_core provides several infrastructure compo-
nents for working with the Hubo robot: common message
types, a direct interface for publishing robot state and joint
control, and a mid-level interface to execute actions on the
robot.

A package of message types, hubo_robot_msgs, pro-
vides standard communication messages for everything from
joint states to high-level actions such as pointing the head or
requesting a LIDAR scan. These messages provide a com-
mon baseline for all ROS software running on the Hubo robot
that allows them to share data and command actions on the
robot.

Low-level support for the Hubo robot in ROS is provided
by a bridge between ROS and Hubo-Ach, which provides
interfaces to the Hubo-Ach real-time layer. The interface to
Hubo-Ach provides both data out from the robot’s sensors
(joint encoders, force-torque, tilt, and IMU) and control in
to directly control joint positions. Using the data read from
the real-time layer, this package provides transformations
between all link frames on the robot. This allows for trans-
formation of data in one frame to another using existing tools
in ROS. In addition, the transforms enable visualization of
the robot in RVIZ, which forms the core of our user interface.

Support for mid-level execution, namely joint- and pose-
space trajectories, is provided in a set of packages. These
packages provide for trajectory execution using standard
ROS interfaces that allow our planning software, developed
for the PR2, to easily control the Hubo robot in a nearly
identical manner. Other high-level actions, such as pointing
the head of the robot to track a specific point or conduct-
ing a scan with the onboard sensors, are provided by these
packages. The aim of these packages is to provide a common

execution system for all higher-level actions and behavior
implemented for the Hubo robot that mirror those available
for other robots that support ROS. This commonality allows
for the easy porting of existing software to the Hubo, near-
identical interfaces between multiple Hubo variants, and a
familiar interface to new users.

Our interface, hubo_ros_core, is available as open-
source software and can be used with minor configuration
changes on any variant of the Hubo robot that supports the
Hubo-Ach real-time control layer [38].

We validated our system using the Hubo2+, as shown in
Fig. 8a, successfully replicating the PR2’s open-loop valve-
turning ability.

7 Future work

Our framework provides significant room for expansion to
the user interface, planning system, and trajectory execu-
tion monitor. The current interface provides neither a method
of searching for an object nor autonomous object detection.
Future versions will combine these with a variety of improve-
ments to increase user situation awareness.

Our current motion planning system is dependent on the
manual generation of both initial configurations and task con-
straints. Automatic generation of these is an important avenue
for further work. We would like to develop an automated con-
figuration predictor using human-agent knowledge transfer
techniques that have been shown to be effective for teaching
agents different types of tasks [2,52].

For trajectory execution, which is the final stage in our
system, we would like to extend our implementation to iden-
tify different kinds of error conditions. We intend to improve
the performance of the underlying DTW implementation
using a variety of established [48] and novel techniques
[47] to use not only larger trajectory libraries, but also to
increase the resolution at which we evaluate the trajectories
for errors.

8 Conclusion

In this paper, we have presented the foundation of a novel
framework for user-guided manipulation with high degree-
of-freedom robots in environments with limited communi-
cation. This framework includes techniques for object iden-
tification, constrained trajectory generation, and trajectory
monitoring. We presented a quantitative evaluation of all
major components in simulation, and qualitative experiments
on the framework as a whole. We found that the system
was effective at the valve-turning task on two very differ-
ent robots.

123



130 Intel Serv Robotics (2014) 7:121–131

Acknowledgments This work was supported in part by the Defense
Advanced Research Projects Agency (DARPA) award #N65236-12-1-
1005 for the DARPA Robotics Challenge. We would also like to thank
Russ Tedrake of CSAIL, MIT for allowing us to use his Hubo for testing.

