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Abstract 

This paper describes a set of methods that can be 
used to integrate real-time external vision sensing with 
internal force and position sensing to estimate contact 
forces by the fingers of a hand. Estimating these forces 
and contacts is essential to performing dextrous manipu- 
lation tasks. Most robotic hands are either sensorless or 
lack the ability to accurately and robustly report posi- 
tion and force information relating to contact. By adding 
external vision sensing, we can complement any internal 
sensors to more accurately estimate forces and contact 
positions. Experiments are described that use real-time 
visual trackers in conjunction with internal strain gauges 
and a new tactile sensor to  accurately estimate finger 
contacts and applied forces for a three fingered robotic 
hand. 

1 Introduction 

Robotic dextrous manipulation remains a difficult 
problem with many open research problems. While there 
have been a number of detailed analyses of the kine- 
matic and dynamic constraints necessary to effect stable 
grasps, most require a high level of sensory input and 
feedback from the grasping device (i.e. robotic hand) to 
perform dextrous manipulation. The sensory informa- 
tion required typically includes contact point estimation, 
surface normal and curvature measures, and knowledge 
of both applied and induced forces on the fingers of the 
hand. Any hand system that is capable of providing this 
information is by definition a multi-sensor device, and 
requires a set of software and hardware integration mod- 
ules to properly estimate these measures. While great 
strides have been made in robotic hand design and a 
number of working dextrous robotic hands built, the re- 
ality is that the sensory information required for dex- 
trous manipulation lags the mechanical capability of the 
hands. Accurate and high bandwidth force and position 
information for a multiple finger hand is still difficult to 
acquire robustly. 
~~ 
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This paper describes a set of methods that integrate 
vision, force, and tactile information for grasping tasks. 
The high sensory demands required by grasping moti- 
vate the use of a multi-sensor fusion approach. This is 
especially true since robustness is a key issue in grasping. 
Our aim is to use a set of internal and external sensors to 
estimate forces and contacts on the hand. Vision can be 
an effective sensing modality for grasping tasks due to its 
speed, low cost, and flexibility. It can serve as an external 
sensor that can provide control information for devices 
that lack internal sensing or that would require exten- 
sive modification and re-engineering to  provide contact 
and force sensing. Without this sensory feedback, open 
loop control must be used which requires precise mod- 
els of the environment to be effective. Using a vision 
system, a simple uninstrumented gripper/hand can be- 
come a precision device capable of position and possibly 
even force control. Additionally, when vision is coupled 
with any existing internal hand sensing, it can provide 
a rich set of complementary information to confirm and 
quantify internal sensory data. 

2 Related Research 

A number of previous researchers have explored the 
use of visual feedback and control to assist in the grasp- 
ing task. Houshangi [7] tracked moving objects for grasp- 
ing. Hollingshurst and Cipolla [6] have developed a sys- 
tem for positioning a gripper above an object in the en- 
vironment using an affine stereo transform to estimate 
the object’s position. Taylor et al. have used 3-D vision 
to guide the grasping task [14]. Castano and Hutchin- 
son [3] use visual constraint planes to  create compliant 
surfaces for constraint robot movement in the real world. 
Bendiksen and Hager [2] have used vision in conjunction 
with gripper forces to  achieve stable grasps. Sharma 
et al. [lo] use perceptual 3D surfaces to represent the 
workspace of the gripper and object and they plan their 
positioning tasks along these surfaces. Sobh and Ba- 
jcsy [12] examined how finite state machines can be used 
to monitor the grasping process through vision. Smith 
and Papanikolopolous [ll] have recently extended their 
visual servoing and control algorithms to create a hand- 
eye tracker capable of grasping static and moving ob- 

0-7803-3700-X/96 $5.00 01996 IEEE 349 



jects. Our own work has explored the capability of vision 
systems to track and grasp moving objects [l] and use 
uncalibrated visual servoing to perform alignment tasks 
[16]. This work motivated us to  use stereo vision to  con- 
trol an uninstrumented gripper in simple grasping tasks 
[17, 151. The robotic hand used in that research had no 
internal sensing, and thus vision system could not report 
forces being applied to the grasped objects. In this pa- 
per, we explore the integration of external vision with 
existing but limited internal force and contact sensors. 

3 Kinematic Issues 
Figure 1: The Barrett Hand 

Integration of position information from vision sensors 
for grasping requires an accurate kinematic model of the 
hand. The kinematic model is used to support and inter- 
pret force-related sensory information that is the result 
of fusing visual contact information with internal force 
sensing. Any implementation of grasping for a dextrous 
robot hand demands knowledge of both the internal and 
external forces and torques acting on the hand. Below, 
we describe this kinematic and force model for a partic- 
ular robotic hand, but the method can be extended to  
other hands as well. 

