
J Intell Robot Syst (2010) 57:485–503
DOI 10.1007/s10846-009-9356-4

Development and Evaluation of a Chase View for UAV
Operations in Cluttered Environments

James T. Hing · Keith W. Sevcik · Paul Y. Oh

Received: 1 February 2009 / Accepted: 1 August 2009 / Published online: 19 August 2009
© Springer Science + Business Media B.V. 2009

Abstract Civilian applications for UAVs will bring these vehicles into low flying
areas cluttered with obstacles such as building, trees, power lines, and more im-
portantly civilians. The high accident rate of UAVs means that civilian use will
come at a huge risk unless we design systems and protocols that can prevent
UAV accidents, better train operators and augment pilot performance. This paper
presents two methods for generating a chase view to the pilot for UAV operations
in cluttered environments. The chase view gives the operator a virtual view from
behind the UAV during flight. This is done by generating a virtual representation
of the vehicle and surrounding environment while integrating it with the real-time
onboard camera images. Method I presents a real-time mapping approach toward
generating the surrounding environment and Method II uses a prior model of the
operating environment. Experimental results are presented from tests where subjects
flew in a H0 scale environment using a 6 DOF gantry system. Results showed that the
chase view improved UAV operator performance over using the traditional onboard
camera view.
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1 Introduction

Safe and efficient remote operation of a UAV in a cluttered environment requires
that the pilot have a good sense of the state of the vehicle and the surrounding
environment that the vehicle is operating in. Even in autonomous systems, it is still
very important for the operator to know the state of the vehicle and its surroundings,
especially when dealing with system faults. This awareness of the state of the vehicle
and it’s surroundings is called situational awareness(SA). The accepted definition of
SA comes from [1] where it is broken down into levels. Level 1 SA is the perception
of the elements in the environment within a volume of time and space. Level 2 SA is
the comprehension of their meaning and Level 3 SA is the projection of their status
in the near future. Situational awareness is effected by many factors. Current remote
and autonomous systems are limited in what information is relayed from the vehicle
back to the UAV pilot/operator. The operator’s physical separation from the vehicle
eliminates all motion feedback where as manned aircraft pilots utilize this motion to
help in vehicle control. A UAV pilot’s field of view is restricted due to limitations of
the lens and positioning of the onboard camera. The limited field of view makes
it difficult for the pilot to know the location of the extremities of the vehicle,
which the authors believe to be critical knowledge when operating in a cluttered
environment. The onboard camera view also requires a constant mental re-mapping
of the environment by the pilot due to changing camera angles, which can also lead to
vertigo. A pilot’s understanding of the state of the vehicle, surrounding environment
and mission status is solely reliant on the overwhelming visual representation of this
information, many times leading to mental exhaustion. These limitations combined
with a high workload lead to a lower situational awareness thereby increasing the
chance for a mishap or accident.

Civilian applications for unmanned aerial vehicles (UAVs) will introduce these
vehicles into cluttered near earth environments [2]. These are low flying areas
typically cluttered with obstacles such as buildings, trees and power lines. More
importantly, these areas are also populated with civilians. With the current accident
rate of UAVs being significantly higher than that of commercial airliners [3], the
idea of UAVs being operated in this type of environment is alarming. However,
the potential of these vehicles to greatly benefit civilians demands that we evaluate
what is necessary to improve the safety and operations of these vehicles in these
environments.

The current state of the art UAVs are designed and operated to successfully
complete tasks that commonly take place in higher altitude areas with very few
obstacles to navigate around [4]. Most UAVs during a majority of these mission
are operated under some sort of autopilot control. However, operation in cluttered
environments requires fast and accurate obstacle avoidance algorithms, fast object
recognition, and quick adaptation to changing conditions. Limitations of current
UAV systems, specifically the current limits of artificial intelligence, can be overcome
in these environments by keeping the UAV under the full control of a human pilot.
However, control of the vehicle by the pilot is not enough, especially for operations
in cluttered environments, as supported by the limited SA of current UAV pilots
listed earlier.

