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Abstract Manned rotorcraft are often employed in harsh environments and difficult
terrain that are inaccessible to other craft. Conversely, robotic rotorcraft are oper-
ated in controlled settings, often at safe, high altitudes. Missions such as cargo de-
livery, medevac and fire fighting are unachievable because of unpredictable adverse
environmental conditions. To enable UAVs to perform these missions, the effects
of obscurants on UAV sensor suites and algorithms must be clearly understood.
This paper explores the use of a laser range finder to accomplish landing zone
identification in unknown, unstructured environments. The ability to detect a landing
zone in environments obscured by smoke is investigated. This is accomplished using a
design methodology of testing and evaluating in a controlled environment followed
by verification and validation in the field. This methodology establishes a concrete
understanding of the sensor performance, thereby removing ambiguities in field tests.

Keywords Evaluating guidance algorithms · Verifying performance ·
Navigation and control

1 Introduction

Helicopters and other manned rotorcraft often perform missions that can not be
accomplished by other craft. Their ability to fly and hover allows helicopters to access
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remote terrain amongst obstacles like buildings, poles and trees. Pilots are able to
perform missions such as cargo delivery, search and rescue, and fire fighting even
when faced with thick smoke and brown-out conditions.

Conversely, robotic rotorcraft are often confined to well structured, safe environ-
ments. Missions such as surveillance are performed at high altitudes, safe from the
threat of obstacles on the ground. In other tasks such as building inspection, the
rotorcraft is often controlled by a pilot who has a constant line of sight to the aircraft.
When these tasks are made autonomous, the ambient conditions are often chosen
to be idyllic without adverse weather conditions. To enable UAVs to perform the
missions carried out by manned helicopters, the effects of obscurants on UAV sensor
suites and algorithms must be clearly understood.

In evaluating this problem, a baseline capability must be identified for testing.
Landing zone identification is an essential component to many rotorcraft missions.
The problem extends to tasks such as cargo delivery, medevac and search and rescue
among others. Landing zone identification is a thoroughly researched problem, and
many well developed solutions already exist. Furthermore, the capabilities necessary
for landing zone detection are extensible to other core capabilities, such as obstacle
avoidance and mapping.

Landing zone identification requires a sensor suite capable of mapping the ground
beneath the helicopter. Selecting a sensor suite for this task is complicated by the
nature of the environments in which these robots operate. Areas of interest such as
urban landscapes are cluttered with obstacles. Large structures like buildings can be
easily detected by many different types of sensors. Small obstacles like wires and
sparse obstacles such as trees and bushes can be more difficult to detect. These pose
great risk to rotorcraft because the exposed rotor is easily damaged, even by small
objects. This potential hazard demands a sensor suite capable of resolving small
obstacles at far ranges.

Furthermore, the robot may be subject to adverse ambient conditions. Particles
from debris or smoke from fires can obscure the field of view of a sensor suite. When
a rotorcraft is landing, dust is often scattered, at times creating a brown out effect.
To ensure that performance is robust and reliable, these effects must be quantified
when addressing the issue of landing zone identification.

As a Future Combat Systems: One Team member, we have gained extensive
experience designing sensor suites for robots flying in near-Earth environments. The
Future Combat Systems (FCS) Class II program focused on building a UAV to fly
missions in near-earth environments such as urban terrain and forests. This project
identified a few fundamental requirements for sensor suites.

The sensor must detect a wide range of obstacles. In urban terrain, object size and
composition can vary drastically, from buildings to telephone poles to thin wires and
clothes lines. In particular, sparse objects such as trees and bushes are troublesome
to detect.

The UAV will also encounter a variety of adverse environmental conditions, such
as the scenario depicted in Fig. 1. Smoke from fires or dust from down-wash can
hinder the performance of the UAVs sensor suite. Other environmental factors such
as rain, fog, and varied lighting can further degrade performance. The selected sensor
must adequately address these issues.

Our experiences in sensor suite design revealed that scanning laser range finders
are the best suited sensor to meet these criteria. Preliminary experiments against the
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Fig. 1 The SR100 robotic
rotorcraft hovers over an
unsafe landing site. A laser
range finder mounted to the
bottom of the craft is tested for
its performance in smoke

criteria stated above showed them to out perform common sensors such as sonar,
computer vision and optic flow.

