
Conductor: A Controller Development Framework for High Degree of

Freedom Systems

Robert M Sherbert and Dr. Paul Y Oh

rs429@drexel.edu, paul@coe.drexel.edu

Drexel University, Philadelphia, PA

Abstract— 1This paper details a new robotics programming
framework called Conductor. The framework is unique in that
it represents the hardware-software interface, and a user’s
interaction with that interface, in terms of state variables.
Within Conductor hardware is represented to the user by its
states of interest, with all other interface concerns abstracted to
the greatest extent possible. This representation is enabled by
a five-layered component structure which this paper describes.
The structure of the program allows a designer to take
advantage of bandwidth-saving optimizations in high degree
of freedom cases and significantly improve performance over
that of current tools.

I. INTRODUCTION

Robotic systems hold immense promise for humanity in

terms of both efficiency and convenience. These benefits, un-

fortunately, are being realized at a crawling pace due to their

sheer complexity. To reduce complexity and lower develop-

ment times, the robotics community has developed a number

of software packages to address integration and code reuse

problems. These environments, sometimes called Robotics

Development Environments (RDEs) include Player/Stage[1],

the Robot Operating System[2] (ROS), OpenRAVE[3], Mi-

crosoft Robotics Studio, Webots, and numerous others. As

a group they address high level code reuse and system

architecture organization. In doing so, they have greatly

reduced the difficulty of designing, prototyping, and creating

autonomous systems. What modern RDEs fail to address

adequately is the implementation of dynamic control for

unstable systems.

Overall, RDEs are designed to facilitate the reuse of

complex algorithms such as vision processing, navigation,

path planning, and human interaction. As a consequence

of this, RDEs usually place their lowest levels of abstrac-

tion based on categories of sensors or actuators. This is

reflected in the summaries provided within by Kramer[4]

and Mohamed[5] in a pair of survey papers that detail

the state of RDEs and robotics middle ware. For example,

Player/Stage groups sensors into categories such as ’laser’,

’camera’, or ’ranger’ (for IR sensors). In Webots actuators

are grouped into ’servo’, ’differential wheel’, etc. These data

types work well for systems which are statically stable and

1This work was funded through the National Science Foundations PIRE:
Humanoids Grant No. 0730206 and the NSF Graduate Research Fellow-
ship Program. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

can safely ignore or overlook stability concerns such as

tracked robots, four wheeled vehicles, etc. However, many

novel robotic designs derive their utility from geometries

which are statically unstable. Such is the case with legged

robots including humanoids, quadrupeds, and hexapods. In

these systems it is desirable to represent sensor and actuator

data not in a way the device dictates, but in a format which

makes the control mathematics convenient.

The utility of such an approach became obvious when our

group attempted to build a multi-platform controller system

for humanoid robotics as part of the NSF’s Partnerships for

International Research and Education (PIRE): Humanoid’s

project[6]. The goal of the effort was to develop a controller

program which could run on simulated, adult-size, and minia-

ture humanoid robots with minimal changes at the controller

level. Humanoids are a particularly difficult challenge in that

they are inherently unstable within their regular operating

mode and are relatively intricate machines. This intricacy is

well represented in the Hubo robot, which serves as the main

operating platform for the PIRE grant, and has 41 degrees

of freedom.

This paper introduces the Conductor framework which

addresses the controller design problem by shifting the

software representation of sensors and actuators to mimic

the mathematical tools used to design them - namely the

state space. Within Conductor, the user reads from ’state’

nodes that represent physical quantities of interest on the

robot. These could be joint angles, accelerometer values,

etc. Set points can be written to corresponding states, which

then attempt to manipulate actuators in a way that achieves

the condition specified. Through this representation, the

framework provides an easy way to implement dynamic

controllers on unstable robotic systems. In doing this Con-

ductor supplements existing high level tools by providing

simple facilities to deal with stability problems that code-

reuse packages are ill-equipped to handle.

The paper begins with a high level overview of the

framework’s component structure and the techniques used

to represent raw sensor data as state information. The re-

mainder of the paper will describe each of the components

in the framework which are titled: State, Controller, Device,

Protocol, and Hardware. Once each of the components has

been detailed, an example case will be given in which the

framework is applied and used to control simulated and

physical humanoid robots.