In this paper, we investigate an approach to improving SA that utilizes sensor
packages common on most UAV systems. The approach uses an onboard camera and
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an inertial measurement unit to generate a mixed-reality chase view to the operator
as seen in Fig. 1. There are two methods that we are developing to generate the
mixed-reality chase viewpoint. The mixed-reality notion comes from the fact that
the surrounding environment displayed to the pilot (outside of the onboard camera
field of view) is a virtual representation. In method I, the surrounding environment is
created by real-time mapping of features extracted from the onboard camera view. In
method II, the surround environment is created using a prior model of the environ-
ment being operated in. A prior model could be constructed using geospatial digital
terrain elevation data (DTED), satellite imagery, or prior manned or unmanned
forward observer reconnaissance missions. For the chase view, the onboard camera
images are still relayed to the pilot but are rotated, keeping the horizon level, and
keeping the perspective consistent with the displayed chase viewpoint. This view
allows the pilot to see the entire aerial vehicle pose and surrounding environment
as if they were following a fixed distance behind the vehicle. The benefits of this
viewpoint are an increased awareness of the extremities of the vehicle, better
understanding of its global position in the environment, mapping of the environment,
and a stable horizon (which helps to reduce the chance for vertigo as well).

The main contribution of this paper are the results from studying the dif-
ferences when piloting a UAV in an cluttered environment while using a chase
viewpoint versus using an onboard camera viewpoint. The results are obtained from
experiments conducted at H0 (1:87) scale using a 6 degree of freedom (DOF) gantry
that emulates an aircraft’s translations and rotations. Also presented is the continu-
ing work developing this approach for real world testing. The rest of this paper is

Fig. 1 The chase viewpoint
during UAV operation in a
cluttered environment consists
of the real-time onboard
camera image integrated into a
virtual representation of the
surrounding environment and
aircraft pose
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organized as follows: Section 2 gives some background on the previous work
conducted in the area of improving situation awareness for UAV pilots. Section 3
presents the methods behind generating a chase view for UAV operation. Section 4
presents the experimental setup for evaluating UAV pilot skills in cluttered environ-
ments with different viewpoints. Section 5 presents the results from the study and
Section 6 concludes the paper with a discussion and future work.

2 Previous Work

SA for operators of robotic ground and aerial vehicles has been investigated by a
few researchers such as in [5]. In [5] it was reported that robots being operated at
a post World Trade Center site were being operated with some sort of operator
error 18.9% of the time due to poor interfaces and lack of functional presence.
Research such as this and others have lead to proposals on ways to improve UAV
pilot situational awareness. In prior work, the authors of this paper investigated
the use of motion platform technology to relay motion cues to a UAV pilot [6].
While the method showed potential, the current motion platform technology is very
large and expensive for a majority of the potential civilian UAV operators. Other
researchers have investigated new designs for heads up displays [7], adding tactile
and haptic feedback to the control stick [8, 9] and larger video displays [10]. Synthetic
vision, in recent years, has been studied and shown to improve situational awareness
for remotely piloted vehicles [11]. Synthetic vision displays to the operator a far
distance exocentric view of the UAV with a virtual representation of the terrain
based on a database of elevation maps. The method requires prior knowledge of the
terrain/elevation and does not include obstacles other than the natural terrain data.
Synthetic vision is mostly used to depict the planned trajectory from a 3D perspective
for support in guidance and control. Also related to what we are proposing is the
work conducted by [12, 13] where real world current data is used for generating
virtual views.

Sugimoto et al. [12] and Nielsen et. al. [13] developed methods for viewing
remotely operated ground vehicles from outside the vehicle; “Time Follower’s
Vision” for [12] and tethered position in [13]. Both methods produced a viewpoint
that allowed an entire visualization of the vehicle pose and the environment directly
surrounding the vehicle itself. Both works presented studies showing that their
methods improved remote operation of the vehicle in both speed of operation and
accuracy of vehicle positioning. In [12] however, they did not use any sort of mapping
of the environment, leaving this up to the memory of the operator. In [13] they
generated a 2-D map of the environment as the vehicle drove around, using a laser
range finder and SLAM. This map was relayed to the operator in the tethered view
showing walls as slightly raised obstacles.

A major challenge faced when adapting concepts created for ground vehicles, as
in [12, 13], to air vehicles is that air vehicles are capable of much more movement
than ground vehicles. In cluttered and urban environments, UAVs can undergo large
three dimensional translations and rotations. Another challenge is that, obstacles can
not be represented by infinitely high walls (often used in 2D ground vehicle maps) as
UAVs can fly around, above, and in the case of overpasses, below obstacles. UAVs,
especially those flown in urban environments, will be small so they can maneuver
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between obstacles with relative ease. The small size limits the payload capacity of
the vehicle. Laser range sensors, like those used in [13], can be too heavy to add
to a typical UAV sensor suite that already includes an IMU, GPS and an onboard
camera.

