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Abstract-We present preliminary work on analyzing 3-D 
point clouds of a small utility vehicle for purposes of humanoid 
robot driving. The scope of this work is limited to a subset of 
ingress-related tasks including stepping up into the vehicle and 
grasping the steering wheel. First, we describe how partial point 
clouds are acquired from different perspectives using sensors 
including a stereo camera and a tilting laser range-finder. For 
finer detail and a larger model than one sensor view alone can 
capture, a Kinect Fusion [I]-1ike algorithm is used to integrate 
the stereo point clouds as the sensor head is moved around the 
vehicle. Second, we discuss how individual sensor views can be 
registered to the overall vehicle model to provide context, and 
present methods to estimate several geometric parameters critical 
to motion planning: (1) the floor height and boundaries defined 
by the seat and the dashboard, and (2) the steering wheel pose 
and dimensions. Results are compared using the different sensors, 
and the usefulness of the estimated quantities for motion planning 
is also demonstrated. 

I. INTRODUCTION 

As part of the recently-commenced DARPA Robotics Chal­
lenge (DRC) [2], contestant robots are challenged to approach 
a car-like vehicle and enter it, drive it to a target location in a 
disaster zone too dangerous for a human to enter, and get out 
before approaching a building. We name these stages ingress, 
driving, and egress, respectively. The morphology of the robot 
is not mandated, but we plan to use a humanoid (shown in 
Fig. 1; details in Section II). Furthermore, the vehicle to be 
driven is unknown but expected to be broadly similar to the 
ones in Figs. 1 and 5. 

There are potentially an enormous number of perception, 
motion planning, and control problems to address in order for 
a robot to successfully complete this very practical challenge 
on a wide range of vehicles and roads. In this paper, we focus 
on only a handful of key perception tasks necessary during the 
ingress stage, with reference to the associated motion planning 
tasks that such scene understanding enables. The driving task is 
of course nontrivial, but our approach is algorithmically similar 
to previous work stemming from the various DARPA Grand 
Challenges from 2004-2007 [3], [4] and out of the scope of 
this work. Also, although egress is quite similar to ingress, 
the issues are more of motion planning and control rather 
than perception since vehicle parameters have already been 
estimated, so we will not examine it here. 

We break the ingress perceptual task into several phases. 
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Fig. l. (Left) Hubo robot stepping onto test utility vehicle; (right) Simulation 
of stepping motion 

Assuming the robot's initial pose is close to the vehicle and 
pointed toward it (so that search is not necessary), the first goal 
is to differentiate the driver's side and passenger side, and to 
find and parametrize a target area on the floor of the vehicle 
that the robot will be stepping up to. The height and lateral 
boundaries of this area are critical parameters for the motion 
planner. The second step of the ingress task is to parametrize 
the location and dimensions of the seat such that the robot can 
plan to safely lower itself down into a sitting position. If the 
robot has entered on the passenger side, it must then "scoot" 
laterally, possibly using its hands, to get into a driving position. 

The last phase of ingress is something we term inteifacing. 
During this phase control surfaces of interest such as the 
vehicle on/off switch, steering wheel, accelerator/brake pedals, 
and the gear shifter (for reversing) must all be located and 
parametrized. Furthermore, the robot must carry out a set of 
calibrations before the vehicle begins moving such as checking 
the reach ability of these control surfaces, grasping/touching 
them, inferring or refining expected affordances, measuring 
force resistance, etc. 

The main topic of this paper is a set of techniques for 
analyzing the 3-D structure of a vehicle in order to identify 
parts which are functionally important for ingress such as the 
floor, seat, dashboard, steering wheel, and pedals. With these 
areas labeled and parametrized, the robot has the information 
it needs to plan collision-free motions for stepping, sitting, 



scooting, grasping, and so on. However, for this paper the bulk 
of our attention is limited to two of these functional categories: 
the floor and the steering wheel. 