3.1 The Barrett Hand 

The dextrous robot hand used for our investigation is 
the Barrett Hand depicted in Figure 1. It is an eight-axis, 
three-fingered mechanical hand with each finger having 
two joints. One finger is stationary and the other two 
can spread synchronously up to 180 degrees about the 
palm (finger 3 is stationary and fingers 1 and 2 rotate 
about the palm). Although there are $ axes, the hand is 
controlled by four motors. Each of the three fingers has 
one actuated “inner” link, and a coupled “outer” link 
that moves at a fixed rate with the inner link. A novel 
clutch mechanism allows the outer link to  continue to 
move if the inner link’s motion is obstructed (referred to 
as breakaway). An additional motor controls the syn- 
chronous spread of the two fingers about the palm. Var- 
ious grasp classifications capable with the hand include 
but are not limited to: power, hook, capture, cylinder- 
tip, spherical, and cylinder grasps. 

3.2 Internal Force Sensing 

Each finger has been equipped with a strain gauge. 
The gauges measure the axial strain in response to loads 
applied to the outer link due to coupled cable tensions 
(see Figure 2). The beam to which the strain gauges are 
attached to can be modeled as a cantilever beam under 
static equilibrium as follows. 
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Figure 2: Location of Strain Gauges and Tensions 

(2) FFT = 2(T2 - T I )  siny = 2ATsiny 

where FFT is the force along the finger’s outer link, 
TI and T2 are the tensions along the upper and lower 
cables respectively, and y is the directional angle these 
tensions act along. Thus, given a strain gauge reading 
AT, FFT can be calculated. 

For point forces acting in the x-y plane, the General 
Beam Method can be used to determine the deflection 
at any point along the finger’s outer link given FFT and 
the location of the applied force. This is illustrated in 
Figure 3.  Recall that beam curvature is related to a 
bending moment Mb as 

where E is Young’s modulus and I,, is the moment 
of inertia about the z-axis. Given clamped boundary 
conditions, the deflection at any point along the beam is 
given by 

FFTX~ F F T L X ~  y ( z )  = - - ____ 
6EI,, 2EI,, (4) 

- TI siny - TI sin y + T2 sin y + TZ sin y - FFT = 0 (1) 
where L is the length of the beam. Maximum deflec- 

tion occurs at  2 = L ,  that is, at  the finger tip: 
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Figure 3: Free Body Diagram 

(5) 

3.3 Predicting Forces from Strain Gauges 

It is desired to solve for the applied forces on the fin- 
ger, FFT as introduced in ( 4) without explicitly mea- 
suring the vertical finger displacement ~(2). This can be 
done by assuming that the strain gauge output sg and 
y(z) are linear such that 

sg = ~ ~ F F T x ~  - k 2 F ~ ~ 2 ~  + U + & (6) 
where a is an offset and error E .  Formulating a least- 

squares parameter estimate 6 where 

e = ((aTQ,)-'Q,Ty (10) 
The functional matrix Q, is formed from values FFT 

and I used in calibrating the strain gauges. In this cali- 
bration process, fixed weights ranging from 1.2 lbs (4.72 
N) to 4 lbs (18.09 N) ,  at 0.2 lbs intervals, were suspended 
along the finger at  2 mm intervals. 

Since the strain gauges as illustrated in Figure 2 are 
configured in a conventional Wheatstone bridge, it is rea- 
sonable to assume linearity between sg and ~(2). Fig- 
ure 4 is a plot of the finger force vs. strain gauge and dis- 
tance function. By kinematically deriving the predicted 

Figure 4: Finger Force as a function of strain gauge 
readings(s,) and distance (x) 

beam behavior, and empirically determining the param- 
eter estimates, a predictive force model can be solved for 
without explicitly measuring the vertical displacement 
as : 

sg - U 

IC123 - IC222 
FFT = 

Furthermore the moment of inertia I,, for the finger 
does not need to be explicitly calculated. This would 
pose to be challenging given both the non-uniform cross 
sectional area and non-homogeneous composition of the 
finger. Experimental data in Section 4.2 demonstrates 
the validity of the above predictive force model. 

4 Integration of Vision with Force 

The strain gauge output can report the forces acting 
on the outer link, but cannot localize them. The strain 
gauges only provide us with torque readings about the 
outer joints - it is necessary to  find the point of contact 
along a finger to determine the force normal to that fin- 
ger. Vision sensiog can be used to provide this contact 
point estimation, and thereby calculate the actual finger 
tip forces in conjunction with the strain gauge readings 
and the kinematic model developed in the previous sec- 
tion. The effective requirements of any vision sensing 
system to perform this integration task include real-time 
contact position estimation of multiple contacts. Since 
the fingers are moving until contact is made, tracking 
the fingers and objects to be grasped as they move over 
time is also required. 