The biggest attraction of these sensors is their high fidelity and wide field of
view. Their range is comparable if not better than many traditional sensors. Laser
range finders are also able to clearly detect many different objects including sparse
objects such as trees and bushes. Additionally, they are robust to varied lighting,
encountering difficulties only in extreme conditions such as direct sunlight measuring
over 10,000 lux.

The major drawback to laser range finders is their sensitivity to obscurants present
in the air. Rain can cause reflections that appear to be thin obstacles. Additionally,
particulate matter such as fog, smoke and dust attenuate the laser beam and cause
back-scatter, making some obstacles undetectable. This detriment can hinder the
operational capabilities of the UAV.

Extensive work has been done to model the effect of obscurants. A model for
the effect of different kinds of smoke and various other obscurants is presented in
[1]. Brinkworth [2] defines general equations for determining attenuation and back-
scatter from a light source. Such models can be used to correct for obscurants in laser
range measurements.

Other researchers have directly measured the effects of fog and smoke on lasers.
Arshinov et al. [3] conclude that back-scatter from lasers is more affected by the
amount of smoke and fog than the wavelength of the laser. Even though these effects
are well documented and measured, there has been relatively little work towards
applying the results to the problem of building terrain maps and identifying safe
landing zones.

Laser range finders have proven their capability for mapping cluttered terrain. In
[4] a laser range finder mounted to a rotorcraft is used to map buildings, bushes and
trees. Previous work has also demonstrated the ability to navigate rotorcraft based
on these maps. A LADAR sensor was used to map urban terrain in [5]. Obstacles
as small as 6mm diameter wires were successfully detected. This map was then
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used to autonomously guide the craft through the environment. These experiments
noticed effects from dust, however the research did not extend to characterizing
and correcting for these effects. Also, these experiments did not explore using the
LADAR generated maps to land the vehicle.

Landing rotorcraft autonomously has been accomplished before. Saripalli et al. [6]
successfully demonstrated landing a rotorcraft utilizing GPS information and a vision
based approach. The same authors demonstrated the ability to land a rotorcraft
on a moving target in [7] using similar techniques. Both of these results rely on
predetermined GPS locations where well marked fiducials are placed on the ground.
Such well structured scenes would not necessarily be available in a perch-and-stare
or cargo delivery missions.

Algorithms for safe landing zone identification have also been presented and
tested. Both [8] and [9] present machine vision based approaches for identifying safe
landing zones. While the fundamental approach can be applied to any terrain map,
the specific algorithms assume images, which could be degraded by obscurants. In
[10], an algorithm is presented for identifying safe landing zones using a laser range
finder. This body of research shows that the individual components exist to detect
landing zones while accounting for adverse conditions.

This paper examines the effects of obscurants on identifying safe landing zones.
A method for determining a safe landing zone using a LADAR sensor on board
a robotic rotorcraft is presented. This method is comprised of a step in which the
terrain map is reconstructed from laser and position data, followed by a step in which
the safest landing zone in the terrain map is identified. A SICK LMS200 laser range
finder was tested and evaluated for varying densities of smoke inside a UAV testing
facility. The sensor model with and without obscurants was determined from these
experiments. Verification and validation was performed on board an SR100 robotic
helicopter. Results from these experiments are presented.

Section 2 describes the approach used to generate terrain maps and identify
landing zones. Section 3 describes the testing and evaluation of the SICK laser
utilizing SISTR, a Systems Integrated Sensor Test Rig. The robotic platform used
for verification and validation is described in Section 4. Preliminary experimental
results are given in Section 5. Finally, conclusions and future work are discussed in
Section 6.