As an important simplifying constraint, we currently as­
sume that the utility vehicle has no roof or doors. The first of 
these would not significantly change the perceptual approaches 
presented here, but it would complicate motion planning by 
introducing the issue of head and shoulder clearance. Doors 
make floor estimation harder by partially obstructing the view 
of the vehicle interior, as well as requiring additional sensing 
and planning for grasping and opening. 

In order to obtain 3-D information, we compare the efficacy 
of two different depth-sensing devices for these tasks: a Kinect­
like stereo camera and a tilting laser range-finder. As discussed 
in Section II, these sensors have quite different strengths and 
price points. They both provide appearance information (either 
intensity or color) in addition to depth, but our emphasis here 
is completely on structural analysis. 

A. Related Work 

Closely related work includes efforts to get bipedal robots 
to step up or climb stairs. The Nao robot climbs a spiral 
staircase in [5] after stopping to acquire a point cloud with 
a short-range tilting Hokuyo and segmenting individual tread 
rectangles. The authors mention [6], [7] as key prior work on 
using RANSAC-like techniques to perceive a single step. The 
Honda Asimo robot sees isolated planar steps with a tilt ladar, 
stepping around or onto them in [8], [9]. There is also analysis 
of point clouds for stair perception in [10]. 

Several groups have been interested in 3-D object recogni­
tion more generally. [11] uses visual appearance, local shape 
and geometry, and geometric context features to label colored 
point clouds of indoor office and home scenes with a large 
number of classes such as wall, floor, keyboard, tabletop, 
chairback, monitor, book, and so on. [12] looks for objects 
such as cups, bowls, cereal boxes, etc. in point clouds with 
color information using an RGB-D variant of HOG detectors 
after first training on 3-D models. Similarly, much work has 
been done with the PR2 robot in terms of looking at tabletops 
and segmenting and identifying objects with its ladar andlor 
stereo cameras [13], including plane fitting and region growing 
for segmentation in a kitchen environment [14]. Also relevant 
is the work in [15] on door handle detection using a tilting 
Hokuyo after first finding doors using depth and reflectance 
information. 

II. EQUIP MENT & POINT CLOUD CAPTURE 

As shown in Fig. 1, for this preliminary work we study 
a single full-scale golf cart with no roof or windshield. To 
obtain the pose of the robot or sensors during testing and data 
capture sessions, we have an optical motion capture system 
from OptiTrack which uses passive reflective markers. 

Our robot is a humanoid called Hubo 2+ [16] which is 130 
cm tall and has a mass of 42 Kg. It has 38 total degrees of 
freedom (DoF): 6 DoF in each limb, 3 DoF in the neck, 1 DoF 
at the waist, and 5 DoF per hand. Normal walking speed is 
0.5 mis, with a maximum of 1.0 m/s. 

Fig. 2. Prototype sensor head with Asus Xtion Pro Live and tilting 
Hokuyo UTM-30LX-EW. Stereo color cameras. a PMD CamBoard nano. and 
a Microstrain IMU are also included but not used here. 

The head shown in Fig. 1 does not contain any useful 
sensors for our task, so we have designed a prototype head, 
shown in Fig. 2. The head had motion capture markers affixed 
for all data collection, and it integrates the following two key 
sensors (along with several others not used in this work): 

• Asus Xtion Pro Live RGB-D camera (a compact, 
low-power equivalent of a Microsoft Kinect) which 
captures RGB and depth images at 640 x 480 resolu­
tion with a field of view (FOY) of about 60° x 40°. 
The Asus has a maximum depth range of about 4 m 
and a minimum range of about 0.75 m, but it does not 
work in full sunlight. 

• Tiltable Hokuyo UTM-30LX-EW laser range­
finder which scans at 40 Hz over a 270° FOY at an 
angular resolution of 0.25°. The minimum detectable 
depth is 0.1 m and the maximum is 30 m, and 
intensity-like reflectance information is provided for 
each point. The Hokuyo is mounted on a tilting servo 
which affords an un occluded view from a minimum 
of -90° (pointing straight down) to +60°. 

