
2012 12th International Conference on Control, Automation and Systems
Oct. 17-21, 2012 in ICC, Jeju Island, Korea

A n-dimensional Convex Hull Approach for Fault Detection and Mitigation for
High Degree of Freedom Robots Humanoid Robots

Kevin Lynch1, Daniel M. Lofaro2 and Paul Oh3

1Department of Computer Science,
2Department of Electrical and Computer Engineering,

3Department of Mechanical Engineering,
Drexel University, Philadelphia, PA, USA

kml43@cs.drexel.edu, dml46@drexel.edu, paul@coe.drexel.edu

Abstract: This work shows a plan for error state determination, diagnosis, and mitigation using autonomic computing
tools and tecniques on the Hubo robot. An n-dimensional geometric enclosure is constructed from periodic measurements
of the robot’s normal operating state. Similar hulls will be constructed for unique faults encountered during runtime. A
mapping of these faults to applicable mitigations will be dynamically constructed and will aid in mitigation selection. The
successful application of the mitigation will bring the robot back to a safe operating state.

Keywords: Humanoid Robotics, Fault Detection, Error Mitigation, n-dimensional Convex Hull

1. INTRODUCTION

April 27th, 2010 - Philadelphia Convention Center

(Main Hall): The robot handlers Daniel M. Lofaro and
Robert Ellenberg were preparing the adult-size humanoid
robot Jaemi Hubo1 at an outreach demonstration for the
Arts & Science Council of Philadelphia. During the dress
rehearsal one of Jaemi’s actuators failed while preform-
ing an active balancing demonstration. This resulted
in Jaemi Hubo falling off the 4 foot high stage. The
results of the impact can be found in Fig. 1 and on
YouTube2. This annual event was a high profile fund
raiser for the arts and science programs throughout the
greater Philadelphia area and was covered widely by the
media. If this failure would have occurred during the ac-
tual event the aftermath would have been even more dev-
astating. Jaemi Hubo was repaired in full by Lofaro, El-
lenberg and the rest of the Drexel Autonomous Systems
Lab (DASL) within 50 days of the accident, see Fig. 2.
However in order for outreach events like this to success-
fully continue, methods for detecting failure states and
quickly choosing appropriate mitigations must be devel-
oped.

All electro-mechanical systems have an inherent
mean-time to failure. Even with good maintenance these
systems can fail without warning. This work proposes
ways to detect when entering a failure state and ways of
mitigating such failures. A failure state is defined as the
operating conditions where the robot is unable to safely
preform tasks. This includes, but is not limited to, actu-
ator faults and failures, loss of balance, power loss, etc.
Faults are defined as the failure (intermittent or perpetual)

*This project was supported by the Drexel Autonomous Systems Lab
(DASL) and by a National Science Foundation - Partnerships for Inter-
national Research and Education grant (#0730206).
*Hubo was designed and created by our partner Dr. Jun-Ho Oh, Depart-
ment of Mechanical Engineering, Korean Advanced Institute of Science
and Technology, Daejeon, South Korea.
1Jaemi Hubo Home Page: http://dasl.mem.drexel.edu/HUBO
2Jaemi Hubo Fall: http://www.youtube.com/watch?v=DF8zAM4FLB4

Fig. 1 - Aftermath of the 4 foot fall Jaemi Hubo took
after one of her actuators failed during operation. A
video with more images of the aftermath of the failure
and further explanation of the event can be seen on
YouTube1.

in a single part of the robot. A single fault does not mean
a system failure in all cases. The adult-size humanoid
robots Hubo2+ and Jaemi Hubo (KHR-4) are the primary
test platforms for this proposed work. All methods used
are written in a broad scope so it can be applicable to
other electro-mechanical systems.