Closely related to the work presented by the authors of this paper is the work
conducted by [14, 15]. In [14], during high altitude search tests, they used real-time
video data from the UAV and augmented it with pre-loaded map data (satellite
imagery). The onboard camera view is rotated to match the preloaded terrain map
and a silhouette of the UAV is displayed on the map showing its heading. The
preloaded terrain map does not change it’s orientation. This would have some
negative effects in piloting the vehicle in terms of remapping of the controls, for
example when the UAV is flying south on the map, pulling left on the joystick makes
the UAV go to the right. However, the purpose of the research was not to improve
operator control (the UAV flew at a high altitude autonomously through waypoints),
but to improve the situational awareness of the observer conducting the search task.
Their results showed that the augmented image helped the observers comprehension
of the 3D spatial relationship between the UAV and points on the earth. In [15]
they investigated the effects of displaying a simplified “wing-view” of the UAV to
the operator that shows roll and altitude of the aircraft. The motivation was that
UAV operators are standing on the ground and a display with a moving horizon
may confuse users not trained as pilots. This display helped with the operators in the
understanding of the instantaneous relationship between the UAV and the world.

The authors of this paper believe that the concepts investigated in [12–15] could be
adapted and developed such that they can be applied to UAV operation in cluttered
environments. Utilizing the IMU and onboard camera, the authors of this paper show
two methods for generating a chase view point for UAV pilots.

3 Methods Towards Generating Chase Viewpoint

UAVs operating in urban and cluttered environments will most likely be limited to
smaller back-packable and hand launchable vehicles that enable quick maneuvering
and access to small spaces. With limited payload, choosing an optimal sensor suite
is extremely important. The ultimate goal is to gather all data about the state of the
vehicle and information from the surrounding environment using as few sensors as
possible.

There are two methods presented in this paper for generating a chase viewpoint.
Method I utilizes an onboard camera and GPS to generate a 3D map of the
environment. Method II utilizes the onboard GPS of the aircraft and prior knowledge
of the operating environment to generate a surrounding 3D map. The advantage
of Method I is that a map is created based on a very recent interaction with the
environment and can be used without prior knowledge of the operating area. It can
also be adapted to work in areas without GPS availability by finding vehicle state
information from structure from motion methods. Method I however comes at a cost
of computation power, which limits the speed at which the UAV is allowed to fly
in the environment. Method II allows for much faster flight as the environment is
already mapped. Should the environment change, the pilot will be forced to mentally
remap the surrounding environment during the flight using the onboard camera view.
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3.1 Method I

A chase viewpoint requires three dimensional measurements of the surrounding
environment and accurate knowledge of the state of the vehicle. Researchers are
currently working on methods to gather this information from only one onboard
camera [16, 17] using Structure from Motion (SFM) methods. The added benefits of
this is that UAVs can be smaller, and the vehicle is capable of map building in areas
with no GPS signal. As these methods are currently computationally expensive, the
authors of this paper chose to use information from an onboard IMU, GPS, and
camera for the initial work toward developing the chase viewpoint. The technique
for Method I is presented in the following sub sections.

3.1.1 Feature Detection and Tracking

Creating a map of the surrounding environment from the onboard camera view
requires that three-dimensional information be extracted from multiple two-
dimensional camera images. Features in each image must be found and tracked from
frame to frame. Based on recommendations from [18], the authors use a 7×7 feature
detection window and calculate the spatial gradient matrix, H, as the window scrolls
through the camera image.

H = #
∣∣∣∣ (δI/δx)2 (δI/δx)(δI/δy)
(δI/δx)(δI/δy) (δI/δx)2

∣∣∣∣ (1)

where I(x,y) is the gray level intensity and the summation is through the feature
window. If the eigenvalues of H are greater than a chosen threshold then that
particular area of the image is chosen as a feature point to track. Features are chosen
such that they are the strongest features in the image, don’t overlap, and only a set
number of features desired by the user are kept.

