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Abstract— As research in biped gait, human interaction, and
social robotics expands, hardware to explore these fields is be-
coming valuable. The high cost and risk of full-sized humanoid
robots prevents many small laboratories for exploring these
areas, however. In recent years, many models of miniature
humanoid robot have been introduced to the pro-sumer market.
These small humanoid robots cost 1000 to 2000 USD. They
are easy to operate and maintain, yet lack articulation and
processing power of full-size humanoids. The objective of the
authors’ research is to implement a miniature humanoid robot
as a surrogate for larger humanoid robotics. To demonstrate
this, a miniature humanoid was used to explore creativity
and dance with a humanoid robot. The authors’ particular
interest in humanoids is dance as an expression of creativity
and hence intelligence. To move beyond preprogrammed chore-
ography requires the ability to listen to music, interpret rhythm
and express a message through dance. Employing miniature
humanoids as surrogate test platforms reduces risk before
algorithms are ported to full-size ones. Experimental results
are presented that support the viability of this approach.

I. INTRODUCTION

Recently, small-sized humanoids costing under 2000 USD
have become readily and widely available. Such humanoids
first arrived on the US market in 2007. Currently there are
almost a dozen different models offered by companies like
Futaba, Hitec and Graupner. These models differ in motion
range, software sophistication and sensors, but are readily
available and relatively easy to maintain. By contrast, full-
size humanoids like the Honda ASIMO [1] and KAIST Hubo
[2] (see Figure 1) cost at least 2 to 4 orders of magnitude
more. Furthermore, they often require highly skilled person-
nel to maintain and repair. As such, researchers working with
full-sized humanoids are understandably conservative when
implementing new algorithms; any risky motion, like walking
on rugged terrain, can result in a catastrophic fall that can
halt research. Another point is that full-sized humanoids are
not mass- or even batch-produced. This limits the number of
researchers who can perform experiments on such platforms.

The authors’ particular interest in humanoids stems from
our desire to gift such robots with abilities to listen to music,
interpret beat and mood, and express itself through dance.
Our conviction is that humanoids can serve as a platform
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Fig. 1.

Jaemi Hubo and Robonova-1 Robot demonstrating dance poses.
The Robonova’s low cost and simplicity make it very desirable as a research
prototype

to apply machine learning algorithms and that dance can be
a metric to gage creativity and hence intelligence. Towards
such research, the authors procured a full-sized humanoid
(Figure 1) from the KAIST Humanoid Lab in Korea. Called
Jaemi Hubo, this procured humanoid is very similar in form
and function as the Honda ASIMO [3].

A big risk with full-scale humanoids like Hubo is the
complexity of motion planning. The current system of chore-
ographed gestures must be meticulously hand-tuned to avoid
collisions and falls. Repair costs and delays make testing
new motions risky. Miniature humanoids like the Robonova,
however, are widely available, cheap, and relatively easy to
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service. As such, they could serve as prototyping tools for
larger and more complex humanoids.

The primary issue with using a miniature humanoid as
a prototyping tool is scaling. The Hubo has significantly
different kinematics from miniature humanoids like the
Robonova (Figure 1). Other factors like material strength,
actuator power, limb sizes and cross sections, and relative
foot area vary as well. However, from a research perspective,
it is not clear how much impact such differences make
on higher-level algorithms. Previous work by the authors’
research team suggest this surrogate approach has merit. In
[4] the Robonova was taught to recognize beats and exe-
cute dance moves. In [5] human-robot-interaction algorithms
were ported to the Robonova. In [6] external processing
and machine learning were implemented on the Robonova
surrogate to handle walking over rough terrain. The previous
work does not depend on specific motion characteristics, but
on the general behavior of a humanoid robot. Such first-
stage validation provides a measure of confidence and risk
reduction.

This paper will present the case for minature humanoids as
research platforms, and show progress on a simplified dance
implementation. Section II discusses both the Robonova and
Jaemi Hubo. Section III will discuss the methods of music
analysis and motion synthesis, while Section V details the
results to date. Finally Section VI concludes and discusses
ongoing work.

II. PRIOR WORK

The state of the art in humanoid robotics has robots with
34-43 degrees of freedom (DOF), which gives approximately
one joint for every major human joint, in a roughly analogous
configuration. Humanoid robots such as ASIMO, HUBO
(Figure 2), and HRP-2 [7] have all been developed to be
equivalent to a human. The ASIMO and HUBO each have 6
DOF in each leg, 6 DOF in each arm, 1 DOF for torso twist,
and 1-3 DOF to actuate the neck. These robots use rotary
joints with intersecting axes to approximate the complex
geometry of hips, ankles, and knees. All of these robots
replicate human actuation and motion constraints, yet do not
try to simulate specific human facial or body features.