Obtaining 3-D point clouds from the Asus is straightfor­
ward, as it furnishes depth images directly and is factory­
calibrated with functions to obtain full X, Y, Z values for 
each pixel (through OpenNI). The Hokuyo ladar is tilting 
continuously in a sinusoidal pattern over a range of [-45°,45°] 
(relative to the sensor head pose) at a maximum speed of 10° 
I s. Each point cloud is assembled from the transformed laser 
scans over approximately one full sweep. To limit extraneous 
data for this task we retain only the front 180° of the FOY 
and remove all points beyond 4 m. 

As an additional source of information, we use the KinFu 
module in the Point Clouds Library (PCL) [l7], an open­
source version of the original Kinect Fusion algorithm [1]. 
KinFu stitches together multiple views from the Asus and 
creates a smoother surface model of the vehicle through depth 
super-resolution than one frame alone contains. KinFu uses 
iterative closest point (lCP) on the 3-D point clouds captured 



Fig. 3. Point cloud of golf cart scene captured from Asus depth camera with 
KinFu. 

at successive sensor poses to estimate the camera motion and 
put all of the sequence's points into a common frame. ICP can 
fail when the scene does not have sufficient 3-D structure, as 
with large planar surfaces [18], but for the vehicle scanning 
we do it works quite well. 

The point cloud obtained from KinFu for a handheld 
minute-long scan around the vehicle, voxelized at a resolution 
of 0.025 m and colored by height in ROS rviz [19], is shown 
in Fig. 3. In future work this point cloud will be gathered from 
the robot as it walks toward and around the vehicle. 

All computations except the KinFu capture were done on 
an Intel i7-3720QM 2.6 GHz laptop with 16 Gb of RAM. 

III. VIEW A LIGN MENT 

Throughout this paper we use the ROS [19] convention for 
coordinates of + X pointing forward, + Y to the left, and + Z 
up. 

A. Obtaining Vehicle Coordinates 

As can be seen in Fig. 3, the KinFu-captured scene cloud 
includes points from the ground and other objects. Before 
further processing, we want to detect which points belong to 
the vehicle in order to filter out distracting background features 
and obtain the vehicle dimensions. As a first step, the ground 
plane is found and parametrized by a robust plane fit using 
RANSAC [17], the entire point cloud is rectified to put the 
ground plane at Z = 0, and ground plane points are removed 
by thresholding z ::; 0.05 m. A heightmap Hscene is then 
generated over a bounding box around the remaining KinFu 
scene points at a resolution of 0.01 m. Hscene is shown in 
Fig. 4(a) with red representing cells with no data and intensity 
proportional to z, up to a maximum of 1 m. 

We formulate the vehicle detection problem as finding the 
position, orientation, and dimensions of a vehicle-sized rect­

angle Rveh = (Xveh, Yveh, eveh, lveh, Wveh) in Hscene. With 
appropriate bounds on lveh and Wveh and a rough expectation 
of the average vehicle height, this is a well-posed problem if 
there is exactly one vehicle in the scene. For this work we 
learn bounds from published specifications of a representative 

(a) (b) 

Fig. 4. (a) 0.01 m resolution heightmap Hscene of KinFu-derived point 
cloud from Fig. 3 after rectification and ground removal. Red pixels are "no 
data" cells and intensity saturates at 1 m. (b) Estimated vehicle heightmap 
Hveh 

Fig. S. Sample utility vehicles (Cushman Hauler and Kawasaki Mule) from 
set used to learn vehicle dimensions. Note the different heights and widths of 
the floor step areas and locations and angles of the steering wheels. 

sample of 7 similar utility vehicles. I Minimum and maximum 
values of the vehicle length, width, and aspect ratio were 
computed over this set, and these were scaled down and up by 
90% and 110%, respectively, to get absolute bounds. 

The likelihood Pveh(R) of a particular hypothetical rect­
angle R = (x, Y, e, I, w ) is measured via height contrast: 
intuitively, we are looking for a rectangle-shaped region filled 
with obstacle points surrounded by some amount of free 
space in Hscene. We quantify this by counting the number 
of occupied cells Gin and free cells Fin inside R, the number 
of occupied cells G frame in a rectangular frame around R, 
and compute the contrast Pveh(R) = Gin - W(Fin + G frame). 
For the results here W = 0.5 and the frame width is 0.2 m. 
Note that there is no distinction made between the front end 
and the rear end of the vehicle. This ambiguity is resolved at 
the part detection stage in Section IV. 