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 1022

Fig. 1. Schematic of the data flow through the Conductor system. Data enters at either the State or Hardware level traveling downstream or upstream
respectively. At each level the requests are cached and concentrated as appropriate to make efficient usage of bus resources. Each component in the system
is tagged with its section number in the paper, for easy reference.

II. FRAMEWORK OVERVIEW

The Conductor framework provides two main sections

using a five-layered component based design. The first is

the control section. Constituted by the upper two layers

of the program, the control section provides Conductor’s

ability to abstract system hardware in terms of components

called ’States’. The States represent as closely as possible the

concept of state variables from control theory. The second

section, called the communications section, is formed by the

three remaining layers. It is a communication stack designed

to reinforce design patterns that lead to efficient use of

bandwidth when talking to external devices. These features

are enabled by the threaded real time (RT) architecture and

publish/subscribe model upon which Conductor is built. The

particular layered design and data flow through the system

provides convenient ways to implement common tasks along

with the extensibility to handle unusual cases.2

The components making up the control section, known

as the State and Controller, provide a bridge between the

mathematical design of robot controllers and their imple-

mentation within the computer. When an engineer designs a

controller mathematically, concern is only with the physical

principles at work in the robot’s environment, its sensors,

and its actuators. When the controller implementation is

made within the computer, however, the engineer must also

consider numerous aspects of the computation itself. The

Controller and State components alleviate some of these

concerns. The State presents to the user a software com-

ponent which embodies a single physical quantity such as

a position, velocity, acceleration, current, etc, independent

of any hardware interaction required to obtain the data. It

automatically communicates with the lower layers to ensure

2Through the rest of the paper a number of software components are
discussed which share names with common concepts in engineering. Where
there is a reuse of a generic name, the software specific component is
capitalized, while the common usage is left as usual. E.g. ”State” (software
component) vs. ”state” (control theory variable).

that its current data state reflects the actual sensor value. Ad-

ditionally, it can provide quantities which are mathematically,

though not computationally, easy to access such as a time

history, integrals/derivatives, filtered versions of the signal,

transform methods, etc. The Controller component provides

a platform from which the program’s States can be accessed

and from which the user can define a control algorithm. The

user can author a mathematical controller within the software

Controller component using notation very similar to that used

in the scientific literature.

The components making up the communications section,

known as Device, Protocol, and Hardware, provide methods

to easily interact with robotics hardware. Robotics hard-

ware (sensors and actuators) are often stand alone devices

which exist separately from the control unit and must be

accessed through some bus. The communication components

are designed to mirror this topology. The Device provides

a software stand in for the individual node on the bus;

this node could be a motor controller, accelerometer, etc.

The Protocol is a representation for whatever communica-

tion format the manufacturer has specified; this could be a

completely custom packet format or a simple scaling function

for an analog-to-digital converter. The Hardware component

provides the interface between the Conductor framework and

the operating system; its primary function is as a gatekeeper

task.

To provide the desired level of flexibility to the user, Con-

ductor is designed in a reconfigurable, thread-based, and real

time manner. Multiple instances of the various components

can be created and interconnected in a way which mirrors

the configuration of the physical components. Each instance

of a component in the system is driven by its own thread,

with an individually assigned priority and update frequency.

A master clock is used to ’trigger’ or ’tick’ each component

when its period has elapsed. The triggering process wakes

the appropriate component and instructs it to perform any as-

sociated algorithms. When finished, the component becomes

1023

dormant until triggered again. The thread-based design along

with the RT periodicity helps remove the strict coupling that

often exists between hardware sampling and the controller

implementation. Additionally, this design allows an easy

mechanism for allotting appropriate operational frequencies

to the various parts of the system. To implement the threading

and RT features a package called Orocos (Open RObot

COntrol Software)[7] was used. Orocos and its RTT (Real

Time Toolkit)[8] provide a clean interface to the kernel level

scheduling mechanisms needed to implement Conductor as

a real time program. In addition to providing the real time

facilities for the program, Orocos also provides thread-safe

data structures for inter-component communication, which

are the main method of data passing within Conductor.