Due to its size and joint complexity, however, Hubo is
relatively risky to work with in a lab setting. The current
iteration of the operating system requires lengthly calibration
and setup at every power-on. Gesture programming requires
careful hand tuning and testing to avoid body collisions
and over-rotation of joints. Improper balance control could
lead to falls and costly repairs, all of which would hinder
smooth development. Significant infrastructure is required
to perform experiments: treadmills for testing walking algo-
rithms, rolling safety harnesses to catch the robot, and lifts
to allow transport and maintenance. While technologies such
as motion capture can alleviate some of the gesture design
burden, this introduces additional infrastructure.

Of the many choices of miniature humanoids, Hitec’s
Robonova-1 (see Figure 3) was chosen as a surrogate. The
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Fig. 2. The Jaemi Hubo, with 43 degrees of freedom, inertial measurement
sensors, and force/torque sensors. These features allow the robot a very
similar motion range to a human.
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Fig. 3. Hitec’s Robonova-1 uses standard robot servos for simple
construction. It has 16 DOF total, distributed as shown. While its motion
is limited, its small size and intuitive programming environment accelerate
development

Robobasic programming environment allowed gestures to be
posed and tested instantly, with minimal coding.

A more detailed comparison of features shows the many
differences between Hubo and Robonova (Table I). Advanced
sensors and human-equivalent actuation give the Hubo the
ability to smoothly mimic human motion. Unlike the open
loop control of robonova, the Hubo can perform continuous
ZMP-based balancing.
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TABLE I
A COMPARISON OF HUMANOID ROBOT SPECIFICATIONS

Category Robonova-1 KAIST Hubo

Degrees of Freedom 16 43

Controller 8-bit MCU 2 800MHz x86 PC’s

Sensors Analog gyro IMU
Accelerometer Ankle F/T sensors

Vision None USB camera

Sound Input/Output None 2 Microphones and speakers

III. ROBOT DANCE

To take advantage of the development tools afforded
by Robonova, the issue of scaling must be resolved for
prototype results to be useful. The significant differences
in size and structure of the robots require modification
of parameters, and in some cases fundamental limits on
performance and speed. As such, the platform is not useful
as a direct kinematic prototype. Research that depend on
general characteristics of motion, rather than the specific
kinematics, do not share as many scaling issues.

Dance is one such area; it is a complex but formal
language for which clear rules and even notation exist. Laban
Notation [8], a famous and widely used system of dance
notation, describes classical and modern dance in terms of
specific motion characteristics. Liwen Huang et al[9] have
explored software adapting laban notation to describe dance
motions independent of robot kinematics. Thus, a higher
level description and planning of dance allows such software
to be relatively independent. While a miniature humanoid
robot lacks the articulation to perform the full spectrum
of human dance motions, it could reproduce a simplified
version.

The majority of the research in this area focuses on
kinematics, often using motion capture data as a source. In
[10], the authors developed humanoid dance motions this
way. Combining laban notation and motion capture, in [11],
the authors’ system captures a dancer’s motions and replays
them accurately from primitives.

One flaw of kinematic simulation in duplicating human
motions is the lack of a “realism” constraint. In [12],
researchers developed a system to generate arbitrary yet
realistic animated motion. Using recorded human gestures
as a base, an optimization function could produce natural-
looking gestures from a very high-level description. Though
a real robot requires motion planning and control, its natural
actuator constraints reduce the calculation necessary to pro-
duce natural-looking motions. Thus, the use of a humanoid
robot could expedite development of dance. The authors prior
on humanoid dance showed that primitive dance motions for
a miniature humanoid could be developed in a short time
[4], support this assumption.

Many humanoids are capable of producing dance motions,
such as MSDanceR [13], is a robot created as a dance partner
and teacher. An ASIMO robot was modified to perform a
simple dance in response to external music, demonstrating
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Fig. 4. Audio frame in a) original form, b) filtered to a given frequency
subband, c¢) downsampled, d) filtered with comb filter bank to find maximum
energy and resonance. The tempogram shows maximum resonance energy
with respect to filter delays that correspond to the given tempos

real-time beat tracking[14]. These robots demonstrate the
importance of the interface; to dance with even a simple
robot has a unique engagement. To interact immersively with
a simulation requires a more expensive and sophisticated
interface as developed in [11].

The quality of human interaction with the dancer depends
on the interface. The Keepon [15] explores how, even with
minimal actuation, a robot can create life-like motions. It
uses dance and music to connect with autistic children. The
results are promising as a therapy, and help establish dance
as a means of human-robot interaction. The suggestion of
dance even with minimal actuation suggests that Robonova’s
simplified kinematics are capable of acheiving convincing
dance motions.