Faults are difficult to detect before an executing system
reaches a point of failure, as the first symptom of a fault is
often system failure itself. While it is unrealistic to expect
complex systems to be fault-free, actions such as resetting
the system, quarantining specific components, or mini-
mizing damage from the fault can be taken. Autonomic
systems, an extension of fault tolerant systems, attempt to
detect, diagnose, and mitigate faults quickly. These sys-
tems are inspired by the autonomic nervous system in the
human body that monitors and regulates vital functions of
the body such as heart rate, respiration rate, and digestion.
Similarly, an autonomic computer system is able to mon-
itor itself and its environment and automatically adapt to

790

bhlee
입력 텍스트
978-89-93215-04-5 95560/12/$15 ⓒICROS

complex changes. The goal of autonomic computing is
to specify the desired state of a system using high-level
objectives without detailing how to arrive at the state [1],
[2], [3]. By making intelligent decisions, autonomic sys-
tems free system administrators from low-level manage-
ment and the intricacies of complex systems. Autonomic
systems aim to be self-configuring, self-optimizing, self-
healing, and self-protecting. These properties, collec-
tively referred to as the self-* properties, are different
views of the same self-management property. For in-
stance, a self-protecting system is ideally healing itself
from faults while optimizing and reconfiguring itself to
prevent other faults from reoccurring.

In this work Section 3.2 outlines the authors plan to
use their bleeding-edge software engineering failure state
detection techniques on the complex electro-mechanical
system Jaemi Hubo. Section 3.3 describes the system
faults used to determine failure states and how these faults
are injected into the system in a controlled environment.
Finally Section 3.4 shows how to define proper mitigation
techniques for a give failure state and Section 4. describes
our expected results.

Fig. 2 Jaemi Hubo 50 days after the fall at the Philadel-
phia Convention Center. Jaemi Hubo is once again
in full operational order. She was fixed solely by
the students at the Drexel Autonomous Systems Lab
(DASL). This demonstrates the successful transfer of
tribal knowledge of the Hubo platform from the Hubo
Lab at KAIST to the Drexel Autonomous Systems
Lab at Drexel University.

2. BACKGROUND
The technique proposed in this work borrows from

the bleeding edge work in autonomic software engineer-
ing and computing. The heart of autonomic computing
is anomaly detection, diagnosis, and mitigation. Auto-
nomic systems perform 4 general tasks in a continuous

Autonomic Manager

Monitor

Analyze

Execute

Plan

Knowledge

Managed Element

Sensors Effectors

Fig. 3 - An autonomic element uses the MAPE control
loop to monitor a component, analyze the its status
with respect to a policy, plan how to meet the policy
requirements, and execute a set of actions to do so.

closed loop: monitor components with the help of sen-
sors, interpret the monitored data, create a repair plan for
system adaptation, and execute this plan through effec-
tors on the monitored system and its environment. This
is the MAPE (Monitor, Analyze, Plan, Execute) loop [1].
Fig. 3 illustrates how an autonomic element uses this loop
to manage a component.

Autonomic approaches can be applied to many dif-
ferent types of systems, particularly when focusing on
fault detection and mitigation. self-healing opearting sys-
tems [4], [5] protect against bit-flips and other transient
hardware faults, and are able to hot-swap components
or firmware during runtime. At the application level, it
is possible to monitor the architecture requirements of a
system and detect when an architectural property (e.g. re-
quired connection bandwidth) falls outside of an accept-
able threshold [6]. If an invariant is violated, it executes
a strategy specifically designed to correct the violated in-
variant. The strategies can reinitialize components and
reconfigure the system to recover from the violation and
attempt to prevent the violation from reoccurring. How-
ever, the applied strategies are ad hoc solutions, requiring
developers and maintainers to understand and preempt
the shortcomings of the system, in much the same way
they would manually debug and repair the system.

2.1 Fault Detection and Diagnosis
Previous approaches to the detection of software faults

fall into two categories, signature-based and anomaly-
based [7]. Signature-based methods detect faults by
matching measurements to known fault signatures. These
techniques are used in static fault-checking software such
as the commercial antivirus software McAfee [8] and
Symantec [9], as well as network intrusion detection
systems such as Snort [10] and Netstat [11]. These

791

Metric A

M
et

ric
 B

Fault Class X
Fault Class Y
Fault Class Z

Metric A

M
et

ric
 B

Fault Class X
Fault Class Y
Fault Class Z

(a) (b)

Fig. 4 - Building convex hulls for the diagnosis of
faults (a) sample points from normal operation and
two fault classes (b) Points inside of the convex hulls
are diagnosed as normal or one of the fault classes.
Points outside of all hulls are diagnosed as unknown
faults.

techniques can also be used to detect recurring runtime
faults [12].

