
Multi-Process Control Software for HUB02 Plus Robot 

M.x. Grey t, Neil Dantam t, Daniel M. Lofaro+, 

Aaron Bobickt, Magnus Egerstedtt, Paul Oh+, Mike Stilmant 

Abstract-Humanoid robots require greater software reli­
ability than traditional mechantronic systems if they are to 
perform useful tasks in typical human-oriented environments. 
This paper covers a software architecture which distributes the 
load of computation and control tasks over multiple processes, 

enabling fail-safes within the software. These fail-safes ensure 
that unexpected crashes or latency do not produce damaging 
behavior in the robot. The distribution also offers benefits for 
future software development by making the architecture modular 
and extensible. Utilizing a low-latency inter-process communi­
cation protocol (Ach), processes are able to communicate with 
high control frequencies. The key motivation of this software 
architecture is to provide a practical framework for safe and 
reliable humanoid robot software development. The authors test 
and verify this framework on a HUB02 Plus humanoid robot. 

I. INTRODUCTION 

Due to the critical role of software in robot operation, a great 
deal of consideration needs to be put into the underlying design 
of a robot's software architecture. The simplest approach to 
developing robot software is to integrate all functionality, from 
hardware drivers to planning algorithms, into a single exe­
cutable program. This single-process approach has the benefit 
of being free from inter-process conununication latency, which 
might be good for performance depending on the application. It 
also simplifies the design considerations required on the part of 
the programmer which can make the initial stages of software 
development easier. 

Despite these benefits, the single-process design increases 
the possibility critical system failure by making all operations 
interdependent. For example, a single segmentation fault in a 
single component in the software would immediately crash 
all operations on the robot. For a humanoid, which must 
constantly maintain dynamic balance and control, this behavior 
is unacceptable. If a planning algorithm or a perception process 
crashes or stalls for any reason, this should not result in the 
robot losing stability and damaging itself. Rather, the robot 
should maintain stationary balance while it waits for the higher 
level processes to restart. 

The software architecture described in this paper addresses 
this concern and more. It improves software reliability by 
distributing functionality between independent processes (dae­
mons) which use an efficient and flexible communication 
interface called Ach. Before describing how these are used, we 
will introduce basic concepts in multi-process operation and 
inter-process conununication, and then describe the particular 
robotic platform into which this design has been integrated. 

t Authors are affiliated with Georgia Institute of Technology, Atlanta, 
GA, 3033� USA. {mxgrey, ndt, magnus}@gatech.edu ud 
{afb, mstilman}@cc.gatech.edu. 

:I: Author is affiliated with Drexel Univeristy, Philadelphia, PA, 19104, USA. 
paul@coe.drexel.edu and dan@danLofaro. com. 

978-1-4673-6225-2/13/$31.00 ©2013 IEEE 

A. Real-Time Robot Control with Multiple Processes 

In general, a process is simply a self-contained computer 
program which runs on an operating system. Processes do not 
necessarily require any interaction from the user (i. e. they can 
run invisibly in the background of the operating system), and 
these particular processes are commonly referred to as dae­
mons. The processes discussed in this paper are daemonized, 
so they run in the background of the operating system and 
manage themselves, without requiring user interaction. They 
also save output or error messages to logs which can be viewed 
at any time. 

The ability to perform real-time tasks is critical in robot ap­
plications which require dynamic balancing or quick response 
time. For a multi-process architecture, this means that certain 
processes need a higher priority to ensure that they perform 
their tasks at a consistent frequency which corresponds to their 
real-time needs. This means that the operating system will 
temporarily stop lower priority tasks to let the real-time process 
run whenever needed. A higher priority process always runs 
first, ensuring that the computer's resources are focused on 
handling the most important tasks. 

Using a mUlti-process approach provides modularity in the 
software architecture. Stable and previously developed pro­
cesses can remain untouched even as new features are added 
into the software. For example, a process which performs 
motor control calculations would not need to be modified in 
any way in order to implement a new planning or perception 
algorithm, because these new features could simply go into 
their own process. This makes the architecture extensible, 
allowing for stability and consistency as software development 
progresses in the future. 