The authors’ simple and direct approach to robot dance
divides the process into three steps: music analysis, dance
creation, and dance synthesis. A music analysis stage extracts
fundamental chracteristics such as tempo, beat times, and
rhythym. A dance creation stage plans a dance sequence,
choosing and varying motion parameters to reflect the music.
Finally, motion synthesis translates the high-level sequence
into joint motion.

A. Music Analysis

The selected beat-tracking algorithm uses the perceptual
model of human hearing described in [16]. The audio is
filtered into several sub-bands, then downsampled to reduce
calculation overhead. The frame is augmented with approx-
imately 3 seconds of audio history and passed through a
comb filter bank (Figure 4). The tempogram depicts the
amount of resonance of the audio signal corresponding to
each delay. Maximum resonance occurs when the comb filter
delay matches the tempo of the audio. The filter that produces
the most resonance is identified and the tempo of the audio
is found from the delay of that filter. The phase of the next
beat is then found by finding the largest delay state in the
selected filter.

177



Altered probability distribution by padding

o
~

L ——v=12345] I
V=[122233445555)
———V=[111112355) H

o
™
T

[=1
n
T

o
=
T
L

o
[N

o
|
|

Probability of Gesture occurence
=2
w
i

(=]

n
[N
N
n
w
w
n
=
=
n
m

Gesture number

Fig. 5. Altering the probabilities of the next chosen gesture by padding the
choice vector with copies of desired gestures (represented by numbers 1-5).
A uniform choice from this vector gives non-uniform choices depending on
this weighting
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Fig. 6. Flow of Robobasic program to receive commands and output gesture
commands

An initialization period of a few seconds allows the system
to gather enough information to begin confidently predicting
beats. After this time, the beat tracker begins analyzing
incoming audio, finding and storing beats in realtime. The
realtime analysis allows the gestures to be chosen as a func-
tion of incoming audio data. By selecting gestures pseudo-
randomly, the chosen probability distribution controls the
gesture choices. A simple implementation (Figure 5), shows
the effects of varying distributions.

B. Dance Synthesis

While the beat tracker implemented in MATLAB, the
motion control was programmed into the Robonova itself.
The overall structure of the program is shown in figure
6. For each loop iteration, the Robonova checks the serial
buffer for a command packet, then searches a tree of motion
commands to execute up to 3 simultaneous gestures. Move-
ment commands are issued independently for each group of
servos, allowing gestures to overlap. The approximate time
for a gesture to reach its apex was calculated for each of
the 30 gestures designed. By sending commands advanced
in time, the apex of the gesture and a musical beat occur
simultaneously, without an on-board timer.

Preliminary results showed that the Robonova’s basic
language was very limiting for research. With a measured
instruction rate of just 1200-1500 instructions/second, the
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Timer Interrupt
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Read current : o
Joint Positions
servo command

Read Audio
Frame

Search for beat
in audio frame

Vector of
predicted
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Wait for audio Measure output Convert to time-
inout buffer to fill ¢— time audio and indexed array of
P gestures servo angles
Fig. 7. Flow of modified dance program showing separation of motion

planning and beat tracking loops

Robonova could only process gesture commands at 2-5Hz.
The loop speed varied by as much as 0.3 seconds per
iteration. A timing resolution of +/0.15 seconds occasionally
allows commands to arrive after the input is read. This lack
of error checking was a deliberate choice because of the
limited hardware speed. Because leg gestures assume the
initial position is the default position, losing a return gesture
makes subsequent gestures start from the wrong place, and
could cause a fall.

Clearly, the motions need to be more flexible and control-
lable. To address the inflexibility of Robobasic for motion
planning, a modification of the Robonova’s code was devel-
oped by [6]. The standard operating system was replaced
on the MR-C3024 microcontroller with what is effectively
a serial command parser. A command packet can be sent
at 115200 baud that sets servo positions of all 16 servos.
Operating at a maximum update speed of 100Hz, this offers
much finer motion control than the original program. In
digital mode, the servo resolution of 2000 steps, represented
an eleven-fold resolution increase. To balance the processes
of beat tracking and motion generation, an interrupt timer is
used to send motion commands. This divides the software
into distinct, semi-independent functions (Figure 7).

MATLAB’s timer function implements a crude interrupt,
allowing beat tracker to run freely and maximize processing.
To compare timing and motion smoothness, the original ges-
tures were converted to a vector of times and a corresponding
matrix of joint angles. The times were all normalized to 1
second for ease of time scaling. Motion error was calculated
as the mean-square error between the command position and
actual servo position as a function of time. The command
latency was calculated numerically with 1 by finding the
command time offset #;ag required to minimize the error sum
between the command y and the measured position §, where
n is the number of data points.