Tracking of the feature points is conducted using a pyramidal implementation of
the Lucas Kanade feature tracker (KLT)[19]. The pyramidal implementation allows
for much larger movement between two images. Currently the authors are using a 3
level pyramid which can track pixel movement 8 times larger than the standard Lucas
Kanade tracker. In a traditional pyramidal KLT, feature points are chosen in the
highest level of the pyramid. This however did not produce desired results. As such,
the authors proceeded with the following: First, features are detected on the highest
resolution image which is currently at 640×480 (onboard camera resolution). A 5×5
gaussian blur is used before each re-sampling of the image all the way to the third
level which is 80×60 resolution. The centroids of the chosen features are mapped to
the location on the third level. For frame J to K, the previous and current onboard
camera image respectively, the following calculations take place over 10 iterations
with iteration i starting at 1:
First an image difference δI(x, y) is calculated:

δIi(x, y) = JL(x, y)− KL
(

x+ gL
x + νi−1

x , y+ gL
y + νi−1

y

)
(2)

where for level 3 (L = 3), the initial guess gx, gy is zero and the iteration guess ν0 =
(0, 0). Then the image mismatch vector bi is calculated for the feature window:

bi = #
∣∣∣∣ δIi(x, y)Ix(x, y)
δIi(x, y)Iy(x, y)

∣∣∣∣ (3)
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The optic flow ηi is then calculated:

ηi = H−1bi (4)

And the guess for the next iteration becomes:

νi+1 = νi−1 + ηi (5)

After the iterations are complete the final optic flow dL for the level is:

dL = ν10 (6)

The guess for the next lower pyramidal level gx, gy becomes:

gx, gy = 2
(
gL−1 + dL) (7)

And the process repeats until the final level (L0), the original image, is reached. The
final optic flow vector d is:

d = g0 + d0 (8)

And the location of the tracked feature on image K is:

K(x, y) = J(x, y)+ d (9)

The tracking (50 features) is at sub pixel resolution and is currently running at 10
FPS on a 2.33 GHz dual core machine.

3.1.2 Reconstruction and Mapping

For the initial development, we are utilizing a simulated environment that we
modeled in the flight simulation package X-Plane from Laminar Research as seen
in Fig. 2. Since the authors chose to use an IMU and GPS along with the camera,

Fig. 2 Environment (Drexel University Campus) created in X-Plane for testing feature tracking and
reconstruction. Initial textures were of grid patterns for easier development during the initial stages
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structure from motion methods are not needed and the 3-Dimensional locations
of the feature points can be found through triangulation. The extrinsic parameters
for the camera are extracted from GPS and IMU measurements in the X-Plane
simulation. The intrinsic parameters of the camera are calculated prior to the tests
using multiple images of a known grid pattern. Calibration tests found the focal
length for the camera in the X-Plane environment to be 320.469 mm. Each feature
point is stored in its initial frame and then tracked. If the feature point is successfully
tracked for 5 frames, as seen in Fig. 3, it is used in the reconstruction algorithm. The
5 frame difference was chosen to allow a greater distance between the two camera
images before reconstruction is run. The global frame of reference is chosen such
that the axes lie on the latitude (Y), longitude (X) and altitude directions (Z) of the
simulated environment. The origin of the axes are located in the simulated world
where the vehicle is initially spawned. The distance to the aircraft camera from the
global reference frame is calculated from GPS and IMU values. Locations of feature

Fig. 3 Feature tracking across
multiple frames. Features
detected are surrounded by a
small box. The tracked
features used in reconstruction
are highlighted by circles. The
frames contain a rotated view
(aircraft is rolling) side of a
building at Drexel. The texture
of the walls were created with
a grid pattern to ease the use
of feature detection/tracking
for initial development
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points in the camera image plane are transformed to the global reference frame using
the following rotation and translation matrices:

R1,1

R2,1

R3,1

=
cos(α)cos(γ )− sin(α)sin(β)sin(γ )
sin(α)cos(γ )+ cos(α)sin(β)sin(γ )

−cos(β)sin(γ )

R1,2

R2,2

R3,2

=
−sin(α)cos(β)
cos(α)cos(β)

sin(β)
(10)

R1,3

R2,3

R3,3

=
cos(α)sin(γ )+ sin(α)sin(β)cos(γ )
sin(α)sin(γ )− cos(α)sin(β)cos(γ )

cos(β)cos(γ )

T =
∣∣∣∣∣∣

Fdcos(β)sin(α)+ Lon.− Lon.of Origin
Fdcos(β)cos(α)+ Lat.− Lat.of Origin

Fdsin(β)+ Alt.− Alt.of Origin

∣∣∣∣∣∣ (11)

where α is the camera heading angle, β is the camera pitch angle, γ is the camera roll
angle, and Fd is the camera focal length.