B. Inter-process Communication & Ach 

Multi-process systems require Inter-process Communication 
(IPC). Robotic systems have particular needs in this regard, 
which differ from those of general-purpose computing systems. 
General purpose IPC such as pipes and sockets favor older data 
over newer and can block or drop newer messages (known 
as Head-of-line Blocking). the most recent data sample. In 
addition, it is critical to minimize message latency for real­
time tasks such as dynamic balance and force control of 
manipulators. 

To address the special needs of real-time systems and 
produce reliable control software for our robots we use Ach1 

IPC library, which enables efficient mUlti-process real-time 
control, is more suited to robotics applications than traditional 
IPC mechanisms, and is formally verified to ensure correctness 
[1] . 

1 Ach is available at http://www.golems.orginode/lS26 



Ach provides a publish-subscribe or message-bus interface 
for multiple processes simultaneously. Typically, one process 
publishes information to an Ach channel while other pro­
cesses read from the channel as needed. ROS [2] inter-process 
communication is not suitable for our needs because it does 
not operate fast enough to satisfy our real-time application 
and suffers from the aforementioned Head-of-line Blocking. 
OROCOS [3] and NAOqi [4] are not used in our architec­
ture because they do not provide the necessary mUlti-process 
publish/subscribe system. 

In addition to excellent local inter-process communication 
performance, Ach also enables networked communication. A 
remote computer can push messages to an Ach channel on the 
robot's on-board computer. This means that daemons which 
require extra processing power, such as the Planning Daemon, 
can be run on an external high-performance computer and 
their output transferred via TCP or UDP to an Ach channel 
in HUBO's on-board computer. This feature can also be used 
in reverse where external computers can pull messages from 
HUBO's on-board Ach channels. This networking feature of 
Ach provides seamless integration between on-board real-time 
processes, such as hardware and control daemons, and off­
board non-realtime processes, such as planners and loggers. 

C. HUB02 Plus 

The particular software design described in this paper has been 
implemented on a HUB02 Plus humanoid robot. HUB02 Plus 
is a 130 em (4' 3") tall, 42 kg (93 lb) full-size humanoid 
robot commonly refered to as HUBO. It was designed and 
constructed by Prof Jun-ho Oh at the HUBO Lab in the Korean 
Advanced Institute of Science and Technology (KAIST) [5] . 
HUBO is anthropomorphic, meaning it has 2 arms, 2 legs 
and a head. There are 6 degrees of freedom (DOF) in each 
leg, 6 in each arm, 5 in each hand, 3 in the neck, and 1 
in the waist; all totalling 38 DOF. All of the major joints 
are high gain PD position controlled with the exception of 
the fingers. The fingers are open-loop PWM controlled. The 
sensing capability consists of a three axis force-torque (FT) 
sensor on each leg between the end of the ankle and the 
foot as well as between where the arm connects to the hand. 
Additionally it has an inertial measurement unit (IMU) at the 
center of mass and accelerometers on each foot. The reference 
commands for all of the joints are sent from the primary 
control computer (x86) to the individual motor controllers 
via two Controller Area Network (CAN) buses. There are 
currently eight HUBO's functioning in the United States as 
of December 2012. Four reside at Drexel University and one 
at Georgia Tech, Purdue, Ohio State, and MIT. Jaemi HUBO 
is the oldest of the HUBOs in America and has been at the 
Drexel Autonomous Systems Lab2 (DASL) since 2008 [6] . 
Fig. 1 shows the major dimensions of HUBO. 

II. HUBO CONTROL DESIGN 

This section will describe the particular software design which 
has been (and is continuing to be) developed for the HUBO 
platform. It will discuss the hierarchy of daemons, their role 
in the operation of the robot, and finally how a user or 
programmer can interact with the daemons as well as develop 

2Drexel Autonomous Systems Lab: hup://dasl.mem.drexel.edu/ 

2 

Fig. 1. HUB02 Plus platform: 38 DOF, 130 em tall full-size humanoid robot 
weighing 37 kg. 

daemons of their own (for purposes such as planning and 
perception). 