Typically, anomaly-detection techniques begin by col-
lecting sensor measurements of a normally behaving sys-
tem. Then, they construct a representation of the mon-
itored system and compare any future measurements
against that representation. A common approach is to
use metric correlations to quantify a monitored system.
During detection, if the correlations between metrics be-
comes significantly different from the learned correla-
tions, the system is classified to be in a faulty state [13],
[14], [15], [16].

Once a fault is detected, it must be correctly diag-
nosed. Bayesian Network classifiers have been applied in
several previous approaches to diagnosis using. Ghanbari
et al. propose an approach to anomaly diagnosis based on
Bayesian networks that are wholly or partially specified
by a human user [17]. Tree augmented naive bayesian
classifiers are the basis for software failure diagnosis in
work by Cohen et al. [15]. Zhang et al. use ensem-
bles of tree augmented naive Bayesian classifiers to di-
agnose faults. [18]. Other classification techniques have
been used to diagnose software faults. Chen et al. of-
fer an approach to the diagnosis of failures in large-scale
Internet service systems using decision trees [19]. Duan
et al. [20] propose an approach to diagnosis of software
failures that uses active learning to minimize the number
of data points that a human administrator must label.

In previous work it has been demonstrated that com-
putational geometry can be used to effectively detect sys-
tem faults at runtime[21], [22]. The approach, introduced
in the work as Aniketos, is split into a training phase,
and a monitoring phase. During the training phase, the
monitored system executes its normal behavior and run-
time data is periodically collected from sensors monitor-
ing the application, the operating system, and the hard-
ware. Using these measurements, we can construct an
n-dimensional convex hull whose enclosing space repre-
sents the normal execution of the monitored application,
where n is the number of distinct metrics used. Figure 4
shows an example of a 2-dimensional convex hull.

During the monitoring phase, if a measurement point
falls outside of this enclosure, a fault is likely to have oc-
curred. To properly mitigate the fault, the problem must
be diagnosed [23] and a viable mitigation selected. If

measurement data is available for a set of known faults,
then it is possible to construct hulls for individual faults,
or classes of faults. During the monitoring phase, if a
measurement falls within one of these fault hulls we can
determine which fault is likely occurring and apply a mit-
igation.This approach is also capable of recognizing that
an occurring fault is not a type of fault that it has been
trained to recognize. Typical classification techniques,
such as naive Bayes and voting feature intervals[24], re-
quire that every sample be assigned a class from a finite
list of possible classes, which can cause drastic conse-
quences if an incorrect mitigation is selected. Our ap-
proach allows Aniketos to recognize that a fault has oc-
curred, but does not force Aniketos to label the fault as
one of the faults that it has been trained to recognize. One
of the most important features of a fault detection and di-
agnosis system is the ability to handle new faults.

Fig. 5 Jaemi Hubo: 130cm tall 45kg (with battery and
protective shell) 40 degree of freedom, high gain po-
sition controlled adult-size humanoid robot

2.2 Fault Mitigation
Once a fault is detected and diagnosed a mitigation can

be applied in an attempt to bring the system back to a nor-
mal operating state. To select the most appropriate miti-
gation to execute, mitigations must be evaluated based on
their performance cost, impact on the system, reliability,
and how they affect other mitigations locally as well as
in the global environment. Given a set of faults and a set
of mitigations, it is possible to intuitively and empirically
determine the best possible mitigation for a given fault.
However, it is impossible to plan for all possible fault
scenarios, limiting the effectiveness of mitigation selec-
tion.

Generally, when a fault is encountered there are sev-
eral approaches that can be taken. Reinitialization brings
the whole system, or part of the system, to its initial state
when a fault is detected. If a fault can be localized, it
is possible to progressively microreboot larger portions
of the system until the problem is resolved, starting with
the most localized component [25]. A generalization of
reinitialization, known as rollback, restores the system to
a previous checkpoint, undoing any environment changes

792

that may have been made [26]. While this approach may
not always be feasible, in some cases, simply undoing the
failing operation may be sufficient. Often times, the sys-
tem needs to be reconfigured to adapt to changes in the
system’s environment. This can be done by tuning com-
ponent parameters, scaling components, replacing com-
ponents, or removing components entirely. Finally, in
certain cases, it may be best to just accept the fault and
continue without mitigation.