Conductor has taken a cue from the publish/subscribe

pattern followed in ROS and Player/Stage (and the similar

event-based pattern seen in systems like Tekkotsu[9] and

ASEBA[10]) in implementing its internal communication.

The publish/subscribe pattern functions somewhat analo-

gously to radio transmission, in which the radio transmitter is

the publisher and the individual receivers are the subscribers.

The publisher makes its data available globally while each

subscriber has discretion over what information it takes in.

The overall approach provides for a very flexible and easily

reconfigurable system.

The data flow through the system (see Figure 1) is simple

in conception with the majority of system action being

initiated by the State components. The States request an

update to the system’s knowledge of their values each time

they trigger. A State’s request for data proceeds along what

is called the downstream path; it is passed from State to

Device to Protocol to Hardware. At each level, the receiving

component will be dormant at the time of reception. Because

it cannot operate while dormant, the receiver will cache

the request until it is woken by a clock tick. At that

point, multiple requests may have accumulated in the cache.

Each request will be processed, some will be bundled or

otherwise modified based on the topology of the components.

Afterward each request will be delivered to the next level in

the stack. Data flow from the Hardware to the States, called

upstream communication, is initiated by an actual hardware

event and is the same as downstream communication except

that components are visited in the opposite order.

III. SYSTEM DESIGN

A. CONTROL COMPONENTS

1) STATE: The State component is conceptually the most

important part of the framework. It represents a single

’quantity of interest’ in the system which is either sensed

directly by some unit of hardware or is derived from the

values of other States. This quantity could be a voltage at

some node, an angular rate, a linear or rotational acceleration,

etc. Multiple States can be associated with a single piece of

physical hardware. For example: a motor has both an angular

velocity and a current consumption - both of which are good

candidates for States. It is this data which robotics deals with

on a fundamental level, and this data which is of true interest

to the designer. The purpose of the State abstraction is to give

the user unfettered access to this information in a convenient

and meaningful way. The State component is responsible for

providing the system’s most up to date picture of physical

reality to the user, and for maintaining that picture to within a

pre-specified time period automatically. The most important

part of the State, however, is the avenue through which it

presents the data to the user.

The State’s data presentation method is the basis for its

name. The concept for the State is to embody what would

normally be represented as a state variable during system

design. Consider a State ω, associated with a motor’s angular

rate, as sensed by an encoder (handled by the lower level

abstractions). The State allows all functions on ω which

would normally be operable on a state variable. This includes

functionality such as time history, integrals, derivatives, etc.

The State is charged with maintaining a time history of

the sensor values so that accesses such as ω[t] where t is on

the time interval [−histmax, 0] return the appropriate value.

(histmax is the size of the history the user requested at

initiation). The current value of the sensed quantity is given

by ω[0] for calculation purposes. Additionally, the user can

access
∫ t

0
ω(t) dt and dω

dt
.

Another function of the State is as an emissary of the

Controller. The State must understand whether it is read

only or if it is also writeable. Readable States perform all

the actions described above while writeable States must also

be able to communicate requests for change of condition

from the Controller to the lower levels. When writeable

States receive such a set request from a Controller, they

must package this data in the appropriate container and

send it downstream for interpretation by the communications

components.

The State component is intentionally left as an abstract

type. The only identifying data the State carries are its name,

a node ID number (which is specific to the Device it is

connected to), its data type, and the information that con-

stitutes its connections to other parts of the system (Devices

and Controllers). This design allows a very easy transition

between two systems that follow the same mathematical

models but have very different hardware. For example, a

notion of distance on two different robots could be obtained

Fig. 2. The State acts as an gatekeeper to a number of computationally
useful tools including the quantity’s history, integral, and derivative.

1024

by an ultrasonic sensor, a infrared sensor, or a camera and

the control algorithms would never be exposed to the change.

The States and Devices remain unmodified, while only the

Protocol and Hardware need to be changed. The disadvantage

of this flexibility is the additional effort required to identify

where the information is going as it travels through the

system. This is accomplished by tagging the State and Device

with ID numbers that are unique to the Device and Protocol,

respectively.

