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ABSTRACT
Reconnaissance, surveillance and target acquisition tasks in

near-Earth environments like forests, caves, tunnels and build-
ings is a grand challenge. Micro-air-vehicles are a future line
of bird-sized flying assets designed to address such a challenge.
Needed are light-weight and miniature sensor suites that can
provide autonomous collision avoidance in complex environ-
ments. Our demonstrations with optic flow microsensors have
been promising but controller gain-tuning is often tedious. This
paper describes the use of neural nets to automate gain tuning.
The overall effect delivers collision avoidance over wide ranges
of lighting conditions, contrast and surface textures.

INTRODUCTION
Micro-air-vehicles (MAVs) are a class of bird-sized aircraft

envisioned to perform reconnaissance, surveillance and target ac-
quisition tasks in forests, buildings, caves and tunnels. These
near-Earth environments are often cluttered and dynamic where
wireless communication is degraded, GPS reception is poor and
illumination is varied. As such, these vehicles cannot be piloted
remotely. The challenge therefore is designing sensor suites that
enable autonomous flying. Oh and Green were the first to pub-
lish and successfully demonstrate both autonomous flying and
landing inside buildings [6] [3] [4]. A 5-gram optic flow sen-
�
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sor [1] was mounted on a 23-gram fixed-wing aerial testbed and
interfaced to an embedded micro containing both reactive and
proportional-derivative controllers. The net effect was that the
testbed’s flight maneuvers mimicked those of flying insects [8].
These past successes depended upon proper tuning of controller
gains. This has been tedious and time-consuming because op-
tic flow measurements are affected by lighting levels and surface
texture in the area the aircraft is flown in. This paper discusses
a neural net approach towards automated gain-tuning. The next
section presents the theory underlying optic flow sensing. This is
followed by sections describing the control system and neural net
experiments. Finally, conclusions are given in the last section.

FLIGHT STRATEGEMS USING OPTIC FLOW
Insects make heavy use of vision, especially optic flow, for

perceiving the environment [2]. Optic flow refers to the apparent
movement of texture in the visual field relative to the insect’s
velocity. Insects perform a variety of tasks in complex envi-
ronments by using their natural optic flow sensing capabilities.
While in flight, for example, objects which are in close proxim-
ity to the insect have higher optic flow magnitudes. Thus, flying
insects, such as fruit flies [9] and dragon flies, avoid imminent
collisions by saccading (or turning) away from regions of high
optic flow (see Figure 1). With optic flow sensors, efficient and
robust navigational sensor suites for MAVs can be developed by
mimicking the natural behaviors of insects.
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Figure 1. Dragon fly saccading away from regions of high optic flow in

order to avoid a collision.

Figure 2. 1D optic flow during MAV flight.

Retrofitting Sensors on MAVs
Theoretically, optic flow is measured in rad � sec and is a

function of the MAV’s forward velocity, V , angular velocity, ω,
distance D from an object, and the angle, θ, between the MAV’s
direction of travel and the object (see Figure 2).

OF � V
D

sinθ � ω (1)

Figure 3 depicts optic flow as it might be seen by a MAV
traveling a straight line above the ground. The focus of expansion
(FOE) in the forward sensor view indicates the direction of travel.
2

Figure 3. Optic flow as seen by aerial robot flying above ground.

If the FOE is located inside a rapidly diverging region, then a
collision is imminent. A rapidly expanding region to the right
of the FOE (like the one seen in the Figure 3) corresponds to
an obstacle approaching on the right side of the MAV. Thus, the
MAV should turn left, or away from the region of high optic flow,
to avoid the collision. Similarly, the MAV can estimate its height
from the optic flow in the downward direction; faster optic flow
indicates a low flight altitude. By equipping a MAV with sensors
capable of measuring the optic flow in front of and below the
aircraft, the above flight patterns can be embedded in a sensor
suite for autonomous navigation.