To find the maximum likelihood, we run a particle filter 
[20] with 200 particles, starting with a uniform prior distri­
bution on the state variables within the learned dimensional 
bounds and the positional bounds of Hscene (e is completely 
unknown). The state after 250 iterations is taken as the best 
vehicle rectangle RVeh. If a randomly-generated hypothesis 
violates the dimensional bounds given above, rather than 
assigning it a zero likelihood we simply resample it from the 
prior distribution. 

The heightmap resulting from the vehicle estimate, which 
takes a few seconds to obtain, is shown in Fig. 4(b). The 
camera path did not get full coverage on the passenger side, so 

1 Kawasaki Mule 4000, Cushman Hauler 800 electric, Polaris Ranger EV, 
Deere R-Gator, Deere HPX 4x4, Honda Big Red, and Bobcat 4200 4x2 
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Fig. 6. Right stereo camera images from static capture locations described 
in text 

the point cloud is ragged there, resulting in a slightly wrong 
width estimate. e is also slightly off, most likely due to the 
low resolution of the heightmap. There are several ways to 
improve both of these issues with additional processing, but 
these results are sufficient for the other perceptual tasks that 
need them. 

B. Registration of Individual Views 

Part detection can operate on the full vehicle heightmap 
Hveh in Fig. 4(b), and we show results for doing so in 
Section IV. However, we are also interested in detecting parts 
in the sensor point clouds obtained at individual poses as the 
robot moves. With a sensor's limited FOV and intra-vehicle 
occlusions, parts such as the floor or steering wheel might be 
completely out of view or only partially visible. 

To illustrate this, data on the test vehicle was captured 
from four static positions with the sensor head on a tripod, 
all at about the head height of the Hubo. Views from the 
right stereo camera are shown for these positions in Fig. 6. In 
PassengerMid (PM) the vehicle floor is in view but the 
steering wheel is out of frame. In PassengerRear (PR) 
the floor is mostly visible and the steering wheel is partially 
visible. In DriverSteering (DS) the steering wheel is 
prominently in view but the floor is partially blocked by the 
seat. Finally, in PassengerSteering (PS) the steering 
wheel is in view but the floor is almost completely occluded. 

Each sensor point cloud is rectified and ground plane points 
removed as described above for the KinFu data. The procedure 
is somewhat different because there may be little or no ground 
visible in close-up views of the vehicle. Thus, as a first step the 
point cloud is roughly rectified using the height of the sensor 
head and its tilt angle with respect to the ground as reported 
by the lab's motion capture system described in Section 11.2 

Rough ground points (Izl � 0.1 m) are then selected; if there 

2In the field, the tilt angle would be supplied by the IMU and the height 
of the sensor head would be derived from the robot kinematics 

Asus Hokuyo 

Fig. 7. Cropped views of point clouds obtained from DS pose in Fig. 6 after 
rectification 

are none, this is the final ground plane. Otherwise, RAN SAC 
robust plane-fitting with an inlier threshold distance of 0.01 m 
followed by least squares refinement is applied to the rough 
ground points to obtain the final ground plane. This plane is 
used to rectify the original sensor point cloud and remove 
ground points with a threshold of 0.05 m. Assuming that the 
sensor is near the vehicle and pointed at it, we also remove all 
points more than 2 m away. The rectified point clouds at pose 
D S from the Asus and Hokuyo before ground point removal 
and distance filtering are shown in Fig. 7. 