2) CONTROLLER: The Controller component is the hand

off between the user (and higher level robotics frameworks)

and Conductor. It provides centralized read and write access

to the various States within the system, and can be extended

for accessibility from other programs. Because of this, it

is the most loosely defined component. Conductor specifies

functionality for the Controller with respect to adding con-

nections to States, and for sending and receiving data from

States. The Controller can request the value of any State or

its computed components at any time.

The user specifies a control algorithm for the Controller

to follow and sets an execution frequency. The control

algorithm can be defined either directly in C++ or using a

scripting language implemented by Orocos. In either case,

the user has access to all the features the State component

provides. The algorithm can be implemented as either a

single equation, or as a state machine (a collection of

separate equations executed one at a time, with defined

transition conditions between them). At the beginning of

its execution interval, the Controller gathers the value of

the States required for its calculation. When it has obtained

these values, the Controller performs the defined algorithm,

and generates a control signal. Once the signal has been

generated, it is passed to the State it is intended to modify

which in turn communicates with Conductor’s lower layers

to bring about the requested change.

A Logger component is developed by slight modification

of the Controller component. The Logger functions in the

same manner as the Controller with respect to the sampling

procedure. The difference between the two is that instead of

calculating and broadcasting a control signal the values that

the Logger samples are sent to a file log. The log can be a

plain text file, a relational database program, or other storage

medium.

B. COMMUNICATION COMPONENTS

1) DEVICE: The function of the Device component is

to represent a physical node on a bus, such as a motor

controller. Each Device can be associated with one or more

States (in the case of a motor controller, these would be

angular velocity, current draw, etc). The Device’s purpose

is to help in performing down- and up-select operations

as data passes through it en route to either the Protocol

or State components. On the downstream the goal is to

ensure that the Protocol and Hardware components have

enough identifying information available to them to construct

a properly formed data packet. The Device accomplishes this

goal by tagging the request with identifying credentials. On

Fig. 3. The Device’s responsibility on the downstream is to tag the message
with identifying information that will be needed by the Protocol to perform
its task.

the upstream the goal for the Device is simply to determine

if the received message and its corresponding data should be

carried along to the Device’s associated states. This is done

by simple comparison between the reconstructed message

and the Device’s tagged identifying information.

The data flow in the downstream direction functions as

follows (Figure 3): Each request that is generated by a State

has a placeholder for a data structure called a ’credential’.

The credentials contain the bus specific identifying informa-

tion needed for packet generation further downstream. When

a request reaches the Device from the State via a thread-safe

exchange mechanism the request is placed on a queue. When

the Device’s tick expires, it processes each of the elements

in the queue. For each queued message, the Device places

a reference to its credential on the message, and passes

the message to its subscribed Protocols. Which Protocols

the Device is connected to determines which physical buses

the message will eventually be delivered to, along with its

format and character. In this way, the State’s relationship

to a particular physical bus is defined by which Device

it is connected to, as opposed to particular configuration

information placed on it. To port a controller from one

system to another becomes a simple function of rearranging

the States to connect with different Devices and Protocols

associated with the new physical hardware.

The data flow in the upstream direction functions as

follows: When the device receives a message from a Protocol

it places a copy of the message on a local queue. When the

Device’s tick expires, the device iterates through the elements

in the queue. For each element in the upstream queue, the

Device examines the credential information contained in the

message that the Protocol has constructed. The credentials

are compared to the ones assigned to the Device by the user.

If they match, the Device accepts the message and emits it

to its subscribed States.

2) PROTOCOL: It is common for manufacturers of the

various sensors and actuators used in robotics to design

custom data protocols for a particular product or line of

products. For the sake of this paper, a data protocol is a

defined structure (including order, endian-ness, etc) on a

grouping of digital words used to convey some information

between two devices. It is the unfortunate state of robotics

that manufacturers rarely collaborate in designing these pro-

tocols, and almost no standards exist among them. This lack

1025

Fig. 4. The Protocol’s responsibility in the downstream direction is to
buffer and condense messages in order to facilitate efficient usage of bus
bandwidth.

of standards is part of the reason that implementing robotics

experiments takes extraordinary amounts of time. Despite the

lack of collaboration, it is not uncommon for protocols from

separate manufactures to share common characteristics. For

a given classification of device (motor controller, accelerom-

eter, etc), the types of data sent across the bus are nearly

identical even if the structure of transmission changes. This

allows for a certain level of abstraction to be made over the

classification.