A. Daemon & Communication Structure 

In this design, daemons are placed into a hierarchy based 
on how critical or how low-level their functionality is, as 
seen in Figure 2. The lower-level daemons run with a higher 
process priority, ensuring that when they need to run, they 
are not interrupted by a less important process, such as the 
user interface. Each box in Figure 2 represents an independent 
process, all of which are daemons running the background, 
and each column represents a set of equal priority processes. 

In this design, commands flow cleanly from the left­
most tier (planning and perception) to the right-most tier 
(the hardware interface), and then feedback data flows back 
over to all processes. Each arrow signifies an independent 
Ach channel. Solid lines represent command channels while 
the dotted lines represent a feedback channel. Notice that all 
the dotted lines fork off of a single arrow; this intentionally 
represents that all feedback is contained on a single channel 
which all daemons read from simultaneously (except for the 
CANlHardware Daemon which exclusively publishes to it). 

The left-most arrow represents the user interface. This is 
where the user sends high-level instructions or commands 
into the system. These instructions are passed into the Plan­
ning Daemon which determines the how to fulfill the user's 
instructions. The Planning Daemon takes in pre-processed 



User 
Interface 

Channel 

Motor 
Command 
Channel Hardware 

(CAN) 
Daemon 

Hardware 
Commands 

. : _. _. _. _._ . _. _. _. _. _. _ i _. _. _. _. _. _ .;.. . _. _. _. _. _. _. _. _. _. _. _. _. _. _. _ .:_ .  _. _. _. _. _. _. _._ . _. _. _. _. _. _. _._; 

Fig. 2. Daemon Communication Flow Chart 

information from the Perception Daemon to aid its decision­
making. Once a plan is computed, the Planning Daemon begins 
feeding commands into the Manipulation Daemon, which 
monitors and controls HUBO's arms and end effectors, and 
the Balance Daemon, which performs balance and locomotion. 
These two daemons determine what position, velocity, and 
acceleration configurations are appropriate for the arms and 
legs respectively. The motion parameters are then filtered into 
the Control Daemon which calculates the motor commands 
necessary to generate the desired positions, velocities, and 
accelerations. These motor commands are sent into the CAN 
Daemon (called CAN because the hardware communicates 
using Controller Area Network). Finally, the CAN Daemon 
reads state information from the motor controllers and on­
board sensors and publishes them to the State Ach Channel 
which is read by all the other daemons. 

All of these processes run concurrently, based on their 
priority. They do not necessarily need to wait for data or signals 
from other processes in order to perform their calculations or 
send their signals. This is hugely beneficial because it means 
that the performance of the daemons does not need to be stalled 
by waiting for other components to respond. While the CAN 
Daemon is sending/receiving data from the hardware, the other 
daemons can be performing decision-making or dynamics 
calculations. With a system like this, it would be feasible 
for the Planning Daemon to begin planning for the next task 
while the Manipulation and Balance Daemons are carrying 
out the current plan. Finally, this multi-process division takes 
advantage of HUBO's multi-core CPU by performing multiple 
computations simultaneously. 

Along with the parallelization, the individual daemons do 
not require conunands on any regular basis in order to perform 
their functions. The exact behavior of each daemon varies, but 
in general the daemons are designed to carry out to completion 
the last task given to them by their parent daemon. Specific 
behaviors are discussed in the next subsection. Decoupling the 
daemons from their parents and endowing each of them with a 
degree of autonomy ensures that overall performance is never 
held up by any single issue. 

B. Specific Roles of Various Daemons 

Presently, the bottom two tiers (Hardware Daemon and Control 
Daemon) are fully developed and stable while the third tier 
(Manipulation and Balance Daemons) are functional but un­
dergoing continued development. The left-most tier (Planning 

3 

and Perception) will be developed within upcoming projects. 
It is also important to note that this whole design is extensible; 
it is not limited solely to the daemons as described in Fig. 2. 
More daemons or processes can be easily integrated into the 
structure. This potential integration will be described in greater 
detail in Section II-C. 