Even after rectification and filtering, interpreting these 
sensor point clouds can be difficult because they only show 
a portion of the vehicle, and which portion is unknown. We 
remove this uncertainty by attempting to register each sensor 
point cloud to the full KinFu vehicle point cloud. Because 
both clouds are rectified, it is only necessary to find a 2-D 
translation and rotation T = (�x, �y, �e). Rather than work 
with the point clouds, it is efficient to convert the sensor cloud 
for sensor s to a heightmap Hs. Sample sensor heightmaps 
for the Asus and Hokuyo at pose D S derived from the point 
clouds in Fig. 7 are shown in Fig. 8. Note that these are 
different sizes because the sensors' different FOVs result in 
different bounding boxes. Their scales are the same, as are 
their orientations. 

Given the non-vehicle points which may be present in 

Hs, finding the T which makes it best agree with Hveh 
is essentially a robust image template-matching problem. A 
standard approach would be to compute features such as SIFT, 
SURF, etc. in each heightmap "image", match them, and 
estimate T from the matches in a RANSAC-Iike framework, 
but this is complicated here by the small size of the images and 
the "no data" cells/pixels. For this preliminary work we found 
that a simple, successful approach is to formulate a pixelwise 
objective function f(T, Hs, Hveh) which measures the degree 
of match between Hveh and H;, the sensor heightmap after 

transformation by T, and set T = argmaxT1(-). To evaluate 

10, we iterate over all pairs of corresponding heightmap cells 
(hveh, h;) in the overlapping portion of Hveh and H; and 
count the number of matches. A pair is considered a match if 
(a) there is height data for both heightmap cells (i.e., neither 
one is red) and (b) their heights are relatively close-we use 

Ihveh - h;1 � 0.1 m. 

To optimize 10, we do an exhaustive search at a quarter of 
the original heightmap resolution at 1 pixel translational and 10 
angular increments to find an approximate solution T1/4, then 
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Fig. 8. Sensor heightmaps of point clouds obtained from DS pose in Fig. 6 
after rectification and ground removal 

DS 
Hokuyo 

PS PR PM 

Fig. 9. Registered and trimmed heightmaps of individual sensors 

search again at half-resolution within a tighter angular range of 

�e1/4 ± 5° at 0.5° increments for a better solution T 1/2. This 
process takes about 1 minute to compute. The full sensor cloud 

is then transformed with T 1/2 and ICP is performed between 

it and the KinFu vehicle cloud to get a final T. The registered 
sensor heightmaps found for each of the four example views 
(after trilmning points outside the vehicle bounds), which we 
will term H�s, H;' S , H;'R, and H;'M, are shown in Fig. 9. 

IV. VEHIC LE PART DETECTION 

With a sensor view registered to the vehicle and non­
vehicle points trimmed away, the search for any parts of 
interest to the motion planner is considerably constrained. We 
detail these constraints and the individual part detectors below. 

A. Floor 

Intuitively, the floor is expected to be a planar rectangular 
region parallel to the ground plane. Unfortunately, we cannot 
simply use RANSAC to find the strongest horizontal plane in 
a particular registered sensor heightmap H; because of the 
potential for confusion with the seat or hood planes, as can 
be seen from Fig. 9. However, we have prior knowledge that 
the floor plane must be at a steppable height. Assuming that 
this is a roughly constant offset above the vehicle's ground 
clearance, we once again use specifications from the set of 
exemplar vehicles introduced in Section III-A to obtain min­
imum and maximum bounds on the floor height (in this case 
Zfloor E [0.15,0.40] m). Excluding points in the registered 
sensor point cloud outside of this range yields a nominal floor 

Fig. 10. Inliers after horizontal plane fitting on floor height slice in green, 
outliers (aU other vehicle points) in red, and fitted rectangles outlined in blue. 
"No data" points are white here, and inliers overwrite outliers for display 
(which is why the steering wheel is oddly cropped in F�;us) 

slice upon which we then run a RAN SAC horizontal plane fit 
(i.e., the normal must be within 5° of vertical). This finds the 
floor plane in seven of the eight H; in Fig. 9 as well as Hveh 
in Fig. 4(b) (not enough inliers were found in H��k)' 