The Protocol component of Conductor is a software repre-

sentation of some packet or stream based data transmission

format on the bus. As such it acquires an important role in

organizing data flow in both the downstream and upstream

directions. On the downstream path, the Protocol buffers and

arranges requests in such a way as to maximize bandwidth

efficiency of the bus. In the upstream direction, the Protocol

must convert a word stream into a data structure which can

be used by the other components (Device, State) to identify

the intended destination of the data.

The data flow in the downstream direction functions as

follows (Figure 4): Requests are received from the State

via the Device and are placed onto a queue. When the

Fig. 5. In the upstream direction, the Protocol performs pattern matching
on word sequences against user defined templates. Here it has determined
the Current data sequence cannot match P0 or P1. When it receives the next
word, the sequence will match P3, which it will use to interpret the data.

Protocol’s tick expires, all elements within the queue are

examined by a user defined optimization function. It is the

goal of this function to generate a word level packet which

efficiently represents the requests on the queue. This behavior

is beneficial because it allows maximal usage of the bus.

Many vendors will design protocols so that they are most

bandwidth efficient when multiple devices are commanded

at the same time (shared header and check sum over a packet

with numerous commands). Once the optimization algorithm

has finished processing, it passes the result to the Hardware

component.

The data flow in the upstream direction functions as

follows (Figure 5): First, an encapsulated word is placed

into a queue on the Protocol by the Hardware. When the

Protocol’s device tick triggers it removes the oldest element

from the queue and processes it. For processing, the word is

unpacked and fed into a lexical analyzer (scanner) defined

by the user for the specific Protocol type. 3

The scanner compares the word stream against a listing

of user defined templates. If the scanner has made a match

with the incoming word stream, it extracts the meaningful

data from the stream, and places it within a data structure.

The structure is transmitted to the Devices. It then processes

the remaining words in the queue until either there are no

more words or the time allotment runs out.

3) HARDWARE: The Hardware component is the sim-

plest to understand, because its functionality is very limited.

It serves primarily to act as a gatekeeper to the physical

hardware from the core of the program. Its job is twofold:

to take the message packets that it receives from the Protocol

component and place them onto the physical bus, and to take

the data words which are received from the physical bus

and assure that they reach the subscribed Protocols. In most

cases, the Hardware acts as a bridge between the user-space

program and the kernel-space hardware driver by accessing

the file system node associated with that hardware. This

assures that multiple Protocols do not mangle each other’s

messages while contesting with each other for bus access.

The data flow in the downstream direction functions as

follows: the Protocol, having assembled a message at the

word level, passes the message to the Hardware where it is

placed on a queue. When the Hardware’s tick triggers it ex-

amines the queue for data, executes a user defined processing

function to render the Message packet into individual words,

and places those words onto the bus.

The data flow in the upstream direction functions as

follows: The Hardware receives words from the bus in one of

two fashions (dependent on the particular type of physical

hardware involved). The first possibility is that the Hard-

ware wakes and processes data whenever new information

becomes available. The second possibility is that the new

3A scanner is a pattern matching program usually used in the design
of programming languages. Such programs convert strings of characters
(source code) that are arranged according to regular expressions into
symbolic tokens that can be used by a higher level program (parser) to
create a meaningful interpretation (binary executable) of the original string.
At its core, the scanner is simply a way of defining state-machine based
pattern recognition programs in a standard format.

1026

data is quietly placed on a FIFO buffer that is part of

the kernel driver. In the former case, an event handler is

placed on the Hardware which copies the word onto a queue

managed by the Hardware object. In the latter case, the

Hardware object examines the driver’s buffer when it wakes

for its tick and places the words into its queue. In either

case, when the Hardware wakes for its tick, it examines its

queue, encapsulates the words using a user defined handling

function, and passes them to any subscribed Protocols.