1) CAN (Hardware) Daemon: The sensor and motor con­
troller boards in the HUBO platform all conununicate using 
a Controller Area Network (CAN) bus. The CAN Daemon is 
responsible for taking the conunand data structures assembled 
by other daemons and converting them into CAN frames to 
be sent to the motor and sensor boards. The CAN Daemon is 
also responsible for polling all the boards for state information, 
such as encoder positions, motor current (ampere) values, 
and sensor values (including force-torque and accelerometer 
data). After grabbing the state information from the CAN 
bus, the information is converted into data structures which 
are convenient for other processes to utilize, and these data 
structures are published to the State Ach channel. Along with 
the latest state data, the CAN Daemon provides the data 
with a timestamp. This timestamp allows the daemons to 
synchronize their behavior with the CAN daemon (and each 
other) if desired. It also provides a clear indication of the 
time lapse between instances of state data so that velocity 
(and any other time derivatives) can be calculated reliably. 
The daemon operates in real-time to allow Phase-Locked Loop 
communication over CAN. It sends commands at a fixed 
frequency to ensure that the CAN bus bandwidth is never 
saturated. This fixed frequency also allows other daemons or 
applications to operate at any frequency without affecting the 
rate of communication over CAN. 

2) Control Daemon: Presently, the motor control boards on 
HUBO only offer position control. The position control gains 
used on the boards are extremely high due to Dr. Jun-ho Oh's 
design philosophy for HUBO. Specifically, the philosophy is 
that if the hardware does precisely as it is instructed, then no 
further feedback control system is necessary in the software 
[5] . However, these extremely high gains can result in violent 
behavior if position commands are not sent to the boards 
very carefully. The Control Daemon ensures that the values 
sent to all of the motor controller boards are always sane. 
Motor control commands are not allowed to go to the boards 
without passing through the Control Daemon first. The Control 
Daemon has three particular modes: 

Position Control - For each joint, the Control Daemon is 



sent a desired position (in jointspace), a nominal velocity, and a 
nominal acceleration. It is then the responsibility of the Control 
Daemon to smoothly move the joint from its current position 
and velocity to whatever desired position was requested. In 
particular, "smoothly" means that it must accomplish the task 
without ever exceeding the nominal velocity or the nominal 
acceleration. This generates a position trajectory like what is 
seen in Fig. 3 where each end of the trajectory is smoothed 
out parabolically. Note that there is an intentional deceleration 
prior to reaching the target position in order to prevent a sudden 
stop. The command containing the desired position only needs 
to be sent to the Control Daemon once and it will be carried 
all the way through to completion. But at the same time, it 
does not hurt in any way to repeatedly send the same control 
command to the Control Daemon. Rapidly sending alternating 
commands which strongly oppose each other (for example, 
fluctuating rapidly between -2rad and +2rad) will simply 
cause the joint to move back and forth without ever violating 
the velocity and acceleration limits. In other words, it will 
not shake or do anything violent, no matter how extreme the 
position commands are. 

1.4 c---,----,---,---,----.,----.,---, 

1.2 

0.2 

°O���O�.5--�-�1.�5 --2�-�2�.5�-�3--�3.5 
time (s) 

Fig. 3. Parabolic Smoothing of a Position Command 

Velocity Control - For each joint, the Control Daemon is 
sent a desired velocity (in jointspace) and a nominal acceler­
ation. The Control Daemon will then drive the joint at the 
desired velocity without ever exceeding the nominal accel­
eration. In general, this will generate a trapezoidal velocity 
trajectory. A key difference between velocity control mode 
and position control mode is that, unlike position control, the 
velocity control mode requires periodic updates on what the 
velocity should be or else the Control Daemon will decelerate 
the joints back down to O. The time waited by the Control 
Daemon before decelerating is a paremeter which can be set 
by the user or by whichever process is sending the velocity 
control command. This behavior is so that if a parent program 
using velocity control is interrupted or crashes, the Control 
Daemon will not blindly continue to push the joint forward. 

Passthrough Control- Use of this control mode is generally 
discouraged. In this mode, the Control Daemon will simply 
pass any control cOlmnands straight through to the CAN 
Daemon without filtering or monitoring them. The use of this 

4 

mode is in order to accomodate outside processes which need 
to perform joint control without being subjected to any filter. 
If a particular control algorithm needs to send motor reference 
position commands without those commands being tampered 
with, they would use the pass through mode. 