Optic Flow Microsensors
Mixed-mode and mixed-signal VLSI techniques are often

used to create compact circuits. Centeye has developed the one-
dimensional Ladybug optic flow microsensor based on such tech-
niques and is shown in Figure 4. These sensors are inspired by
the general optic flow model of animal visual systems. A lens fo-
cuses an image of the environment onto a focal plane chip, which
contains photoreceptor circuits and other circuits necessary to
compute optic flow. Low level feature detectors respond to differ-
ent spatial or temporal entities in the environment, such as edges,
spots, or corners. The elementary motion detector (EMD) is the
most basic structure or entity that senses visual motion, though
its output may not be in a form easily used. Fusion circuitry
fuses information from the EMDs to reduce errors, increase ro-
bustness, and produces a meaningful representation of the optic
flow for specific applications.

Figure 5 depicts a simple realization of the feature tracker
EMD algorithm used [1]. On the left is the basic EMD architec-
ture, on the upper right is an edge detection kernel implemented
by a differential amplifier, and on the lower right are sample
traces of feature signals and feature location signals. This EMD
measures one-dimensional optic flow in one part of the visual
field, thus the complete sensor would have many such EMDs
Copyright c
�

2004 by ASME



Figure 4. mixed-mode VLSI optic flow microsensor is slightly bigger than

a US quarter.

Figure 5. The feature tracker elementary motion detector (EMD).

replicated throughout the visual field. Functionally there are
four sections, as shown in Figure 5: photoreceptors, feature de-
tectors (shown here as differential amplifiers), a winner-take-all
(WTA), and a transition detection and speed measurement sec-
tion (TDSM).

A section of the focal plane is sampled with an array of elon-
gated rectangular photoreceptors laid out so that the array is po-
sitioned along the sensor orientation vector (SOV). The photore-
ceptor rectangles are arranged so that their long axes are per-
pendicular to the SOV. This layout filters out visual information
perpendicular to the SOV direction while retaining information
in the parallel direction. One effect of these rectangular pho-
toreceptors is that the measurement of the sensor is actually a
measurement of the projection of the two dimensional optic flow
vector onto the SOV vector [1].

The outputs from the photoreceptors are sent to an array of
four feature detectors that output four analog feature signals. A
feature detector circuit attains its highest output value when the
feature to which it is tuned appears on its input photoreceptors.
For example, suppose the feature detectors are differential ampli-
3

fiers. Then their effective response function is the edge detection
kernel, shown in the upper right part of Figure 5. A feature signal
will have a high value when an edge is located between the input
photoreceptors with the brighter side on the positively connected
photoreceptor.

The four analog feature signals are then sent to a winner-
take-all (WTA). The WTA has four analog inputs and four digital
outputs. The WTA determines which input has the highest value
and sets the corresponding output a digital high (or 1), and all
the other outputs low (or 0). The location of the high value indi-
cates where on the photoreceptor array the image is most like the
feature defined by the configuration vector. The WTA outputs
are thus also called feature location signals. As an edge moves
across the photoreceptors shown in Figure 5, the high value will
move sequentially across the WTA outputs. This is easily visu-
alized with the aid of the trace in the lower right part of Figure 5.
Shown are four feature signals and their corresponding feature
location signals when the photoreceptors are exposed to a mov-
ing black and white bar pattern.

The transition detection and speed measurement (TDSM)
circuit converts the movement of the high WTA output into a
velocity measurement. Essentially this circuit is a state machine
that responds to the WTA outputs and interprets the 1-2-3-4 mo-
tions of the high feature location signal as visual motion. When-
ever the high feature location signal moves in a manner that in-
dicates visual motion, the EMD generates a measurement of the
optic flow. The direction of the visual motion is determined by
the direction of travel of the high feature location signal. Like-
wise the speed is obtained with the lag-time from one feature
location to the next. This lag-time is also referred to as the tran-
sition interval. Then the actual optic flow can be determined from
the physical geometry of the photoreceptor array and the sensor
optics.

The resulting sensor, including optics, imaging, processing,
and I/O weighs 4.8 grams. This sensor grabs frames up to 1.4
kHz, measures optic flow up to 20 rad � s (4 bit output), and func-
tions even when texture contrast is just several percent (see Fig-
ure 6).