C. SAMPLING & STABILITY

Due to Conductor’s complex topology with four layers

of periodic functions acting independently at different fre-

quencies, analyzing the software’s effect on overall system

stability can be difficult. Under normal usage conditions, a

State in the system will trigger an update (or command) re-

quest every PS seconds. This request is passed to an attached

Device. Since the Device has its own independent update

period PD and the time at which the Device’s processing

function triggers is not tied to the State’s trigger time, the

delay between when the State sends the message and when

the Device processes well be on the interval (0, PD). Fur-

thermore, this delay can change between two requests from

the State based on the difference between PS and PD. This

process is repeated at each level boundary so that the total

time taken for a message to travel from the State to physical

hardware is on the interval (0, PD +PP +PH) with PP and

PH as the Protocol and Hardware periods, respectively. In

the case of a sampling, time on the line and the return trip

time must also be factored in, bringing the full round-trip

time to be on the interval (0, PS + 2PD + 2PP + 2PH).
In practice these effects are of only moderate concern for

a number of reasons. First, Conductor is designed for usage

as a high level controller. It is intended for use governing

servo controllers and other self contained devices. The level

it operates on anticipates overall system update rates of sub-

500Hz and in cases where the stochastic nature of the end-

to-end sampling rate will not be drastic enough to cause

instability. Second, the user can mitigate the delays Conduc-

tor introduces by choosing appropriate sampling frequencies.

The Device, Protocol, and Hardware can be set to rates 1-2

orders of magnitude higher than those of the States (which

govern the overall update of system), making the delays

introduced by the PD, PP , and PH terms comparable to

those introduced on the line and by the external device.

The limitations described do, however, prevent Conductor

from being useful in applications with extremely sensitive

dynamics e.g. individual servo loops requiring 1k-10k Hz

update rates.

IV. EXAMPLES & COMPARISONS

A. EXAMPLES

To illustrate the capabilities of Conductor, the following

section details some examples of its usage and implemen-

tation. Designing a dynamic controller with Conductor after

support code has been written for all appropriate hardware

is mostly a matter of configuring the topology of the system.

This configuration is done using a C-like scripting language

that is part of the Orocos package upon which Conductor

is built. The specification of interconnection between the

nodes tells the Conductor components how to pass data from

the abstract State nodes down to the appropriate physical

hardware. The topology required to setup a leg of the mini-

Hubo is depicted in Figure 7. The configuration file required

to realize this topology is shown in Figure 10. It is worth

pointing out that porting between the physical and virtual

versions of the mini-Hubo, a complex 13 DOF humanoid

Right Ankle

Roll Angle

Right Ankle

Roll Motor

Right Ankle

Pitch Angle

Right Ankle

Pitch Motor

Right Knee

Pitch Angle

Right Knee

Pitch Motor

Right Hip

Pitch Angle

Right Hip

Roll Motor

Right Hip

Roll Angle

Right Hip

Pitch Motor

Right Hip

Yaw Angle

Right Hip

Yaw Motor

Force Z

Force/Torque

Sensor
Moment X

Moment Y

Robotis

Protocol

ADC

Protocol

UART1

UART2

S t a t e Device Protocol Hardware

Fig. 7. An illustration of the node arrangement in the example system,
shows the topology for implementing the right leg controller of mini-Hubo.

v a r f l o a t Kp = 1 0 ;
v a r f l o a t Ki = 1000 ;
v a r f l o a t Kd = 1 ;

w h i l e (t r u e){
/ / Access t h e c u r r e n t v a l u e s of t h e
/ / p r o p e r t i e s m o n i t o r e d by t h e sys tem
v a r f l o a t t h e t a = g e t S u r f a c e (” t h e t a ” ,

” v a l u e ”) ;
v a r f l o a t t h e t a D o t = g e t S u r f a c e (” t h e t a ” ,

” d i f f ”) ;
v a r f l o a t i n t T h e t a = g e t S u r f a c e (” t h e t a ” ,

” i n t e g r a l ”) ;

/ / C a l c u l a t e t h e c o n t r o l s i g n a l
v a r f l o a t c t r l = Kp∗ t h e t a + Ki∗ i n t T h e t a

+ Kd∗ t h e t a D o t ;

/ / Apply t h e c o n t r o l
a d d C t r l (” x ” , c t r l) ;
s e n d C t r l () ;
y i e l d () ; / / Wait u n t i l t h e n e x t c l o c k t i c k

}

Fig. 8. Example PID controller written using the scripting language that
Conductor inherits from Orocos.