3) Manipulator Daemon: This daemon takes end effector 
position and orientation commands and uses analytical inverse 
kinematics to generate the required joint angle and velocity 
configurations. These desired joint angle positions are then sent 
into the Control Daemon. In our current setup, the end effector 
commands are being streamed into the manipulator daemon 
from a Polhemus:FASTRAK sensor suite which follows the 
position and orientation of a human hand. This allows us to 
teleoperate the robot's arms by simply holding a sensor in each 
hand and having the robot mimic our movements. 

4) Balance Daemon: This daemon uses IMU and force­
torque readings to maintain the robot's balance at all times. 
As development continues, this will progress into a dynamic 
model-based controller. Moreover, it will ultimately be respon­
sible for locomotion and controlling the gait of HUBO. It will 
receive conunands like a state machine, which means there will 
be a finite enumerated list of commands (such as "step for­
ward", "step backward", "turn by x degrees") and the Balance 
Daemon will follow these commands in an intelligent way, 
ignoring commands which cannot be performed or delaying 
them until they can be performed. 

5) Other Daemons: In general, any other daemons will 
be used for decision-making in some capacity, whether they 
are performing perception, planning, or optimization. These 
are high-level daemons which are not considered critical to 
the safety of the robot (although they may be critical to the 
successful execution of the robot's task). They will commu­
nicate their plans to the Manipulation and Balance Daemon, 
and then those daemons will be responsible for converting the 
high-level demands into lower-level control commands. These 
daemons have no requirement to run in real-time. For example, 
a walking trajectory planner currently exists which uses ZMP 
Preview Control to generate a full body trajectory. It runs at 
a much lower frequency than the balance daemon and then 
periodically sends a chunk of trajectory to the real-time process 
which is responsible for running and maintaining the plan in 
real-time. 

C. Application Programming Interface 

A design such as this is not as useful if it is too burdensome to 
interface with. If a programmer needs to spend an inordinate 
amount of time dealing with "housekeeping" (such as orga­
nizing a data structure, consciously sending off packages, or 
parsing incoming messages) it distracts from the programmer's 
real task of implementing a good algorithm. 

The Ach suite comes with a library which makes these 
tasks straightforward. A simple function achyut will send 
off a message to a channel, while ach�et will retrieve data 
from a channel. The messages are sent as raw byte arrays. 
Our software for HUBO uses C structures for messages, so no 
additional parsing or serialization/deserialization is necessary. 

The software architecture which has been developed for 
HUBO takes this a step further. All of the "housekeeping" 



is taken care of within a shared library which wraps all 
functionality up inside of a single C++ class. The constructor 
for this class automatically opens up all necessary commu­
nication channels, and member functions of the class handle 
all message and error handling. There are functions which 
have intuitive names (such as "setLeftArmAngles") which take 
care of all data structure formatting and message sending. 
This approach enables the user to focus solely on algorithm 
design without needing to worry about the gritty details of 
implementation. 

III. RESULTS 

Here we will outline the results observed from using this 
design over repetitive trials. The goal of this section is to 
demonstrate - beyond mere postulation - the effectiveness of 
this design. First we will benchmark latencies in the system. 
Then we will list the observed behavior when individual 
components are forced to fail. 

A. Benchmarking 

In order to gauge the response frequency, commands from the 
balance daemon were tracked to see how long the following 
process took: 1) State data sent from Hardware Daemon, 2) 
Data processed by Balance Daemon, 3) Control Command 
sent by Balance Daemon, 4) Control command processed by 
Control Daemon, 5) Motor motor command sent to Hardware 
Daemon, 6) Motor conunand delivered to hardware, 7) New 
state data acquired by Hardware Daemon. 

This time represents an upper bound on how much latency 
exists between the acquisition of data and the response of the 
system. A more exact measure of the latency could have been 
measured, but this would have required double the amount of 
data logging, which is a computationally expensive procedure. 
In fact, the four spikes seen in Fig. 4 are likely attributable to 
the logging. 