Reconstruction proceeds as follows:
Following Fig. 4, the line running through the camera frame, C, and the feature

point, P, on the image plane to the feature point in the global frame is:

l = CL + a(PL − CL) (12)

r = CR + b(PR − CR) (13)

where a and b are values between 0 and 1 representing the length of vectors l and r
respectively between C and P.

Fig. 4 Camera reconstruction
geometry. Due to noise in the
measurements, rays passing
through the feature in the first
and second camera image
plane may not intersect. The
midpoint of the closest point
between the two rays is taken
as the feature measurement
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Ideally the two lines would intersect at the global location of the feature point,
P, but due to noise in the measurements, they may not intersect. Therefore, it is
determined that the feature point lies in the midpoint, P’, between the line segment
that is perpendicular to both of the rays.

P1 = CL + ao(PL − CL) (14)

P2 = CR + b o(PR − CR) (15)

P′ = P1 + 1/2(P2 − P1) (16)

where ao and bo represent the values of a and b where the line P’ crosses the l and r
vectors respectively.

The orthogonal vector, w, to both lines, l and r, is:

w = (PL − CL)× (PR − CR) (17)

Therefore, the line going through P1 to P2 is:

P2 = P1 + cow (18)

The unknowns ao, b o, co are found by solving the following equation:

ao(PL − CL)− b o(PR − OR)+ cow = CR − CL (19)

Currently the method is run without any filtering of the data so the results are
somewhat noisy as seen in Fig. 5. The method up to this point runs at approximately
6 frames per second on a 2.33 GHz dual core Windows laptop. However, the
programming code has not been optimized and the desired operation speed is to be
no less that 10 frames per second. The following steps presented for Method I have
not been completed as of yet due to current computation costs but are mentioned to
build further understanding of the final goal.

Adapting a method similar to that presented by [20] we will create the three
dimensional map of the environment from a single camera viewpoint. This map will
then be used in the chase view perspective of the UAV pilot. What the authors of [20]
do differently from a number of single camera map making algorithms is that they
merge feature points into planar regions for use in SLAM. The benefits of this is that
it dramatically reduces the number of stored feature points needed to create a map.

Fig. 5 Top down view of raw
(non-filtered) reconstruction
of feature points with flight
environment overlayed over
the data. Most data points far
away from building edges are
points reconstructed from
features detected on the
ground
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Fig. 6 Conceptual graphic
showing the chase viewpoint
during UAV operation in a
cluttered environment

Much of urban terrain contains rectangular buildings. Therefore, many detected
features can be turned into planar regions that represent building walls and rooftops.
Once the mapping is completed, the chase viewpoint can be generated by integrating
the UAV onboard camera view with the UAV perspective of the generated map.
Also, a virtual view of the UAV will be displayed in the map, generated using IMU
data and its relative size in the displayed map, along with the real time onboard
camera footage which will be rotated (and warped if necessary) to match the chase
view perspective. This concept can be seen in Fig. 6. This method of generating the
chase view allows for a current map of the environment to be relayed to the operator
at the expense of high computation requirements and limited flight speed.

3.2 Method II

As stated earlier, Method II requires much less computation during the flight as
the operating environment is modeled prior to the flight. Again, one can easily
generate such models from DTED data, satellite imagery and forward-observer
reconnaissance. In a few applications, the environment will stay relatively static
which makes Method II valid. For this paper, X-Plane flight simulation software is
used to model the UAV operation environment during flight tests. Aircraft position
in the modeled environment is updated by GPS from onboard the UAV. The
onboard camera view is rotated based on the roll angle received from the onboard
IMU and surrounded by the simulated environment.