Fig. 10 shows the floor plane inliers for each sensor 
and view F; in green and outlier points from the vehicle 
in red. Isolating the cluster of inliers belonging to the floor 
region itself can be formulated as a rectangle finding problem 
similar to the vehicle detection task in Section III-A. However, 
whereas that problem has a 5-D search space, this one is more 
constrained. We assume that the floor rectangle's axes are 
aligned with those of the vehicle, its width is approximately 
the same as the vehicle, and its center is on the vehicle 
centerline. This leaves only 2 free variables to determine 
Rfloor: (Xfloor, lfloor), the floor's forward/backward position 
and dimension (i.e., the distance between the seat and the 
dashboard). We put reasonable bounds on these variables 
and again run a particle filter with the likelihood function 
Pfloor(R) = (Nin - Nout)jA, where Nin is the number of 
floor plane inliers in R, Nout is the number of outliers in the 
rectangle, and A is its area. 

The search is very fast to converge and only 10 iterations 
are needed. The blue lines in Fig. 10 indicate the estimated 
floor rectangles. These are accurate when the whole floor 
region is visible, and conservative when it is not. Impingements 
like the pedals, drink holders, and steering wheel are detectable 
as outlier points present inside the floor rectangle, and this 
information can be passed on to the motion planner. Some 
error is due to rotational inaccuracy in the registered sensor 
heightmaps. 

B. Steering Wheel 

For purposes of pattern recognition, the steering wheel is 
essentially a circle on an inclined plane. From automotive stan­
dards there are fairly tight bounds on the possible radius r, and 
we expect that it will be tilted in the range of ¢ E [20°,70°], 



Fig. 11. Fitted steering wheel rectangles outlined in blue on steering wheel 
height slice ("no data" points are red here) 

where 0° would be parallel to the ground plane. As before, 
we can limit the search for it to a reasonable range of heights 
to filter out some vehicle points, and its x, y position within 
the vehicle is somewhat constrained (even not knowing front 
from back or whether it is a right- or left-hand drive vehicle). 

Our approach here is to interpret a particular steering wheel 
pose and size hypothesis in terms of an axis-aligned (in vehicle 
coordinates) bounding rectangle Rsw in a registered sensor 
heightmap H;. This rectangle's center is defined by Xsw, Ysw, 
its width is just 2r sw, and its length is 2r sw cos cp. Within a 
hypothetical bounding rectangle we expect to see an ellipse of 
points whose heights contrast with those of nearby points just 
outside the ellipse (i.e., floor and/or seat points). We quantify 
this by sampling the ellipse at N discrete points and counting 
how many pairs of inside/outside points Nin have a height 
difference of ;::: 0.05 m or the outside point has no data vs. 
how many Nout are about the same height. The likelihood of 
the associated rectangle is then Psw(R) = (Nin - Nout)/N. 

A particle filter is again used to search for 200 iterations 
over different rectangles to optimize Psw. If the likelihood of 
the best rectangle found is less than 0.5, we say that no steering 
wheel has been found. With this criterion, all of the detections 
are shown in Fig. 11. The estimated diameters range from 
0.353 to 0.357 m; the hand-measured diameter of the golf cart 
steering wheel is 0.346, a 1 cm difference. 

V. CONC LUSION 

We have presented several techniques for detecting and 
estimating parameters of utility vehicle parts as prerequisites 
for for humanoid robot ingress. More polishing could be done 
to improve the accuracy of the estimates, but the basic methods 
are robust for both sensors tested. In future work we will 
include other part types such as the seat and the pedals, and 
refine our knowledge of the steering wheel's spoke locations 
and tube diameter so that it can actually be gripped. Thus far 
the detectors presented are "first-order", in that they do not 
depend on or otherwise exploit one another's output. We are 
currently examining how the knowledge of where the floor is 
may help steering wheel detection and vice versa, as well as 
all of the other categories under consideration. 

Demonstrating generality is very important, and we plan 
to use KinFu to collect models of a number of other utility 
vehicles to test and refine these techniques. We are also 
working on integrating the sensor head with Hubo and getting 
these methods to run in real-time. Incremental registration of 
the sensor head to the KinFu point cloud as it is built should be 
much more efficient than the approach given in Section III-B. 
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