2 Algorithms

To detect a safe area to land, the robot must first generate a map of its environment.
This terrain map is generated using the laser scans and pose measurements of
the aircraft. Vibrations from the helicopter and inherent noise/drift in the sensors
can seriously degrade the quality of the terrain map. To recover a usable map
of the terrain, a mapping algorithm must be applied that considers noise in both
measurements. The resulting terrain map is often comprised of large flat areas with
both large and small obstacles. The landing zone algorithm must find flat, obstacle
free terrain with a large enough area to fit the rotorcraft. The following sections
describe the algorithms utilized to accomplish these steps.
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2.1 Mapping

To generate a terrain map, laser scans must be fused with relatively noisy pose mea-
surements. This is accomplished using an implementation of the process presented in
[4]. The fundamental concepts and their application are presented here in brief.

This algorithm produces a 3D map of the environment given noisy pose and ter-
rain measurements. To find the corrected pose, a probabilistic model is constructed.
This model is comprised of: the probability of the pose measurement, the probability
of differential pose measurements, and the probability of consecutive scan alignment.

The probability of pose measurement is modeled as the probability of measuring
the pose given the corrected pose. The system is taken to be 6 degrees of freedom,
namely the 3 Cartesian coordinates and rotations about those axes. Their measure-
ment at the current time step is the vector yt, while the algorithm solves for the
corrected pose xt. Given the measurement covariance A, the probability of yt given
xt as presented in [4] is then:

p(yt|xt) ∝ exp

(
−1

2
(yt − xt)

T A−1(yt − xt)

)
(1)

The method also utilizes a differential model. Typically, the sensors onboard an
aircraft measure rotational and translational rates. The pose is recovered through
integration, making it susceptible to drift. The differential model is less affected by
this error. Given D, the covariance of differential measurements, the differential
model as derived in [4] is:

p(�yt|�xt) ∝ exp

(
−1

2
(�yt − �xt)

T D−1(�yt − �xt)

)
(2)

where �yt = yt − yt−1 and �xt = xt − xt−1. As differential measurements are more
accurate than absolute measurements, the covariance matrix D should represent a
Gaussian with smaller standard deviation than A.

The final portion of the model is a representation of the likelihood of a scan.
Rather than representing individual features as states as in traditional SLAM, the
implementation in [4] models the consistency between consecutive scans as:

p(zt|xt, xt−1, zt−1)

∝
∏

i

exp

(
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2
min

[
α, min

j
(zi

t− f (z j
t−1, xt−1, xt))

T B−1(zi
t− f (z j

t−1, xt−1, xt))

])

(3)

The goal of this model is to align points from the current scan with points from
the previous scan. A point in the current scan zi

t is compared to all points from the
previous scan zt−1. The function f maps a point from the previous scan z j

t−1 into the
local coordinate system of the current scan zt. The inner minimization identifies a
point from the previous scan that is closest to the point from the current scan. The
outer minimization thresholds this alignment to allow for local inconsistencies such
as those from sparse objects. The matrix B is the measurement covariance.
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Fig. 2 The sensor was scanned through a mock urban environment (left). Gaussian noise was added
to the pose measurement to simulate data gathered from a helicopter (center). The terrain map was
then reconstructed using the algorithm described (right)

Equations 1, 2 and 3 can be combined to form the probabilistic model for the
entire problem [4]:

p(yt|xt)p(�yt|�xt)p(zt|xt, xt−1, zt−1) (4)

The map and pose are recovered by finding the pose that maximizes this likeli-
hood, or by minimizing the negative log likelihood given by [4]:

const + 1
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T D−1(�yt − �xt)
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t − f (z j
t−1, xt−1, xt))]) (5)

This minimization is found by first minimizing to associate points from the
current scan with those from the previous scan, and then performing hill-climbing
to determine the pose that minimizes the negative log likelihood. These steps can be
iterated until the negative log likelihood falls within a threshold.

This algorithm was tested on a data set gathered inside a mock urban environment.
A test was conducted in which the laser scanner was suspended approximately 2m
above the ground and oriented to face the ground. The sensor was then traversed
through the environment using a robotic gantry. The position of the laser was
measured from the gantry’s encoders. These conditions were well controlled and
the measurements were very accurate, unlike those of a rotorcraft. To simulate noisy
pose measurements from a helicopter, Gaussian noise was added to the position data.
The results are shown in Fig. 2.