References

1. Almetwally I, Mallem M (2013) Real-time tele-operation and tele-
walking of humanoid robot nao using kinect depth camera. In: IEEE
International Conference on Networking, Sensing and Control, pp
463–466

2. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey
of robot learning from demonstration. Robotics and Autonomous
Systems 57(5):469–483

3. Arkin RC, Balch T (1997) AuRA: Principles and Practice in
Review. Journal of Experimental and Theoretical Artificial Intelli-
gence 9:175–189

4. Berenson D, Srinivasa S, Kuffner J (2011) Task Space Regions: A
Framework for Pose-Constrained Manipulation Planning. Interna-
tional Journal of Robotics Research 30(12):1435–1460

5. Berenson D, Abbeel P, Goldberg K (2012) A robot path planning
framework that learns from experience. In: IEEE International Con-
ference on Robotics and Automation, pp 3671–3678, doi:10.1109/
ICRA.2012.6224742

6. Besl P, McKay ND (1992) A method for registration of 3-D shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence
14(2):239–256

7. Biesiadecki J, Leger C, Maimone M (2007) Tradeoffs between
directed and autonomous driving on the mars exploration rovers.
In: Thrun S, Brooks R, Durrant-Whyte H (eds) Robotics Research,
Springer Tracts in Advanced Robotics, vol 28. Springer, Berlin
Heidelberg, pp 254–267

8. Burridge R, Hambuchen K (2009) Using prediction to enhance
remote robot supervision across time delay. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp 5628–
5634

9. Butner S, Ghodoussi M (2003) Transforming a surgical robot for
human telesurgery. IEEE Transactions on Robotics and Automa-
tion 19(5):818–824

10. Carbone M, Rizzo L (2010) Dummynet revisited. ACM SIG-
COMM Computer Communication Review 40(2):12

11. Chen TL, Ciocarlie M, Cousins S, Grice P, Hawkins K, Hsiao
K, Kemp CC, King CH, Lazewatsky DA, Leeper A, Nguyen H,
Paepcke A, Pantofaru C, Smart WD, Takayama L (2012) Robots
for humanity: User-centered design for assistive mobile manipula-
tion. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp 5434–5435

12. Chitta S, Jones EG, Ciocarlie M, Hsiao K (2012) Perception, Plan-
ning, and Execution for Mobile Manipulation in Unstructured Envi-
ronments. IEEE Robotics and Automation Magazine, Special Issue
on Mobile Manipulation 19(2):58–71

13. Cho BK, Park SS, ho Oh J (2009) Controllers for running in the
humanoid robot, HUBO. In: IEEE-RAS International Conference
on Humanoid Robots

14. Craighead J, Murphy R, Burke J, Goldiez B (2007) A survey of
commercial open source unmanned vehicle simulators. In: IEEE
International Conference on Robotics and Automation, pp 852–857

15. Dang H, Jun Y, Oh P, Allen P (2013) Planning complex physical
tasks for disaster response with a humanoid robot. In: IEEE Inter-
national Conference on Technologies for Practical Robot Applica-
tions, pp 1–6

16. Dantam N, Stilman M (2012) Robust and efficient communication
for real-time multi-process robot software. In: IEEE-RAS Interna-
tional Conference on Humanoid Robots

17. DARPA Tactical Technology Office (2012) DARPA Robotics Chal-
lenge Broad Agency Announcement. [Online; accessed 16-Jan-
2013]

18. Diankov R, Kuffner J (2008) OpenRAVE: A planning archi-
tecture for autonomous robotics. Tech. Rep. CMU-RI-TR-08-
34, Robotics Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania

19. Diftler M, Mehling J, Abdallah M, Radford N, Bridgwater L,
Sanders AM, Askew RS, Linn D, Yamokoski J, Permenter F, Har-
grave B, Piatt R, Savely R, Ambrose R (2011) Robonaut 2 - the
first humanoid robot in space. In: IEEE International Conference
on Robotics and Automation, pp 2178–2183

20. Ferrell W, Sheridan T (1967) Supervisory control of remote manip-
ulation. IEEE Spectrum 4(10):81–88

21. Gossow D, Leeper A, Hershberger D, Ciocarlie M (2011) Inter-
active Markers: 3-D User Interfaces for ROS Applications. IEEE
Robotics and Automation Magazine 18(4):14–15