AUTONOMOUS FLIGHT MANEUVERS

Optic flow microsensors can be oriented to perceive infor-
mation about oncoming collisions and altitude. For example, po-
sitioning sensors such that the optical axis faces in the forward
direction will allow the measurement of the optic flow field in
front of the aircraft. Likewise, measuring the optic flow on the
ground requires placing a sensor on the belly of the MAV. Such
information can be used to mimic insect flight patterns to per-
form autonomous collision avoidance and landings for MAVs.
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Figure 6. Contrast variation prompts full rudder deflection as a result of

bang-bang control.

Figure 7. Optic flow control system block diagram.

Autonomous Landing
Oh and Green were the first researchers to demonstrate au-

tonomous landing of a fixed-wing aerial robot inside a build-
ing [4]. The approach involves keeping the optic flow on the
landing surface constant. When measuring the optic flow on the
landing surface, the obstacle is now the ground and thus θ = 90.
To further simplify this task, the rotational component of optic
flow arising from changes in aircraft pitch are assumed smaller
than the translational component. Thus, Equation (1) reduces to

OF � V
D

(2)

Keeping Equation (2) constant (where D is the altitude) demands
the aircraft’s control system decrease forward speed in propor-
tion to altitude.

The control system block diagram and flow chart are shown
in Figures 7 and 8 respectively. When approaching a landing, an
embedded microcontroller (see Figure 9), will implement a func-
tion to gradually throttle down the motor while continuing to take
readings throughout the landing process. The error, e � t � , is com-
puted between the desired optic flow, oi which was estimated be-
forehand, and the actual optic flow value, o f � t � . When the optic
flow on the landing surface becomes larger than the desired optic
flow, the error is negative and two conditions are possible. One,
4

Figure 8. Flow chart of landing control system.

the forward velocity, V , could be significantly increasing which
is not possible based on the motor function. Two, the altitude, D,
can be decreasing at a faster rate than V . Here, the controller will
send a signal to the elevator to decrease the vehicle’s descent rate
based on the error magnitude and proportional constant, Ka. The
other possibility is that the optic flow could start to dip below the
desired level causing the error to be positive. The two possible
cases that arise here are one, D is increasing but again this is not
practical while in landing mode and two, V is decreasing faster
than D. In this case, the controller will need to command the
elevator to increase the descent rate. After a control sequence
has been implemented to force the optic flow back to the desired
value, the elevator resets to its neutral position. By implementing
this control scheme, we were able to successfully demonstrate an
autonomous landing (see Figure 10).

Autonomous Collision Avoidance

Autonomous collision avoidance while flying fixed-wing
aircraft inside buildings was first successfully demonstrated by
Oh and Green [6]. The general approach is to command the MAV
to turn away from regions of high optic flow. Optic flow must be
detected in front of the vehicle in order to avoid collisions and
thus, the sensor must be positioned at some angle forward. Un-
like with autonomous landing, where the sensor was oriented at
90 degrees to the direction of travel, the angle θ to the obstacle
will be a factor. Assuming the MAV is traveling in a straight path
with a relatively constant translational velocity, V , we have from
Equation 1

OF � V
D

sinθ (3)
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Figure 10. The optic flow on the basketball gym floor is kept constant by the control system. That is, the aircraft (encircled) forward velocity is decreased

in proportion with its altitude to land smoothly. Left: Aircraft just after hand launch. Middle: Aircraft midway through landing sequence at proportionally

lower altitude and velocity. Right: Aircraft comes to a smooth landing within 25 meters from starting point.

Figure 11. Optic flow is used to sense when an obstacle is within two turning radii of the aircraft. The aircraft avoids the collision by fully deflecting the

rudder.
An optic flow threshold was set to correspond to an obstacle
being within two turning radii of the aircraft. Thus, when the
threshold is exceeded, the sensor suite will implement propor-
tional rudder control to safely avoid the obstacle. By implement-
ing this method, autonomous collision avoidance was success-
fully demonstrated (see Figure 11).

NEURAL NETWORKS
Artificial neural networks are modeled after biological ner-

vous systems, such as the brain, and represent a methodology
to process and interpret raw information. Like neurons in the
human brain, neural networks consist of many interconnected
nodes which function collectively to communicate and dissem-
inate information to solve specific problems. The ability to per-
form distributed computation, tolerate noisy inputs, and learn
and adapt to unseen conditions is what makes neural networks
so attractive. Such attributes make applying neural networks
a promising approach to the characterization of optic flow mi-
crosensors.