As can be seen, the algorithm successfully recovers the terrain map in the form of
a point cloud. The algorithm is able to line up scans and correct the small deviations
between measurements. At the same time, it ignores the large deviations, recognizing
the discontinuity is actually the ledge of a building. Obstacles such as the truck and
cinder blocks are clearly recovered. Even small features are resolved, such as the
ridge in the floor from overlapping floor mats. This terrain map can now be used to
detect a safe landing zone.

2.2 Safe Landing Zone ID

The algorithm presented in [10] provides robust detection of a safe landing zone
based on the input of a point cloud terrain map from a LADAR scanner (Fig. 3).
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Fig. 3 A terrain image is generated from the LADAR point cloud map. A cost map is then calculated
based on the slope of the terrain and the local roughness. The safe landing zone, marked with a cross,
is determined as the lowest cost area that fits the helicopter rotor diameter. a Input map 3D. b Input
map overhead. c Output map. d Slope cost. e Roughness cost. f Total cost

This algorithm parameterizes a safe landing zone based on the slope of the landing
area and the surface roughness. Costs are assigned to the terrain based on these
factors, and the lowest cost area which fits the helicopter rotor is selected. Our
implementation of this algorithm is described below.

Because of the design of the laser scanner, the resulting point cloud is an
irregularly spaced sampling of the scanned surface. A safe landing zone algorithm
that uses this data would be intrinsically complicated and resource intensive. To
simplify the implementation, the point cloud map is first converted into an image
containing regularly spaced pixels. First the size of the grid cells must be determined.
The width of each grid cell, Cw, is based on the angular resolution of the scanner θ

and the average range to the surface R. The total width of the grid, Gw, is based on
the field of view of the scanner f and the average range to the surface. The width of
each cell, the total width of the grid and the total number of cells n is then:

Cw = 2R tan(θ/2) (6)

Gw = 2R tan( f/2) (7)

n = Gw/Cw (8)

The cell height was taken to be the same as the cell width. The total grid height Gh

is determined from the distance traversed in the direction perpendicular to the scan
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plane. This formulation ensures there will not be multiple points per grid cell. After
determining the cell and grid sizing, the (x, y) coordinates of data points in the point
cloud must be transformed to (r, c) coordinates in the grid. This is accomplished using
the relation [10]:

(r, c) = (y/Cw + Gh/2, x/Cw + Gw/2) (9)

The value of each grid cell is based on the z-coordinate of the points. Interpolation
is used to define cells that fall in-between points. The resulting 2D array is analogous
to a grayscale image who’s pixel values correspond to the height of the terrain. This
image is the raw elevation map.

To perform safe landing zone identification, the elevation map is separated into a
surface roughness map and a landing incidence angle map. Both these maps require
that an underlying smoothed surface first be determined. This surface is formed by
fitting square planes the size of the helicopter rotor diameter to the terrain map.
Planes are represented as [10]:

n · x + d = 0 (10)

Where the fitted plane at cell x = (x, y, z) is described by (n, d) = (nx, ny, nz, d).
These planes are fitted with an increment of 1/8 the rotor diameter between planes.
The resolution for the position of the chosen landing zone is therefore 1/8 that of the
helicopter rotor diameter. Smaller increments could be chosen to make this position
more precise. This would come at the cost of processing speed. Due to error in the
accuracy of the helicopter’s pose measurement, the chosen resolution is believed to
be sufficiently accurate.

The landing incidence angle α is calculated using the fitted planes and the geodetic
normal of the surface ng [10]:

α = cos−1(n · ng/ ‖n‖ ∥∥ng
∥∥) (11)

These fitted planes are also used to calculate the smoothed elevation map, where
the smooth elevation zs is given by [10]:

zs = −(nxx + ny + d)/nz (12)

Once the smoothed surface is generated, the roughness map can be determined.
The roughness map R(r, c) is calculated by subtracting the smoothed elevation map
Zs(r, c) from the original elevation map Z (r, c) and taking the mean [10]:

R(r, c) = |Z (r, c) − Zs(r, c)| (13)

A safe landing zone is chosen from a cost map. A cost is calculated for a region
based on a weighted sum of the roughness and the slope. The weightings are chosen
such that areas with a high roughness (and therefore obstacle rich) are avoided first.
The remaining areas are then avoided if the landing incidence angle is too high. These
weights are chosen based on the requirements of the platform.