1027

Fig. 6. A time progression of Conductor running a walking trajectory on the Virtual mini-Hubo model.

robot, requires the same topology in both cases and only

minimal changes to the actual configuration file.

Once the States and underlying support topology have

been configured, the user can begin to take advantage of Con-

% Setup Matlab v a r i a b l e s f o r communicat ion
% w/ Conduc to r (Argument i s UDP p o r t #)
x1 = i n i t S t a t e (2 8 2 7) ;
x2 = i n i t S t a t e (2 8 2 8) ;
. . .
xn = i n i t S t a t e (2827+n−1);

%Model o f t h e sys tem
A = [n x n] ; B = [n x p] ;
C = [q x n] ; D = 0 ;

%Observer ga ins , computed of f−l i n e
K = [p x n] ;

w h i l e (1)
%Obta in t h e (n x 1) s t a t e v e c t o r from Conducto r
x = [r e a d S t a t e (x1) ;

r e a d S t a t e (x2) ;
. . .
r e a d S t a t e (xn) ;] ;

%Observer p r e d i c t i o n f o r x (k +1)
xk1 = (A−B∗K)∗ x + B∗u ;

%E v a l u a t e c o n t r o l law (sys tem a p p r o p r i a t e)
u = ctrLaw (A, B , C , D, xk1) ;

%Apply C o n t r o l
cm dSta te (x1 , u1) ;
cm dSta te (x2 , u2) ;
. . .
cm dSta te (xn , un) ;

end

Fig. 9. Example Matlab code illustrating how a state observer design
pattern can be easily implemented in Conductor.

program main {
/ / Add t h e Hardware guard t o t h e sys tem
Hardware (” hw” , 1 , 2000 , ” R o b o t i s ” ,

” / dev / ttyUSB0 ”) ;

/ / Add t h e P r o t o c o l i n t e r p r e t e r
a d d P r o t o c o l (” p c o l ” , 2 , 50 , ” R o b o t i s ”) ;

/ / Connect t h e hw and p c o l nodes
l inkHP (” hw” , ” p c o l ”) ;

/ / Add t h e Device nodes t o t h e sys tem
Device (”dRAR” , 5 , 250 , ” R o b o t i s ” , 4 6 , 2 . 6 1 , −1);
. . .
Device (”dRHY” , 5 , 250 , ” R o b o t i s ” , 4 8 , 2 . 5 7 , −1);

/ / Add t h e S t a t e s t o t h e sys tem
S t a t e (”RAR 5 50” , ” R o b o t i s ” , ” J o i n t ” , t r u e) ;
. . .
S t a t e (”RHY 5 50” , ” R o b o t i s ” , ” J o i n t ” , t r u e) ;

/ / Connect t h e P r o t o c o l t o a l l d e v i c e s and a l l
/ / Dev ices t o t h e c o r r e s p o n d i n g S t a t e s
l inkPD (” p c o l ” , ”dRAR ”) ; l inkDS (” dRAR” , ”RAR”) ;
. . .
l inkPD (” p c o l ” , ”dRHY ”) ; l inkDS (”dRHY” , ”RHY”) ;

s t a r t () ; / / I n i t i a l i z e t h e d e f i n e d sys tem
}

Fig. 10. The code to realize the motor arrangement in Figure 7

ductor’s real benefits by authoring controllers. Controllers

can be written as plugins in C++, as part of a separate

program accessing the States through UDP, or can be written

using a custom scripting language that Conductor inherits

from Orocos. Designing controllers using these techniques

are all very straightforward. Recall, the Conductor frame-

work handles lower level communication and maintenance of

present State data, so authoring the Controller requires only

1028

defining the mathematical control law. Beginning with a very

simple example, Figure 8 shows an example PID controller

in the Orocos scripting language.

More complex behaviors are equally easy to achieve.

Figure 9 shows the implementation of a state observer

design pattern. The pattern is implemented in Matlab and is

seamlessly back-ended to Conductor to perform the hardware

interfacing. Since Conductor already represents data in terms

of states, interfacing with controls tools such as Matlab is rel-

atively easy. In addition to classical controls implementation,

Conductor can also be used to implement hybrid controllers.