Z(y(t) = 9(t + tiag)?

E(tlag) = (n
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Storing gestures as joint angles and corresponding times
allows modification of the gestures that would not be pos-
sible with the old code. For instance, functions have been
implemented to:

« scale gesture in time

« scale amplitude of gesture motion

« shift gesture in time

« cross-fade between gestures of overlapping times

Scaling in time affects both the continuity of the gesture
and it’s abruptness. Choosing a timescale smaller than the
gesture spacing will make a gesture complete quickly and
leave a gap in between, giving a stiff, abrupt feel to the
motion. When the time spacing and scale match, then the
motion of gesture sequence is continuous. The cross-fade
is achieved by making the scale factor larger than the time
spacing, causing the gestures to blend.

IV. APPLICATIONS TO HUBO

To produce a gesture on the Hubo, a curve through
joint space must be chosen and sampled at approximately
100Hz. The joint motor controllers in Hubo take this data
and interpolate at a rate of 1000Hz to produce position
commands, giving approximately 20x the time resolution of
a typical Robonova motion.

To prototype the dance system, the software on Hubo
was modified from its original form to accept command
input from a serial port. The low level software parsed the
input, and executed canned motion, with simple velocity
scaling to produce the appropriate timing. The MATLAB
software was also modified to produce a serial command at
a specified time in advance of each detected beat. This code
is structurally identical to the original dance software, except
that the command packet for the initial Hubo experiment was
only two characters long. The first character represented the
commanded gesture; the second a time-scale that sped or
slowed the gesture in response to tempo. The tap gesture
was produced as a metric to measure timing accuracy. To
smooth acceleration, all joint displacements were specified as
scaled cycloid functions similar to equation 2. The constant
C controls the initial and final acceleration, such that a lower
value produces a more linear displacement curve.

2at — Csin(2mt)
= ———— 2
7 @

The resulting joint motion as seen in figure 8 is clearly
smoother.

6;

V. RESULTS

The first implementation of beat tracker used only one
frequency band, which limited the genre of music that could
be analyzed. A low frequency band centered at 200Hz was
used to detect strong beats such as those from bass guitar
and drums. Club-style dance music proved to be the most
compatible, as its strong back beat and constant tempo
produced the most consistent clicks. Even with very rhythmic
songs, however, addition of higher frequency bands in the
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Fig. 8. Comparison of motion smoothness between original arm lift gesture
(dashed) and cycloid implementation (dash-dot). Interpolation between
points approximates the ideal shape (solid).

filter showed an improvement in the ability to track tempo
(Figure 9). The song “That’s All” by Genesis was scaled up
in pitch by a fifth, and octave and two octaves. The frequency
bands for the filters were 80Hz, 120Hz , 160Hz, 200Hz, and
240Hz. The lowest 1, 3 or 5 of these bands was used for the
three plotted cases.
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Fig. 9. Comparison of beat tracker performance

Clearly, adding more frequency bands improves beat track-
ing performance, especially with higher frequency content.

The maximum angle a servo can traverse during a gesture
at the chosen maximum tempo of 180 bpm is given in
equation 3. The constant C controls the initial and final
acceleration, such that a lower value produces a more linear
displacement curve.

For lightly loaded joints like those of the arms, this gives a
reasonable limit for the amplitude of gesture motion in any
one beat. The accuracy of position and timing was assessed
numerically by direct measurement of servo position. As
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shown in Figure 10, the tracking error increases with motion
speed and acceleration.

Comparison of commanded position and time with actual robot position
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Fig. 10. Timing and position error for a simple arm-swing gesture

Latency was calculated using (1) for the same arm swing
gesture. A simple linear point-to-point motion was used to
minimize isolate errors due to timing. The latency stays
consistent except at very high speeds, averaging 0.032s This
data suggests that timing error can be adequately corrected
by a fixed advance.

VI. CONCLUSIONS AND FUTURE WORK

The results of the redesign of the beat tracker and gesture
command system showed that the Robonova has promise
as a platform. Despite its limitations, the Robonova was
nonetheless able to perform gestures that could be completely
specified and altered in real-time. The simple “language
developed”, while simpler than Laban notation, demonstrates
that robot-independent motion is possible on low-power
hardware. These motion sequences are interpreted differently
by Robonova and Hubo, while maintaining a similar overall
appearance. This fundamental similarity allows audio analy-
sis and dance generation to be demonstrated and debugged
safely using the Robonova, then reprogrammed for the Hubo
with fewer alterations to the resulting motion. Significant
development remains to demonstrate portability between
platforms, but these experiments demonstrate the concept
is possible. Future experiments will broaden music analysis
and gesture selection methods, and more fully explore the
capabilities of the Hubo.
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