22. Grey M, Dantam N, Lofaro D, Bobick A, Egerstedt M, Oh P, Stil-
man M (2013) Multi-process control software for HUBO2 Plus
robot. In: IEEE International Conference on Technologies for Prac-
tical Robot Applications, pp 1–6

23. Hannaford B (1989) A design framework for teleoperators with
kinesthetic feedback. IEEE Transactions on Robotics and Automa-
tion 5(4):426–434

24. Harris A, Conrad J (2011) Survey of popular robotics simulators,
frameworks, and toolkits. In: IEEE Southeastcon, pp 243–249

25. Hobbelen D, de Boer T, Wisse M (2008) System overview of
bipedal robots flame and tulip: Tailor-made for limit cycle walking.
In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp 2486–2491

26. Hornung A, Phillips M, Jones E, Bennewitz M, Likhachev M,
Chitta S (2012) Navigation in three-dimensional cluttered environ-
ments for mobile manipulation. In: IEEE International Conference
on Robotics and Automation, pp 423–429

27. Hsiao K, Ciocarlie M, Brook P (2011) Bayesian Grasp Planning.
ICRA 2011 Workshop on Mobile Manipulation: Integrating Per-
ception and Manipulation

28. Khatib O (1987) A unified approach for motion and force control
of robot manipulators: The operational space formulation. IEEE
Journal of Robotics and Automation 3(1):43–53

29. Koenig N, Howard A (2004) Design and use paradigms for
Gazebo, an open-source multi-robot simulator. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems 3:2149–2154

30. Leeper A, Hsiao K, Ciocarlie M, Takayama L, Gossow D (2012)
Strategies for human-in-the-loop robotic grasping. In: ACM/IEEE
International Conference on Human-Robot Interaction, pp 1–8

31. Lofaro DM, Oh P (2012) Humanoid Throws Inaugural Pitch at
Major League Baseball Game: Challenges, Approach, Implemen-
tation and Lessons Learned. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems

32. Lum M, Rosen J, King H, Friedman D, Lendvay T, Wright A,
Sinanan M, Hannaford B (2009) Teleoperation in surgical robot-
ics - network latency effects on surgical performance. In: Interna-
tional Conference of the IEEE Engineering in Medicine and Biol-
ogy Society, pp 6860–6863

33. Luo J, Zhang Y, Hauser K, Park H, Paldhe M, Lee C, Grey M, Stil-
man M, Oh J, Lee J, Kim I, Oh P (2014) Robust ladder-climbing
with a humanoid robot with application to the darpa robotics chal-
lenge. In: IEEE International Conference on Robotics and Automa-
tion (to appear)

34. Medeiros AAD (1998), A survey of control architectures for
autonomous mobile robots. Journal of the Brazilian Computer
Society 4

35. Miller A, Allen P (2004) Graspit! a versatile simulator for robotic
grasping. IEEE Robotics and Automation Magazine 11(4):110–
122

123

http://dx.doi.org/10.1109/ICRA.2012.6224742
http://dx.doi.org/10.1109/ICRA.2012.6224742


Intel Serv Robotics (2014) 7:121–131 131

36. Oestges C, Montenegro-Villacieros B, Vanhoenacker-Janvier D
(2009) Modeling propagation into collapsed buildings for radio-
localization-based rescue search missions. In: IEEE Antennas and
Propagation Society International Symposium, pp 1–4

37. O’Flaherty R, Vieira P, Grey M, Oh P, Bobick A, Egerstedt M,
Stilman M (2013) Humanoid robot teleoperation for tasks with
power tools. In: IEEE International Conference on Technologies
for Practical Robot Applications, pp 1–6

38. Phillips-Grafflin C (2013) Hubo ROS Core. https://github.com/
WPI-ARC/hubo_ros_core

39. Phillips-Grafflin C (2013) Unreliable Network Communication
Toolkit. https://github.com/WPI-ARC/teleop_toolkit

40. Pirjanian P, Huntsberger T, Trebi-Ollennu A, Aghazarian H, Das H,
Joshi S, Schenker P (2000) CAMPOUT: A control architecture for
multi-robot planetary outposts. Proceedings of SPIE Symposium
on Sensor Fusion and Decentralized Control in Robotic Systems
III 4196:221–230