By applying these algorithms successively, the rotorcraft can generate a map and
locate a place to land. However, it is still unclear how this process will be effected by
environmental conditions. A robust and reliable solution must consider the effect of
obscurants. The performance of these algorithms is directly dependent on the ability
of the sensor to measure the environment. To gain insight into how the algorithms



J Intell Robot Syst (2010) 57:281–295 289

will be effected, the sensor was tested and evaluated to characterize its performance
in smoke.

3 Obscurant Testing and Evaluation

The path for evaluating UAV algorithms developed in the lab is to perform flight
tests. While flight tests are necessary to ensure the validity of the algorithm, unpre-
dictable conditions can often lead to inconclusive results. We choose to gain a full
understanding of the performance of our sensors and algorithms by introducing accli-
ment conditions in a controlled environment. This process of testing and evaluation
gives a clear understanding of how the sensor and algorithms operate. The flight test
is then a verification of the results measured in the lab.

3.1 SISTR

Assessing the performance of the sensor requires a testing facility capable of re-
peatably and controllably simulating realistic environments. SISTR, shown in Fig. 4,
is a National Science Foundation funded UAV testing facility that provides this
capability. SISTR measures 19 ft. x 18 ft. x 20 ft. enclosing a mock urban environment
constructed at full scale with actual materials such as plywood, brick and cinder
blocks. The environment can be augmented and reconfigured with other features
such as poles, wires and trees to test robustness to varying obstacles.

As described in [11], the facility is surrounded by a six degree-of-freedom com-
puter controlled gantry. Using the math model that describes the flight dynamics of
an aircraft, the gantry can be programmed to mimic the flight of a vehicle. Table 1
displays the maximum and minimum velocities achievable by the gantry. While these
velocities do not represent the full range of velocities achievable by UAVs, they

Fig. 4 Systems Integrated
Sensor Test Rig (SISTR).
SISTR provides a stage for
testing and evaluation of
hardware in simulated urban
environments and disaster
scenarios. Effects such as
varied lighting, rain, fog and
smoke can be introduced in a
controlled and repeatable
fashion
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Table 1 SISTR velocities Axis Velocity range

X 0.012–0.61m/s
Y 0.019–0.61m/s
Z 0.021–0.61m/s

do encompass a portion of the operating range for rotorcraft. The position in all
translational axes of the gantry can be controlled to within ±0.5cm.

Sensor packages can be mounted on SISTR and virtually flown through an
environment. Sensor data is collected in real time by the same control algorithms
and software that would be used in flight. The control commands are fed into
a mathematical model of the aircraft, which generates aircraft positions. These
positions are then played back on SISTR.

SISTR is also equipped with testing apparatus to simulate different environmental
conditions. There are some permanent fixtures. Stage lights placed near the top of
the facility can be individually controlled to create varied lighting scenarios. Light-
blocking curtains can be used to create night time conditions. Other environmental
fixtures can be added as needed. A fog generator has been used to simulate
obscurrants. In the past a rain and dust machine [12] were created to simulate more
extreme operating conditions.

3.2 SICK LMS200 Laser Range Finder

The sensor we tested was the SICK LMS200. The LMS200 is a 2D scanning laser
range finder. A beam of laser light is projected onto a rotating mirror. This mirror
deflects the beam, creating a fan of laser light. Any object that breaks this fan reflects
laser light back to the sensor. The distance is calculated based on how long the laser
takes to bounce back to the sensor. The sensor is capable of performing scans at a
rate of up to 75Hz.

The LMS200 utilizes a class I eye-safe laser. The wave length of the laser is 905nm.
According to the manufacturer, the LMS200 has a range of 80m with an accuracy of
±4cm and a 180◦ field of view with .5◦ resolution. This range is software selectable.
The maximum detection distance can be shortened to increase the accuracy of
measurements.