4 Experiment Setup

To validate efforts toward generating a chase viewpoint for UAV pilots, experiments
were setup to test pilot skills operating in a cluttered environment using the current
onboard camera viewpoint and a generated chase view point. The ideal scenario
is to have a chase-view of the actual environment built from the real sensor data.
Method I is the work we have done toward that goal. However, results are noisy
and the update rate is slow. To evaluate the utility of a chase view, we conducted
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tests using an onboard camera fused with a pre-built 3D model. For the experiment
results presented later in this paper, Method II is used.

4.1 Hardware

Field testing at the current stage of the project is risky and requires a long process
of approvals to operate a UAV in restricted airspace. Tests using only a flight
simulator would help validate the design notion but it is difficult to simulate the
mechanical systems/sensors used in real world tests and environmental conditions.
Such examples would be the camera visuals, actuator responses, lighting effects,
fog and rain. Because of these reasons, the authors took advantage of the Systems
Integrated Sensors Test Rig (SISTR) facility at Drexel University to conduct flight
experiments in a scaled environment with actual UAV system hardware. SISTR
was constructed with support from the U.S. National Science Foundation for the
design and testing of UAVs and UAV sensor suites. SISTR is a 3 degree of freedom
(DOF) gantry system with a workspace of 18′×14′×6′ [21]. To match the size of a
reasonable real world UAV test environment, SISTR’s workspace represented an
H0 scale (1:87) environment as seen in Fig. 7. The flight environment consisted of
narrow corridors that can be representative of corridors between large buildings in
an urban environment.

SISTR’s end effector is used to represent the location of the aircraft inside of the
scaled environment. Aircraft dynamics during the experiments are handled by a flight
simulation package and the H0 scaled translational position of the aircraft is relayed
from the flight simulator to SISTR’s controller via User Datagram Protocol (UDP)
at a rate of 20HZ.

The aircraft’s angular positions are commanded by the experiment subject (pilot)
via a joystick. The resulting angular position of the aircraft, generated by the flight
simulator, is relayed to a 3 DOF yaw, pitch and roll (YPR) unit attached to SISTR’s
end effector as seen in Fig. 8. The YPR unit was specifically designed such that it
represented the Euler angles of the aircraft; yaw is applied first, then pitch, then
roll. It was also designed to have a small footprint due to operation in a scaled
environment. A 640×480 resolution camera with 35 degree field of view, seen in
Fig. 8, was attached to the YPR unit. The images from the camera represented the
onboard camera view from the aircraft and were relayed to the experiment subject
(pilot) at a rate of 30 frames per second during onboard camera tests and 10 FPS
during chase view tests.

4.2 Software

Aircraft dynamics and the virtual environment are generated using a commercial
flight simulator software known as X-Plane (also mentioned earlier in Method I).
X-Plane incorporates very accurate aerodynamic models into the program based on
blade element theory and allows for real time data to be sent into and out of the
program [22]. X-Plane has been used in the UAV research community, mostly as a
visualization and validation tool for autonomous flight controllers [23]. In [23] they
give a very detailed explanation of the inner workings of X-Plane and detail the data
exchange through UDP. During the experiment, flight commands are input into X-
Plane by the subject via a joystick and X-Plane generates and sends the translational
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Fig. 7 Comparison showing
the real world scale flight
environment with the H0 scale
(1:87) SISTR environment.
The boards create narrow
corridors representative of
flight between large buildings
in an urban environment

and angular positions through UDP to the SISTR controller. X-Plane is also used
during the chase view experiments to render the surrounding virtual view of the
aircraft environment based on a prior environment model. The H0 scale environment
in SISTR was built to match the full scale corridor environment we created in X-
Plane. The optics of the onboard camera are accounted for by adjusting the aspect
ratio in X-Plane so that the virtual environment matches up with the onboard camera
view.

A UAV model was created that represents a real world UAV, known as the
Mako, currently in military operation. The Mako, as seen in Fig. 9, is a military drone
developed by Navmar Applied Sciences Corporation. It is 130 lbs and has a wingspan
of 12.8 ft. It is very similar in size and function to the more popularly known Raven
and Pioneer UAVs. This UAV platform was ideal as NAVMAR is about 10 miles
of Drexel, thus it could be validated, with quick feedback on the model and our
notional concept, by veteran Mako pilots. For safety reasons, the simulated version
of the Mako was modified so it was lighter weight with less horsepower effectively
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Fig. 8 Yaw, pitch and roll unit
used to recreate the angular
position of the aircraft inside
of SISTR. The unit is designed
based on the Euler angles of
the aircraft. Yaw is applied
first, then pitch, then roll

decreasing it’s cruise speed to 30 miles per hour in the simulation which corresponds
to 6 in./s in SISTR motion at H0 scale.