It is important to understand that each of these ap-
proaches could have potentially disastrous consequences
on a given system. Different systems have different ob-
jectives and costs risks associated with it. Similarly, each
mitigation has execution costs and risks associated with
it. It is possible for a selected mitigation to cause more
faults, or increased downtime. If an incorrect mitigation
is applied, a cascading effect could quickly emerge.

2.3 Humanoid Robot Fault Mitigation
A typical fault for articulated robots is actuator fail-

ure. Upon failure there is no more power applied to
the joint and the entire limb becomes under-actuated.
This is particularly hazardous to robots that require feed-
back to balance such as biped humanoid robots. For
biped humanoids these errors typically caused actuator
over torque or hardware error resulting in loss of zero-
moment-point (ZMP) [27] causing a robot fall or col-
lapse. This is exceptionally harmful to adult size hu-
manoid robots due to their weight. A common mitigation
method described by Shin, J. et al.[28] from the Korean
Advanced Institute of Science and Technology (KAIST)
changes the model of the affected manipulator to one that
is under-actuated. This new model allows the robust con-
troller to continue to operate collision free (safe).

Current methods of mitigation of ZMP loss for biped
humanoids been investigated by Kiyoshi Fujiwara et al.
[29]. These methods involve finding an optimal falling
trajectory that reduces the instantaneous force of the
robot at impact by creating multiple impact stages[30].
This method was fully tested on an HRP-2FX (HRP-2P
surrogate) and partially on an HRP-2P. This work did not
include a method of determining a falling state, it is as-
sumed that a fall is in progress. Additional work on de-
tecting a fall and reducing fall damage has been shown by
Kunihiro Ogata et al.[31]. An active shock-reducing mo-
tion reduces the impact damage by following the center
of gravity (COG) and attempting to keep it close to the
ZMP support polygon. The falling state is determined
when the predicted ZMP departs from the support poly-
gon. This method was tested on a miniature humanoid
robot. Additional work on determining a fall state using
machine learning techniques[32]. Reimund Renner et al.
used parameter estimation of multiple sensors to detect a
falling state[33].

3. METHODOLOGY

Our proposed process is divided up into two distinct
parts, failure state determination (Section3.2) and mitiga-

tion (Section3.4). The determination techniques are de-
signed to be wide in scope. The mitigation techniques are
tailored towards adult-size humanoid robots, specifically
the Hubo platforms described in Section 3.1.

3.1 Platform
The robots that will be used in these experiments are

the adult-size humanoid robots Jaemi Hubo and Hubo2+,
see Fig. 5. Each Hubo contains 40 degrees of freedom
(DOF) and stands at a height of 130cm. Each actuator
has a high gain internal PID position control loop. Ref-
erence positions are commanded at 100hz over a half-
duplex 1.0Mbps controlled area network (CAN). Each
actuator can feed back actual position, current through
the actuator, and the actuator status (enabled or disabled).
Other metrics that are fed back are described in Table 1
and Table 2.

Currently we have direct access to seven Hubo’s in to-
tal, six Hubo2+ and one Hubo2 (Jaemi Hubo). Two of
these robots will be used in these experiments for ini-
tial testing. Access to this common platform (Hubo) al-
lows us to verify results with minimal mechatronic dif-
ferences. This is the driving goal behind the NSF-MIR2
(Grant Number CNS-0960061) through which the Hubo
platforms were procured.

3.2 Failure State Determination
To accurately detect when a fault is occurring in the

Hubo robots, the Aniketos system requires an under-
standing of each robot’s normal state. This normal state
is constructed from a variety of safe routines that exercise
the different features of the robots individually and simul-
taneously. If a fault is triggered during training, then any
subsequent time the fault manifests, it will be presumed
to be safe. If these routines do not exercise all features of
the robots, then it is possible that a mitigation will be trig-
gered when no fault is occurring. To construct the state,
Aniketos collects data from all available sensors, treat-
ing each set of measurements as a point in n-dimensional
space. Aniketos uses an online algorithm to construct the
enclosing n-dimensional convex hull around these points
as each each data point arrives.