0.03,---�--�-�-��-�-�--�----, 

o 2 4 6 8 
RunTime 

10 12 14 16 

Fig. 4. Latency of commands travelling from Balance through Hardware 
Daemon 

The upper bound on the latency hovers close to 0.02sec. 
The reason for this is the Hardware Daemon operates at 100 

5 

Hz3, meaning it completes a single loop roughly every 0.01 sec. 
At the end of its loop, it sends off the latest state data. At 
the start of its loop, it grabs the latest commands which were 
sent out by the Control Daemon. These latest cOlmnands will 
be based on the state information (and timestamp) sent out 
by the loop before the last one, because the latest control 
commands were being computed while the Hardware Daemon 
was handling the CAN conununication in the previous loop. 
What this amounts to is that control computations are being 
performed while CAN communication is happening, and those 
control computations will typically be available for the Hard­
ware Daemon to send out by the time it begins its next loop. 

B. Robustness to Software Errors 

In the interest of having prior knowledge of what would happen 
if any component in the design were to fail, experiments were 
run in which each daemon was forced to quit via the operating 
system terminal during operation. This was performed multiple 
times while standing still and while in motion with consistent 
results, and those results are listed here. These describe the 
behavior which would be exhibited if each component were to 
fail unexpectedly. 

1) CAN (Hardware) Daemon: The Hardware Daemon is 
certainly the most fundamental for maintaining control over 
the system. However, since the motor controller boards utilize 
position feedback, cutting off communication with them will 
simply result in the boards locking in place. If none of HUBO's 
joints are moving when the Hardware Daemon is cut off, the 
boards will simply no longer respond to any further commands 
until the Hardware Daemon is restarted. If a joint is in motion 
when the Hardware Daemon is cut off, any moving joints will 
very suddenly stop. 

2) Control Daemon: The physical result of the Control 
Daemon being cut off is identical to the result of the Hardware 
Daemon being cut off. The reason for this is that, either 
way, the boards will not receive any new reference position 
commands. Internally, however, all the other processes will 
continue to be updated about the states of HUBO, and therefore 
they can continue to monitor the state and condition of the 
hardware. The Control Daemon can simply be restarted to 
resume activity. 

3) Balance Daemon: Balance is performed using velocity 
control on the leg joints. Currently they have a time-out delay 
of 0.5 seconds. This means that if a new velocity control 
command is not sent within a half-second, the Control Daemon 
will smoothly wind the velocity of all the joints down to 
zero, ultimately freezing them in place until a new velocity 
command is received. Therefore, if the Balance Daemon is 
killed prematurely, the Control Daemon will continue driving 
the joints at the last velocity command it received until 0.5 
seconds have elapsed; then it will wind down all the leg 
velocities to zero. If the robot is in a stable position as the leg 
velocities get wound down, then the robot will remain upright. 

4) Manipulator Daemon: Manipulation is performed using 
position trajectories. In particular, the Manipulator Daemon 
sends "desired location" commands to the Control Daemon 

3100 Hz is dictated by the need to not saturate the CAN bus. However, 100 
Hz is not an upper-limit, and this might be increased in future operations on 
HUBO. 



Failed Component Stability of Motion 
Static Quasi-Static Dynamic 

Hardware No Effect Sudden Stop in All Joints Falls over 
Control No Effect Sudden Stop in All Joints Falls over 
Balance No Effect Smooth Stop in Legs Falls over 
Manipulator No Effect Smooth Stop in Arms Smoolh SlOp in Arms 
Planner No Effect Finishes last plan provided Finishes last plan provided 
Perception No Effect Finishes last plan provided Finishes last plan provided 

TABLE I. FAILURE MODES OF DIFFERENT COMPONENETS 

which generates a smooth trajectory from the current Jomt 
locations to the desired location. Therefore, when the Manip­
ulator Daemon is forced to crash, the Control Daemon will 

ensure that the arms simply arrive at the last position requested 
by the Manipulator Daemon. Moreover, the Control Daemon 
is aware of all joint limits, so it will never try to send a joint 
past its limit. 

5) Planning & Higher-level Daemons: Presently only a 
walking trajectory planner exists, but its failure mode would be 
reflective of all other high level daemons (such as a perception 
daemon or a manipulator planner daemon). The trajectory 
planner daemon is designed to always send segments of a 
trajectory plan which ends in a stable configuration. Therefore, 
if it is cut off, the Balance Daemon will continue its operation 
up to this stable configuration and then wait until a new 
command is provided. In general, the balance and manipulator 
daemons have default behaviors to fall back on in the event 
that their pipeline to the higher level daemons is interrupted. 