4.3 User Interface

The user interface was created using Visual C#. The program handled the visual pre-
sentation to the user and also the communication between X-Plane and SISTR. The
program collected translational and angular position data from X-Plane, converted it
to H0 scale and then transmitted it through UDP to SISTR at 20 Hz. During onboard
camera tests, only the onboard camera view was shown to the pilots during flights
through the environment as seen in Fig. 1(onboard camera). During the chase view
tests, the program displayed to the pilot 3 items:

1. Rotated onboard camera view so the horizon stays level

Fig. 9 The MAKO UAV
developed by NAVMAR was
modeled in X-Plane and used
for experiment flights
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2. Virtual view of the surrounding environment based on aircraft location and prior
model of the environment

3. Virtual representation of the aircraft pose to scale with the onboard camera view
and surrounding environment

These items, seen in Fig. 1 are relayed in real time to the pilot. The onboard
camera image is rotated by applying a simple rotation about the center of the image
based on the roll angle of the aircraft.

4.4 Procedure

Prior to the tests, subjects were given time to fly the Mako in an open environment
in X-Plane under both simulated onboard camera view and chase view. This allowed
them to become familiar with the controls and to get a feel for the response and size
of the aircraft. When the subjects felt comfortable with the controls, the experiments
began. As seen in Fig. 10, the subjects were placed in a room, separated from the
experiment environment, with a 52′′ monitor from which to view the user interface.
Subjects underwent multiple tests where they flew the aircraft from an onboard
camera view or a chase view. During onboard camera tests, the subjects were shown
only the raw view from the camera and asked to fly through the corridors of the
environment while keeping a safe distance from the walls and keeping the aircraft
as stable as possible. During the chase view tests, the subjects were shown the chase
view and asked to fly through the corridors with the same emphasis on safe distance
and stability. During each test, aircraft translational and rotational positions were
recorded. If the subject crashed into the corridor walls, they were asked to continue
their flight through the corridors so data collection could continue. The walls of the
SISTR environment were designed to easily collapse under contact. The walls in the
X-Plane environment were designed to allow the plane to pass through. After each
test, subjects were given a survey on their thoughts of the different modes during the
flight tests.

Fig. 10 View of the operator
station for the experiments.
The operator sits inside of a
room separated from SISTR.
The 52” television displays the
different views for each test.
Control of the aircraft (SISTR
endeffector) is provided by
inputs from the operator using
the controller

Reprinted from the journal 499



J Intell Robot Syst (2010) 57:485–503

5 Results and Discussion

Seven subjects were used for initial validation of the chase view concept. Each
subject varied in flight simulator experience from no experience to 5 years worth
of recreational use. Shown in Fig. 11 are the best flight paths, out of all the tests,
achieved for each subject using a chase view and using an onboard camera view.
While using the onboard camera view, subjects showed much more of an oscillatory
movement than while using the chase view. This can be attributed to two issues.
During the onboard camera view tests, due to the smaller field of view, subjects
would continue to turn to bring the walls into view so to establish their position in
the environment. The second issue was a slight lag in the response of the camera
servos and gantry to the subject’s commanded desired positions similar to lag
commonly experienced in current UAV field operations. This caused some subjects
to overcompensate in the controls which led to increased oscillations in the flight.

Since the goal was to keep the aircraft as stable as possible, angular accelerations
were recorded to quantify how well the subjects were able to do this. Table 1
shows the average angular acceleration (low angular acceleration is representative
of stable flight) of each subject during trials using the chase view and trials using the
onboard camera view. Due to the lack of sample size, a statistical significance was
not calculated but the trend in the data leads to the conclusion that the chase view
decreases the angular accelerations commanded during the flight. This is significant
as quick turns under normal UAV operations can induce high stresses on the vehicle
leading to accelerated wear and tear, which in turn can lead to catastrophic failure.
Interesting to note, some subjects such as subject 2 and 3, did not show a dramatic
decrease in the angular accelerations when switching from onboard camera view to a
chase view. This shows that the view did not help the subject decrease the amount of
movement they were commanding to the vehicle. However, if you look at the flight
paths, the chase view did accomplish a better path through the environment. In the
case of subject 3, chase view was the only way that they were able to get through
the majority of the course. Subject 2 and 3 both had little to no prior flight simulator