During the monitoring phase, a new measurement
point x is a member of the convex set X = {x1, . . . , xk}
if

x =
k∑

i=1

λixi (1)

In order to satisfy the convex hull criteria

λi ≥ 0 (2)

and

k∑

i=1

λi = 1 (3)

793

Table 1 - Actuator metrics analyzed for convex hull creation

Metric Type Status/Measurement
Over Current Actuator Status flag - motor controller has been shutdown due to over current
Status Actuator Status flag - motor controller’s internal PID control loop is activated
Zeroed Actuator Status flag - motor controller has been zeroed
Responding Actuator Response - Responds if the motor controller is communicating properly
Commanded Position Actuator Reference position given to motor controller.
Measured Position Actuator Actual position of motor
Position Error Actuator Position error between commanded and measured position of the actuator
Current Actuator Current used by the given actuator

This can be solved using a nonnegative linear least
squares algorithm[34]. If a feasible solution exists, then
the point is contained in the convex set. The time needed
to classify a single measurement point is dependent on
the number of dimensions and the number of points
needed to define the hull.

Aniketos determines that a fault is occurring when the
current system state is outside of the normal state. To
diagnose that a specific is occurring fault hulls must be
created for each known possible fault. This fault data is
collected in a fashion similar to the normal state, except
the fault must be triggered in a controlled environment.
Section 3.3 describes the faults that will be studied and
how these faults are injected into the system in a lab set-
ting.

Once all of the hulls are constructed, the monitoring
phase will analyze each measurement point and deter-
mine whether the robot is operating normally. If it is not,
Aniketos will attempt to determine if a known fault is oc-
curring, or if an unknown fault is occurring. Typically, it
takes less than 100ms to classify a point using 25 dimen-
sions and a hull that is constructed from 10000 points
using a single threaded 2.4Ghz x86 computer. To better
meet the real-time data rate, algorithms may be used to
reduce the number of points, and more efficient algorithm
implements can be used to reduce the processing time. If
a fault is detected, an appropriate mitigation should be
selected and applied.

3.3 Fault Injection
Faults will be injected to the Hubo system in a lab set-

ting. Each fault will be injected on eight separate trials
to ensure statistically significant results. During each test
system metrics are be recorded at a rate of 100hz for the
entirety of the test. Table 1 and Table 2 describes each
of the metrics recorded. Each test will consist of two
stages. The first stage lasts 30 seconds. In this stage the
robot is standing or walking (depending on the test) in
a stable fault and failure free state. The given fault is in-
jected at 30 seconds. This marks the beginning of the sec-
ond stage. The second stage will last two minutes or 30
seconds after instability has occurred, which ever comes
first.

The faults that will be injected are actuator failure and
ZMP loss. Actuator failures will be created by:
• Removing power to actuator during operation (Actua-
tor will no longer respond)

• Removing power to motor during operation (Actuator
will respond but the motor has no power)
• Lowering the over current threshold within the actuator
causing an over current shutdown.
ZMP loss will be tested by:
• Known impulse (push) applied to shoulder in the x and
y directions.
• Step onto un-even terrain.
• Sudden ground shift in x and y direction (treadmill
turned on then off)

To ensure no physical harm to the robot during testing,
All test will be preformed in the full-scale safe testing
environment designed for experiments with Jaemi Hubo
created using DASLs Systems Integrated Sensor Test Rig
(SISTR)[35].

A n-dimensional convex hull for the normal operating
state and each of the injected fault states will be created
using the above data using the methods described in Sec-
tion 3.2.

3.4 Mitigation Analysis
The effectiveness of different mitigations has been an-

alyzed on faults injected into two different software sys-
tems typically used as benchmark applications in the
software engineering community, RUBiS3 and Hadoop4.
RUBiS is a web application auction site running on the
Apache Tomcat5 web server and serves page requests to
hundreds of concurrently simulated clients. Hadoop is a
distributed task manager that processes gigabytes of data
across multiple nodes. We injected faults into both sys-
tems, the virtual machines they are running on, as well
as the hosts managing the virtual machines. The faults
consumed either processor, memory, disk, database, or
network resources in the respective components. We ap-
plied generic mitigations that restarted various compo-
nents, migrated the components to new hosts or virtual
machines, or did nothing. The effectiveness of each fault-
mitigation pair was analyzed on each system to generate
a mapping of faults to mitigations. Using this knowledge,
if a fault is later encountered, the best mitigation can be
applied with a high chance of success. If a particular mit-
igation cannot be applied in that instance, then the next
best mitigation may be selected, and so forth.