This sensor is very common among robotic ground vehicles, primarily because of
its wide viewing angle and relatively long range. As the research done in [4] and
[5] suggests, the detection range is well suited for rotorcraft operating in near-Earth
environments. One major drawback to implementing this sensor on a rotorcraft is its
size and weight. The LMS200 is 156 × 155 × 210mm and 4.5kg, the majority of the
weight coming from the ruggedized steel encasing.

From research in ground vehicles documented in [13] and [14], the SICK laser
sensors are susceptible to airborne particulate matter such as dust. Using SISTR, we
sought to quantify these effects.

3.3 Obscurant Characterization

One unique quality of SISTR is its ability to simulate weather conditions and other
disturbances. With test rigs constructed inside the facility, sunlight, rain, fog and
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other effects can be generated in a controlled, repeatable manner. Testing conditions
and standards were determined using the US military guidelines for all weather
performance outlined in [15]. All military vehicles are held to these standards,
including UAVs.

Military standards acknowledge that smoke, fog and similar environmental factors
can affect electro-optical systems. However, the standards fall short of defining
requirements for these factors as these conditions are difficult to quantify. In this
paper the amount of smoke is qualitatively asserted based on the “visibility” through
the smoke. This is given as the distance that objects can be seen through the smoke.

The smoke was simulated using Superior Signal Company #3C smoke candles.
These smoke candles issue 40,000 cubic feet of smoke over 3 minutes. The substance
is actually a zinc-chloride mist, which is not the same content as naturally occurring
smoke. However, as suggested in [1], particle size plays a major role in dispersing
light. It is therefore assumed that the principle effect was still effectively modeled by
this substance. This infrastructure provides a solid basis for determining the sensor
model in the presence of obscurants.

To characterize the sensor, a sheet of white paper was placed 3m from the sensor
aligned at 90◦ (in the middle of the sensing range). 500 data points were recorded
and the resulting histogram plotted. Characterization was performed both with and
without smoke.

For the smoke test, part of one of the smoke candles was used. Since the testing
volume measured only 6,840 cubic feet, roughly 20% of the smoke candle material
was extracted and ignited. After some dissipation, this produced smoke with a
visibility of approximately 15m. The testing environment with and without smoke
is shown in Fig. 5.

Fig. 5 To characterize the
SICK LMS200, the sensor was
placed inside the testing
environment and pointed
toward a white sheet of paper
placed 3m away. 500 data
points were recorded without
smoke (top) and in smoke with
a visibility of approx. 15m
(bottom)
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Fig. 6 Histogram of
characterization tests
performed with and without
smoke. Without smoke the
measurements are normally
distributed around 300.05cm
with a standard deviation of
1.11cm. When smoke is
introduced, the distribution
shifts far to the left and the
deviation increases, showing
that smoke blinds the sensor

The resulting histogram is shown in Fig. 6. Without smoke the sensor measure-
ments are normally distributed about the correct distance of 3m. The mean of these
measurements was 300.05cm with a standard deviation of 1.11cm. When smoke was
introduced, the distribution shifted far to the left. Measurements in smoke had a
mean of 96.5cm with a standard deviation of 3.63cm.

These results show that the LMS200 is blinded when the volume of its scanning
area is filled with smoke. These results are consistent with qualitative assessments
expressed from field tests of the sensor. The tests performed in the lab removed
effects such as distribution from wind and rotor down wash, undeniably confirming
that the sensor can not see through smoke. This information could now be used to
interpret results of field testing the sensor.

4 Platform

Verification and validation of these test results was performed with a Rotomotion
SR100 electric UAV helicopter, shown in Fig. 7. The SR100 is sold as a fully robotic
helicopter capable of performing autonomous take off, landing, and GPS waypoint
navigation when controlled from a laptop base station. Control from the base station
to the helicopter is routed through an 802.11 wireless network adapter.

The SR100 has a rotor diameter of 2m allowing it to carry a payload of up to 8kg.
For these experiments, we outfitted the helicopter with custom landing gear, a custom
camera pan/tilt unit, the SICK LMS200, a serial to Ethernet converter, and two 12V
batteries for payload power. In total we added approximately 7kg of payload. This
greatly reduces the flight time, which is up to 45 min without a payload.