There are several parameters, if varied, which could affect
5

the overall performance of optic flow sensors. The three most
significant are light intensity, contrast and texture. The difference
in terms of light intensity (measured in lux) for natural sunlight
and artificial lighting can be as high as two orders of magnitude.
The sensor output for an object in identical motion in both en-
vironments could yield extremely different results. Furthermore,
optic flow readings are almost non-existent in poor lighting con-
ditions (e.g. at dusk or in a shadow). Similarly, objects which
are dull or low in contrast (e.g. a white wall) will yield very
low optic flow magnitudes even when within close proximity of
the sensor. The net result is that these realistic conditions which
yield contradicting sensor outputs could be fatal to a MAV if not
accommodated for.

Neural networks can be taught to deal with this type of
data. Networks, like people, learn by example. A network must
be trained for it to successfully implement a desired task. To
be able to adapt to different lighting conditions as well as ob-
jects with different textures and contrast, the network must be
presented with actual data that represent a specific state of the
MAV’s world. For example, one state for an approaching object
(e.g. boulder) might include: high light intensity, rich object tex-
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Figure 9. A microcontroller is used to read the digital output of the optic

flow sensor and implement the control algorithms. The control signal is

then sent through an H-bridge to deflect the aircraft’s control surfaces.

ture, and high contrast, while another state could consist of: low
light intensity, rich object texture, and high contrast. While the
possibilities of different scenarios seem endless, a network need
only be trained so that it remains generalized; overtraining (i.e.
presenting the network with every possible scenario) can lead to
performance degradation.

We conducted an experiment to see how effective a neural
network would be in interpreting data from the optic flow sen-
sor at different light intensities. Our network and experimen-
tal setup are shown in Figures 12 and 13, respectively. It is
a multilayer feed-forward network consisting of two hidden lay-
ers. The network was trained and validated with two inputs: (1) a
one-dimensional optic flow sensor acquired readings of a model
railcar (in rad/sec) as it passed by the sensor at a constant repro-
ducible linear velocity and (2) a digital light sensor measured the
intensity of the ambient lighting conditions (in lux). The network
output was trained using the actual distance from the sensor to the
railcar (in inches). Different scenarios were achieved by varying
the florescent lighting conditions from 0-500 lux (a bright office
is apx. 400 lux) as well as the actual distance from 0 to 63 inches.

Backpropagation updating was used during the training and
validation phase. The activation function of each non-input node
in the network is a sigmoid [7]

σ � 1
1 � e �

x (4)

where x is the nodal input. Once the network was trained
and validated, it was presented with an unseen state (i.e. 300 lux
and a distance of 18 inches) to test its efficiency. In 900 data
6

Figure 12. A neural network with two hidden layers was created using

JavaNNS v1.1. The network was used to characterize the output of an

optic flow sensor in terms of distance to the obstacle.

Figure 13. Experimental setup used to collect training and validation

data for neural network.

points, the average error of the network output was 3.5 inches.
There were two outliers which accounted for the maximum error
of 16 inches; the remaining errors fell in the error range of 0-5
inches. A summary of the results can be found in Figure 14. Two
hidden layers are sufficient in this experiment, but more nodes
and layers will be required when trying to characterize sensor
outputs for more than two varying parameters.
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Figure 14. Results of applying a neural network to optic flow sensors in

different lighting levels.

CONCLUSIONS
Near-Earth environments which occlude conventional nav-

igational methods, such as GPS satellites and the horizon, are
time consuming and labor intensive to patrol and safekeep.
Lightweight optic flow microsensors, based on the vision sys-
tem of flying insects, are suitable for micro-air-vehicle payload
capacities. This paper presented details on leveraging sensors
for navigation. The underlying control laws for collision avoid-
ance and automated landings were also detailed. A neural net
to automate controller gain-tuning was formulated. The results
were promising, suggesting a viable method to bypass tedious
and time-consuming calibration procedures.
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