3http://rubis.ow2.org/
4http://hadoop.apache.org/
5http://tomcat.apache.org/

794

Table 2 - Sensor and kinematic metrics analyzed for convex hull creation

Metric Type Status/Measurement
Orientation (CG) Sensor Orientation in 3-DOF given by the IMU
Force Torque (feet) Sensor Force-torque measurement in X,Y, and Z directions on each ankle
Force Torque (hands) Sensor Force-torque measurement in X,Y, and Z directions on each wrist
Orientation (feet) Sensor 2-DOF orientation (X,Y) of each of the feet
ZMP Location Kinematics Current ZMP location in (X,Y,Z)

A naive observer would expect the two systems to have
nearly identical fault-mitigation mappings. However, in
our testing on software based systems the generated map-
pings varied greatly in the effectiveness of the mitigations
on a particular fault. RUBiS is a typical web applica-
tion that receives requests from clients and processes re-
sults returned from a database. Little processing is being
done by RUBiS or its host machine, so even though a
processor intensive fault may be using up many cycles
in the process or the host, there is no noticeable effect
on the request processing rate. As a result, any mitiga-
tion applied would result in more down time than if no
mitigation were to be applied. Unlike RUBiS, Hadoop
is much more processor intensive. Any host level fault
that is slowing down the system will adversely affect the
completion time for the task. Another major difference
is that RUBiS, like many other request driven systems,
can easily be restarted to temporarily address fault symp-
toms, while restarting Hadoop typically means losing al-
ready processed results. We expect similar results when
applying this method to the complex electro-mechanical
platforms Jaemi Hubo/Hubo2+.

The generated fault-mitigation mappings for the lat-
ter two software systems offer insight into their respec-
tive natures. On the surface, both software systems op-
erate like typical servers, waiting for requests or tasks,
and processing them in a timely fashion. However, the
way the requests are handled results in faults manifesting
in different ways. Even though a fault may be detected,
the obvious mitigation is not always the best. This ap-
proach to mitigation analysis, will offer valuable insight
into the true effectiveness of mitigations when faults oc-
cur in Hubo.

3.5 Hubo Mitigations
As in the software case studies, no single mitigation

will correct all faults. The effect of each mitigation on a
specific fault should be analyzed based on execution time,
effectiveness (time to next fault), and risk of damage to
the system.

4. EXPECTED RESULTS

It is expected that the recorded metrics will converge
and give us a well defined convex hull for normal oper-
ating state. Failure states such as ZMP loss or actuator
over current is also expected to create a well defined hull
due to it’s tight correlation with the kinematics and sensor
data. Failures that are not tightly correlated other metrics,
such as actuator zero or actuator status, are not expected

to form a well defined hull. Similar to the software sys-
tem it is expected that the mitigation methods will very
from platform to platform despite having the same faults
present.

5. CONCLUSION
Through the failure at the Philadelphia Convention

Center it has been shown that there is a need for fault
state detection and mitigation. It has been shown that
Aniketos system is capable of creating an n-dimensional
convex hull describing proper running states and failure
states on software system. A plan has been described to
apply Aniketos to a physical platform which included in-
jecting faults into the physical system and creating the
convex hull from the recorded sensor and state data. The
expected results are described in Section 4. and are based
on the results from the software testing.

REFERENCES
[1] J. Kephart and D. Chess, “The vision of autonomic

computing,” Computer, vol. 36, no. 1, pp. 41–50,
Jan 2003.

[2] J. O. Kephart and R. Das, “Achieving self-
management via utility functions,” Internet Com-

puting, IEEE, vol. 11, no. 1, pp. 40–48, Jan.-Feb.
2007.