41. Pordel M, Hellstrom T (2013) Robotics architecture frameworks,
available tools and further requirements. UMINF

42. Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger
E, Wheeler R, Ng A (2009) ROS: an open-source Robot Operating
System. In: ICRA workshop on open source software

43. Rasmussen C, Yuvraj K, Vallett R, Sohn K, Oh P (2013) Towards
functional labeling of utility vehicle point clouds for humanoid
driving. In: IEEE International Conference on Technologies for
Practical Robot Applications, pp 1–6

44. Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library
(PCL). IEEE International Conference on Robotics and Automa-
tion. Shanghai, China, pp 1–4

45. Rybski P, Stoeter S, Gini M, Hougen D, Papanikolopoulos N (2001)
Effects of limited bandwidth communications channels on the con-
trol of multiple robots. IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE 1:369–374

46. Sarabia M, Ros R, Demiris Y (2011) Towards an open-source social
middleware for humanoid robots. In: IEEE-RAS International Con-
ference on Humanoid Robots, pp 670–675

47. Sart D, Mueen A, Najjar W, Keogh E, Niennattrakul V (2010)
Accelerating Dynamic Time Warping Subsequence Search with
GPUs and FPGAs. In: IEEE International Conference on Data Min-
ing, pp 1001–1006

48. Senin P (2008) Dynamic time warping algorithm review. Informa-
tion and Computer Science Department University of Hawaii at
Manoa Honolulu, USA pp 1–23

49. Skrzypczyliski P (1997) Supervision and teleoperation system for
an autonomous mobile robot. IEEE/RSJ International Conference
on Intelligent Robots and Systems 2:1177–1181

50. Stilman M (2007) Task constrained motion planning in robot joint
space. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, pp 3074–3081

51. Stulp F, Fedrizzi A, Mösenlechner L, Beetz M (2012) Learning and
reasoning with action-related places for robust mobile manipula-
tion. Artificial Intelligence Research 43(1):1–42

52. Taylor ME, Suay HB, Chernova S (2011) Integrating reinforcement
learning with human demonstrations of varying ability. In: The 10th
International Conference on Autonomous Agents and Multiagent
Systems - Volume 2

53. Yakey J, LaValle SM, Kavraki LE (2001) Randomized Path Plan-
ning for Linkages with Closed Kinematics Chains. IEEE Transac-
tions on Robotics and Automation 17(6):951–959

54. Zheng Y, Wang H, Li S, Liu Y, Orin D, Sohn K, Jun Y, Oh P
(2013) Humanoid robots walking on grass, sands and rocks. In:
IEEE International Conference on Technologies for Practical Robot
Applications, pp 1–6

55. Zucker M, Jun Y, Killen B, Kim TG, Oh P (2013) Continuous
trajectory optimization for autonomous humanoid door opening.
In: IEEE International Conference on Technologies for Practical
Robot Applications, pp 1–5

123

https://github.com/WPI-ARC/hubo_ros_core
https://github.com/WPI-ARC/hubo_ros_core
https://github.com/WPI-ARC/teleop_toolkit

	Toward a user-guided manipulation framework for high-DOF robots with limited communication
	Abstract 
	1 Introduction
	2 Background
	2.1 Service-oriented architectures
	2.2 Low-bandwidth communication
	2.3 Robot teleoperation

	3 Architecture
	3.1 Data aggregation
	3.2 User interface
	3.3 Motion planning
	3.4 Trajectory execution
	3.5 Teleoperation datalink

	4 Framework validation
	4.1 Object alignment
	4.2 Motion planning
	4.3 Trajectory execution
	4.4 Communications link testing
	4.5 Full framework testing

	5 Hubo humanoid implementation
	5.1 Framework implementation on Hubo2+

	6 ROS--Ach Interface
	7 Future work
	8 Conclusion
	Acknowledgments
	References