The biggest attraction of this platform, however, is the fact that it is already
outfitted with all of the necessary sensors to calculate its pose. Gyros, an inertial
measurement unit, and a magnetometer provide the craft’s attitude and heading.
This information is fused with a Novatel GPS system to provide position data. The
position is reported as Cartesian coordinates relative to a global frame, who’s origin
is at the location where the helicopter was activated.
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Fig. 7 The SR100 robotic
helicopter from Rotomotion,
Inc. The SR100 is sold as a
fully robotic package capable
of automated take off, landing,
and GPS waypoint following

With the pose information already calculated, this platform enables mapping and
landing zone identification using the algorithms described earlier.

5 Experimental Results

To determine the feasibility of performing mapping and safe landing zone identifica-
tion in the presence of obscurants, verification and validation of the SISTR tests was
performed. These tests were conducted at the research facility of Piasecki Aircraft. A

Fig. 8 The LMS200 was attached to the bottom of the SR100 helicopter and flown over smoke.
Results showed that the LMS200 reflected off of the smoke, but was still able to locate flat terrain to
land
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location was found which contained a desirable landing area surrounded by cluttered
terrain. The testing area used was a paved area surrounded by bushes and under-
brush.

The helicopter was flown from a remote location, over the cluttered terrain, and
into the desirable landing area. Simple software was written which evaluated the
area directly beneath the helicopter to determine if it was flat. When the area was
flat enough for the helicopter to land, the software displayed the scan as being green.

An initial test was conducted in the absence of smoke. During this test, the
helicopter successfully identified the desirable landing area. Next, a smoke candle
was placed in the desirable landing area and ignited. The test was repeated, this time
with smoke obscuring the landing area. The results are depicted in Fig. 8.

As can be seen in the figure, the software successfully identified a flat region
amongst the obscured area. However, the right side of the scan shows a detected
obstacle depicted as a non flat region. Tests conducted in the lab confirmed that the
sensor reflects off of smoke. It is therefore concluded that down wash exposed part
of the obscured area, while the laser reflected off of the denser smoke.

6 Conclusions and Future Work

The results from the flight tests showed that the sensor detected a flat region amongst
a smoke obscured area. Since previous tests inside a controlled environment proved
that the sensor cannot see through smoke, it can be concluded that part of the
obscured area was dispersed by down wash. This conclusion is further supported by
video from the on board camera which suggests that there was smoke beneath the
helicopter when a flat region was detected.

Now that the effect of smoke has been characterized and observed in the real
world, we would like to incorporate these considerations into the algorithms outlined
earlier. The mapping algorithm contains probabilistic models for both the pose
sensors and the laser. The model of the sensor obtained from the characterization
tests could be incorporated into this algorithm. If the helicopter is known to be flying
over an obscured area, this model could be changed to match the conditions that the
helicopter is operating in.

Furthermore, filters could be applied to the sensor data to remove noise from
smoke or dust. This implementation could be augmented by providing the helicopter
with existing terrain maps. In this scenario, laser scans gathered by the helicopter
could be compared to the previously acquired terrain maps. The difference in infor-
mation could be used to identify discrepancies in the two data sets. New obstacles
that were introduced to the terrain such as cars and trucks would consistently appear
in the helicopter scans. Noise from smoke or dust would appear inconsistent, and
could then be filtered out.

However, the most plausible solution to this problem is to pair the LMS200 with
a sensor that as capable of penetrating smoke. Previous work has shown us that
sonar performs much better in the presence of airborne obscurants. If sonar is paired
with the laser range finder, when the helicopter enters obscured conditions, more
emphasis could be placed on the sonar data. We are currently in the process of
investigating these avenues to create a sensor suite capable of navigating a helicopter
in obscured conditions.
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This paper showed how a cohesive design process of testing and evaluating
followed by verification and validation can remove ambiguities in field testing
robotic sensor suites. The lessons learned from these tests can be extended to many
different sensor types and environmental effects. This framework provides a solid
basis for developing UAV sensor suites and sensing algorithms, thereby decreasing
developing time and reducing risks in field tests.
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