[3] S. White, J. Hanson, I. Whalley, D. Chess, and
J. Kephart, “An architectural approach to autonomic
computing,” in Autonomic Computing, 2004. Pro-

ceedings. International Conference on, May 2004,
pp. 2–9.

[4] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wis-
niewski, D. D. Silva, O. Krieger, M. A. Auslander,
D. Edelsohn, B. Gamsa, G. R. Ganger, P. E. McKen-
ney, M. Ostrowski, B. S. Rosenburg, M. Stumm,
and J. Xenidis, “Enabling autonomic behavior in
systems software with hot swapping,” IBM Systems

Journal, vol. 42, no. 1, pp. 60–76, 2003.
[5] F. David and R. Campbell, “Building a self-healing

operating system,” in Dependable, Autonomic and

Secure Computing, 2007. DASC 2007. Third IEEE

International Symposium on, Sept. 2007, pp. 3–10.
[6] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl,

and P. Steenkiste, “Rainbow: Architecture-based
self adaptation with reusable infrastructure,” IEEE

Computer, vol. 37, no. 10, October 2004.
[7] Al-Nashif, Y. and Kumar, A.A. and Hariri, S. and

Luo, Y. and Szidarovsky, F. and Qu, G., “Multi-
Level Intrusion Detection System (ML-IDS),” in

795

Autonomic Computing, 2008. ICAC’08. Interna-

tional Conference on, 2008, pp. 131–140.
[8] McAfee, “McAfee-Antivirus Software

and Intrusion Prevension Solutions,”
http://www.mcafee.com/us/.

[9] Symantec, “Symantec - AntiVirus, Anti-Spyware,
Endpoint Security, Backup, Storage Solutions,”
http://www.mcafee.com/us/.

[10] M. Roesch, “Snort - lightweight intrusion detec-
tion for networks,” in LISA ’99: Proceedings of the

13th USENIX conference on System administration.
Berkeley, CA, USA: USENIX Association, 1999,
pp. 229–238.

[11] G. Vigna and R. A. Kemmerer, “Netstat: a network-
based intrusion detection system,” J. Comput. Se-

cur., vol. 7, no. 1, pp. 37–71, 1999.
[12] M. Brodie, S. Ma, G. Lohman, L. Mignet, M. Wild-

ing, J. Champlin, and P. Sohn, “Quickly finding
known software problems via automated symptom
matching,” in Autonomic Computing, 2005. ICAC

2005. Proceedings. Second International Confer-

ence on, June 2005, pp. 101–110.
[13] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira,

“Tracking probabilistic correlation of monitoring
data for fault detection in complex systems,” in De-

pendable Systems and Networks, 2006. DSN 2006.

International Conference on, June 2006, pp. 259–
268.

[14] Y. Zhao, Y. Tan, Z. Gong, X. Gu, and M. Wamboldt,
“Self-correlating predictive information tracking
for large-scale production systems,” in ICAC ’09:

Proceedings of the 6th international conference on

Autonomic computing. New York, NY, USA:
ACM, 2009, pp. 33–42.

[15] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and
J. S. Chase, “Correlating instrumentation data to
system states: a building block for automated di-
agnosis and control,” in OSDI’04: Proceedings of

the 6th conference on Symposium on Opearting Sys-

tems Design & Implementation. Berkeley, CA,
USA: USENIX Association, 2004, pp. 16–16.

[16] M. Jiang, M. A. Munawar, T. Reidemeister, and
P. A. Ward, “System monitoring with metric-
correlation models: problems and solutions,” in
ICAC ’09: Proceedings of the 6th international con-

ference on Autonomic computing. New York, NY,
USA: ACM, 2009, pp. 13–22.