Fig. 11 The best flight path results for each of the 7 subjects using chase view and using the onboard
camera view. The flight environment is overlayed on top of the graph. The thin line is the flight path
using chase view, the thick line is the flight path when using the onboard camera view

500 Reprinted from the journal



J Intell Robot Syst (2010) 57:485–503

Table 1 Average angular acceleration during chase view and onboard camera view tests

Subject Yaw axis Roll axis Pitch axis Magnitude
(deg/s2) (deg/s2) (deg/s2) (deg/s2)

1 Onboard 30.00 84.56 29.65 94.52
1 Chase 22.88 36.72 20.38 47.97
2 Onboard 17.57 34.16 23.63 45.10
2 Chase 15.12 37.70 12.80 42.75
3 Onboard 29.08 56.03 36.67 73.17
3 Chase 32.06 45.87 28.95 63.36
4 Onboard 46.22 69.23 32.47 89.83
4 Chase 31.44 50.06 14.18 60.82
5 Onboard 22.95 48.95 18.86 57.29
5 Chase 7.53 23.02 8.41 25.64
6 Onboard 14.86 41.87 13.91 46.57
6 Chase 5.05 13.57 5.66 15.57
7 Onboard 28.26 36.39 11.99 47.88
7 Chase 4.69 13.61 6.47 15.78

experience before the tests (other than the warm up period). It is therefore believed
that the lack of change in angular accelerations between views can be attributed to
their limited understanding of how the controls effect the aircraft’s flight.

The oscillatory motion is much easier to observe in Fig. 12 which shows the
angular positions of the aircraft during an example of a subject’s flight using the
onboard camera view and chase view. During the onboard camera view tests, the
subjects tended to move through a larger angular range and at a higher frequency
than during the chase view tests. Most subjects after the tests stated that the chase
view was much easier to operate with. For some subjects, the onboard camera view
was so disorienting that they were unable to complete the course (even with crashing
through barriers) after multiple tries. This was more common among subjects who
had very little to no prior flight simulator experience. All of these subjects however
were able to complete the course using the chase view within 2 trials. The example
results presented in Fig. 12 were from a subject with a great deal of prior flight
simulator experience. There was still a significant improvement in his operation when

Fig. 12 Example data of the
aircraft angular positions
during an onboard camera and
chase view test. The thicker
line represents angles achieved
using the onboard camera view
the thinner line represents the
angles achieved using the
chase view
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using the chase view over the onboard camera view. The increased field of view and
virtual aircraft pose of the chase view decreased the need to oscillate back and forth
to establish the aircraft’s position in the environment. The surrounding view also
helped with the subject’s response to the camera motion lag and vibrations from
SISTR as the virtual vehicle pose made it easier for the subjects to predict the desired
angular position.

6 Conclusion and Future Works

6.1 Conclusions

Future applications for UAVs will take them into low flying areas populated with
obstacles and civilians. Increased situational awareness for the pilots and operators
controlling those UAVs will most certainly help decrease the potential for crashes
and thereby decrease the chances of property damage or harm to civilians. This paper
presented the development and evaluation of implementing a chase viewpoint for
UAV operations. Results from the experiments show that the chase view method
has potential to increase the situational awareness of UAV pilots. The results
also showed that the chase view resulted in smoother motions and flight paths for
the UAV.

6.2 Future Works

The chase view method can certainly use more validation. Future work involves
testing current Predator Pilots and other UAV operators. These are subjects who
are experts in UAV operation using onboard camera views. It will also be interesting
to study if the chase view method will improve the speed of UAV pilot training. Real
world field tests are also desired for complete validation of the chase view. Method
I presented in this paper is being developed in parallel with Method II. Future work
includes continued development of Method I and human tests for validation. Method
I is desired for operations in environments where the terrain and obstacles are not
known a priori. Method I as stated in this paper can also be adapted to handle areas
with no GPS by obtaining vehicle state information from structure from motion
algorithms. There may also be benefit to combining both Method I and II into a
hybrid of both where Method I can be used to enhance areas where Method II fails
such as when the flight environment changes from the model during flight. This will
also be evaluated.
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