A chart of these results is presented in Table l. In all 
of these circumstances, each daemon can be restarted and 
resume its task seamlessly. There are only three daemons for 
which crashing would pose a potential hazard to the robot: the 
Balance, Control, and Hardware Daemon. In theory, if one of 
these crashed while the robot was in a dynamically unstable 
configuration, the robot would fall over. Because of this, a 
great deal of emphasis is placed on the consistency, stability, 
and reliability of these three daemons. An advantage of having 
the distributed architecture is that development efforts can be 
fine-tuned to the specific components which are most critical. 

IV. CONCLUSION 

We have presented the outline of a general software archi­
tecture for real-time robot planning and control which was 
designed with emphasis on safety and modularity. This archi­
tecture is meant to be easily extendible to many platforms, 
though it is particularly well suited for humanoid robots or 
other platforms where errors or unexpected behaviors are 
dangerous. A particular implementation of this architecture 
for a HUB02 Plus robot was discussed and analyzed to 
demonstrate the practical value of the architecture. 

This mUlti-process architecture offers several key advan­
tages over a single-process approach: 1) Future development 
does not need to be crammed into prior development. Instead, 
a new process can be developed which simply communicates 
with previously developed processes. So a planning algorithm 
does not need to be fit inside of a control system or vice-versa. 
They can exist and be developed independently. 2) Different 
functionalities do not have critical dependencies on each other. 
For example, if a planner experiences a segmentation fault 
or crashes for any other reason, the balancing and control 

6 

processes can remain in-tact and prevent the robot from falling 
over or being damaged. 3) Latency in any single component 
does not affect the performance of any other component of 
the software. In general, the individual processes do not have 
to wait for any higher level process in order to perform 
their tasks, except when waiting for instructions to begin 
performing a new task. 4) The operating system is able to 
take full advantage of modern multi-core processor hardware. 
Multi-threaded processes have the benefit of utilizing multi­
core processing, however they still suffer from the first two 
disadvantages mentioned above: potentially bloated codebases 
and vulnerability to instant irreversible critical failure. 

ACKNOWLEDGMENT 

The authors thank Peter Vieira and Rowland O'F1aherty for 
their extensive efforts in operating HUBO and running trials. 
This work was supported in part by DARPA #N65236-12-
1-1005: DARPA Robotics Challenge and NSF CNS-0960061 
MRI-R2: Unifying Humanoids Research. 

REFERENCES 

[1] N. Dantam and M.stilman. Robust and efficient Communication for real­
time multi-process robot software. International Conference on Humanoid 
Robotics (Humanoids). 2012. 

[2] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, 
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an 
open-source robot operating system. In Proc. of the IEEE Inti. Conf on 

Robotics and Automation (ICRA) Workshop on Open Source Robotics, 
Kobe, Japan, May 2009. 

[3] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time motion 
control core of the orocos project. In Robotics and Automation. 2003. 
Proceedings. ICRA·03. IEEE International Coriference on, volume 2, 
pages 2766-2771. IEEE, 2003. 

[4] c.E. AgUero, J.M. Canas, F. Martin, and E. Perdices. Behavior-based 
iterative component architecture for soccer applications with the nao 
humanoid. In 5th Workshop on Humanoids Soccer Robots. Nashville. 
TN, USA, 2010. 

[5] Baek-Kyu Cho and Sang-Sin Park and Jun-ho Oh. Controllers for run­

ning in the humanoid robot, HUBO. Humanoid Robots, 2009. Humanoids 
2009. 9th IEEE-RAS International Conference on, Dec. 2009. 

[6] Lofaro, Daniel M. and Ellenberg, Robert and Oh, Paul and Oh, Jun­
ho Humanoid throwing: Design of collision-free trajectories with sparse 

reachable maps Intelligent Robots and Systems (lROS), 2012 IEEEIRSJ 
International Con ference on Oct. 2012. 