[17] S. Ghanbari and C. Amza, “Semantic-driven model
composition for accurate anomaly diagnosis,” in
Autonomic Computing, 2008. ICAC ’08. Interna-

tional Conference on, June 2008, pp. 35–44.
[18] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and

A. Fox, “Ensembles of models for automated diag-
nosis of system performance problems,” Depend-

able Systems and Networks, International Confer-

ence on, vol. 0, pp. 644–653, 2005.
[19] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan,

and E. Brewer, “Failure diagnosis using decision

trees,” Autonomic Computing, International Con-

ference on, vol. 0, pp. 36–43, 2004.
[20] S. Duan and S. Babu, “Guided problem diagnosis

through active learning,” in Autonomic Computing,

2008. ICAC ’08. International Conference on, June
2008, pp. 45–54.

[21] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and
S. Mancoridis, “On the use of computational geom-
etry to detect software faults at runtime,” in Pro-

ceeding of the 7th international conference on Au-

tonomic computing. ACM, 2010, pp. 109–118.
[22] M. Shevertalov, K. Lynch, E. Stehle, C. Rorres, and

S. Mancoridis, “Using search methods for selecting
and combining software sensors to improve fault
detection in autonomic systems,” in Search Based

Software Engineering (SSBSE), 2010 Second Inter-

national Symposium on. IEEE, 2010, pp. 120–129.
[23] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and

S. Mancoridis, “Diagnosis of software failures us-
ing computational geometry,” in Automated Soft-

ware Engineering (ASE), 2011 26th IEEE/ACM In-

ternational Conference on, nov. 2011, pp. 496 –499.
[24] G. Demiroz and A. Guvenir, “Classification by vot-

ing feature intervals,” in 9th European Conference

on Machine Learning. Springer, 1997, pp. 85–92.
[25] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman,

and A. Fox, “Microreboot — a technique for cheap
recovery,” in OSDI’04: Proceedings of the 6th con-

ference on Symposium on Opearting Systems De-

sign & Implementation. Berkeley, CA, USA:
USENIX Association, 2004, pp. 3–3.

[26] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx:
Treating Bugs As Allergies—A Safe Method to Sur-
vive Software Failures,” in SOSP ’05: Proceedings

of the twentieth ACM symposium on Operating sys-

tems principles. New York, NY, USA: ACM, 2005,
pp. 235–248.

[27] M. Vukobratovic and B. Borovac, “Zero-moment
point - thirty five years of its life,” I. J. Humanoid

Robotics, vol. 1, no. 1, pp. 157–173, 2004.
[28] J.-H. Shin and J.-J. Lee, “Fault detection and ro-

bust fault recovery control for robot manipulators
with actuator failures,” in Robotics and Automation,

1999. Proceedings. 1999 IEEE International Con-

ference on, vol. 2, 1999, pp. 861 –866 vol.2.
[29] K. Fujiwara, S. Kajita, K. Harada, K. Kaneko,

M. Morisawa, F. Kanehiro, S. Nakaoka, and
H. Hirukawa, “Towards an optimal falling motion
for a humanoid robot,” in Humanoid Robots, 2006

6th IEEE-RAS International Conference on, dec.
2006, pp. 524 –529.

[30] ——, “An optimal planning of falling motions of a
humanoid robot,” in Intelligent Robots and Systems,

2007. IROS 2007. IEEE/RSJ International Confer-

ence on, 29 2007-nov. 2 2007, pp. 456 –462.
[31] K. Ogata, K. Terada, and Y. Kuniyoshi, “Real-

time selection and generation of fall damage re-
duction actions for humanoid robots,” in Humanoid

796

Robots, 2008. Humanoids 2008. 8th IEEE-RAS In-

ternational Conference on, dec. 2008, pp. 233 –238.
[32] ——, “Falling motion control for humanoid robots

while walking,” in Humanoid Robots, 2007 7th

IEEE-RAS International Conference on, 29 2007-
dec. 1 2007, pp. 306 –311.

[33] R. Renner and S. Behnke, “Instability detection and
fall avoidance for a humanoid using attitude sen-
sors and reflexes,” in Intelligent Robots and Sys-

tems, 2006 IEEE/RSJ International Conference on,
oct. 2006, pp. 2967 –2973.

[34] C. L. Lawson and R. J. Hanson, Solving Least

Squares Problems, 3rd ed., C. L. Lawson and R. J.
Hanson, Eds., 1974.

[35] R. Ellenberg, R. Sherbert, P. Oh, A. Alspach,
R. Gross, and J. Oh, “A common interface for hu-
manoid simulation and hardware,” in Humanoid

Robots (Humanoids), 2010 10th IEEE-RAS Inter-

national Conference on, dec. 2010, pp. 587 –592.

797