The Conductor framework also has been used to develop full

walking state machines for the mini-Hubo. A time-lapse of

the results is displayed in Figure 6.

B. EFFICIENCY & BANDWIDTH UTILIZATION

Conductor provides other benefits beyond making the

implementation of complex controllers easier. It can also

produce large improvements in bandwidth usage when com-

pared with other RDEs. In packages such as ROS and

Player/Stage each physical node (sensor or actuator) has a

single corresponding software process that acts as the user’s

agent for communicating with the node on the bus. Because

separate nodes have completely independent processes that

do not communicate with each other, the software cannot

make intelligent decisions about how to combine data for

transmission to the bus. Conductor, because of its cascaded

design, can intelligently combine data from nodes (States)

as it moves through the system towards the bus (Hardware)

using features such as broadcast packets, which many man-

ufacturers add to their communications protocols. While the

gain from this is minimal in low degree of freedom designs,

it has a drastic effect on bus usage in high degree of freedom

systems. The authors were able to realize a 60% bandwidth

savings on our mini-Hubo system and a 50% savings on our

adult-sized Hubo robot when transmitting new set points to

the motor controllers. This is a dramatic improvement over

what is possible with the ROS/Player model.

V. SUMMARY

This paper has detailed the design and usage of the Con-

ductor robotics programming framework. The layers of the

framework have each been described in detail. By extending

these components it is possible to create a software represen-

tation of a robotic system in terms of its fundamental state

variables. Example controllers and test system results have

been shown to illustrate the benefits of such a representation.

These examples show clearly the ease with which controllers

can be implemented when a system is expressed in an intu-

itive manner. While a designer must expend some initial ef-

fort to realize this representation, it quickly provides a return

on the investment when implementing control algorithms.

Additionally, in high degree of freedom cases, the framework

can take advantage of bandwidth optimizing techniques and

gain significant improvements over frameworks that cannot

make such optimizations.

REFERENCES

[1] T. H. J. Collett and B. A. Macdonald, “Player 2.0: Toward a practical
robot programming framework,” in in Proc. of the Australasian Con-

ference on Robotics and Automation (ACRA, 2005. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.6143

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[3] R. Diankov and J. Kuffner, “OpenRAVE: A planning architecture
for autonomous robotics,” Robotics Institute, Pittsburgh, PA,
Tech. Rep. CMU-RI-TR-08-34, Jul. 2008. [Online]. Available:
http://www.ri.cmu.edu/publication view.html?pub id=6117

[4] J. Kramer and M. Scheutz, “Development environments
for autonomous mobile robots: A survey,” Autonomous

Robots, vol. 22, pp. 101–132, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10514-006-9013-8

[5] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for
robotics: A survey,” in Robotics, Automation and Mechatronics,

2008 IEEE Conference on, 2008, pp. 736–742. [Online]. Available:
http://dx.doi.org/10.1109/RAMECH.2008.4681485

[6] R. Ellenberg, R. Sherbert, P. Y. Oh, A. Alspach, R. J. Gross,
and J. Oh, “A common interface for humanoid simulation
and hardware,” Dec. 2010, pp. 587–592. [Online]. Available:
http://dx.doi.org/10.1109/ICHR.2010.5686325

[7] P. Soetens, “A software framework for Real-Time and distributed robot
and machine control,” Ph.D. dissertation, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium, May 2006.

[8] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE International Conference

on Robotics and Automation, 2003, pp. 2766–2771.
[9] D. S. Touretzky and E. J. Tira-Thompson, “Tekkotsu: A

framework for AIBO cognitive robotics,” in The Twentieth National

Conference on Artificial Intelligence (AAAI-05). Association for the
Advancement of Artificial Intelligence, Jul. 2005. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.8262

[10] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and
F. Mondada, “ASEBA: A modular architecture for Event-
Based control of complex robots,” IEEE/ASME Transactions on

Mechatronics, vol. 16, no. 2, pp. 321–329, Apr. 2011. [Online].
Available: http://dx.doi.org/10.1109/TMECH.2010.2042722

1029