4.1 Vision Sensor 

The initial vision sensor we are using is a single camera 
that can image the fingers of the hand and the object 
to be contacted. In this paper, we are using a scaled 
orthography camera model which effectively allows us to  
determine the 3-D position of fingers and contacts from 
the image plane directly. The methods described here 
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can be easily extended to a stereo perspective camera 
model that can provide full 3-D depth recovery as well 
[15]. The vision system we are using is a modification 
of Hager’s X Vision system [5]. X Vision was chosen 
because it is a software implementation that can be easily 
applied to an existing hand system simply by hooking up 
a camera and frame grabber. It also has the advantage 
of portability across a number of platforms. Using X 
Vision, complex trackers can be built up from simple 
edge and region-based tracking primitives. Each tracker 
has a state vector consisting of position and orientation 
information which is updated after each iteration of the 
tracking loop. Once a line or region tracker is initialized 
on an edge or window within the image it will track the 
feature at  frame rates. The tracker assumes an affine 
transformation (translation, rotation, scaling and shear) 
between successive image frames. 

Figure 5: Finger of Barrett Hand applying force to in- 
strumented probe 

These trackers have several parameters which can be 
altered by the user. The length of the line tracker, as 
well as the width of the local window around the line, 
can be set. In the region based SSD (Sum of Squared 
Distances) correlation tracker many parameters affect 
its performance. These include window size and resolu- 
tion, as well as several flags to enable or disable rotation, 
scaling, and brightness compensation. By seeding these 
trackers to follow edges or regions in the image, they will 
continuously track the features in real time. The track- 
ers are very reliable for reasonable amounts of motion. 
In our experiments we used three different trackers: a 
corner tracker that is composed of two line trackers that 
reflect the intersections of the lines along the inner and 
outer links of a finger, another line tracker to track a 
spike-like force probe that contacts the finger, and an 
SSD tracker for the endpoint of the finger. Using the 
scaled orthographic camera model, we were able to track 
a finger and determine a point of contact to within 1 mm 
of the actual contact point. 

4.2 Experiment I 

The purpose of this experiment was to see if vision 
sensing could track finger and object movements, and 
then localize contact along the finger to estimate actual 
finger forces using the calibration data from the previous 
section. We mounted a spike-like force probe on top of an 
AT1 force sensing wrist that provided us with accurate 
three dimensional force data which we used as ground 
truth. The hand was mounted on a PUMA-560 robot 
and positioned in the vicinity of the spike. One finger of 
the hand was positioned above the spike as the trackers 
were initialized. To find the point where the spike con- 
tacts the finger we used one line tracker initialized on the 

Figure 6: Visual Sensing: Line tracker, corner tracker, 
and SSD tracker applied to finger 

Figures 5 and 6). 
As the finger closed on top of the spike, the trackers 

followed it.  The corner tracker’s state vector reported 
the (2, y) position of the intersection of its two lines as 
well as their individual orientations with respect to the 
x-axis. Although the orientation of the line tracking the 
inner link was not needed for this experiment, we have 
found that the corner tracker is more robust than a sim- 
ple line tracker because the endpoint intersection con- 
straint prevents each of the lines from sliding along their 
respective edges. In later experiments the two lines of 
the corner tracker can be used to compute the angle of 
the outer joint simply by finding the difference in orien- 
tation between the two lines. 

Using the state vectors of the trackers (see Figure 7), 
a point of intersection in image space was computed: 

right side of the spike, one corner tracker placed along 
inside edges of the finger, and an SSD tracker initialized 
so that it is centered on a point marked at  7 mm from 
the end of the finger which is used as a reference (see 

y = L1.y- offset, x = y-c .y  + c . x  (12) 
tan(C.02) 

where L1.y is y-coordinate of the line tracker follow- 
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Figure 7: Using three feature trackers, the point of con- 
tact can be computed. 

ing the spike, ( C x ,  C.y) is the position of corner tracker, 
C.02 is the orientation of the upper line in the corner 
tracker, and offset is the distance in pixels from the cen- 
ter of the spike to the edge. The point of finger contact 
and the point tracked by the SSD were then transformed 
to world coordinates using the scaled orthography cam- 
era calibration matrix, and a distance along the finger 
was computed. 

This method resulted in fast, reliable measurements 
within l m m  of the actual point of contact. Near the 
end of the finger where the distance between the contact 
point and the tracked endpoint reference was small, our 
accuracy dropped to about 1.5" from lmm.  Using 10 
averaged distance measurements and 10 averaged strain 
gauge readings taken from the hand we were able to pre- 
dict the force applied to the finger at the point of contact. 
The standard deviation in position was .4 mm along the 
finger except at  the very tip where it increased to  .9 
mm. By varying the velocity of movement of the finger, 
we were able to apply a range of forces on the spike, lim- 
ited by maximum torque available from the motor. Our 
accuracy was also limited by the low resolution of the 
strain gauges in this force range. The maximum range 
was near four bits at the end of the finger where the 
maximum deflection of the beam occurs and results in 
a corresponding higher strain gauge reading. Contacts 
near the joint between the outer and inner links caused 
the least deflection and the strain gauge readings were 
less accurate in this region, only about two bits of infor- 
mation. 

Our results (see Figure 8) showed that as we placed 
the spike further along the finger our error dropped until 
we reached the very end of the finger. The low resolution 
of the strain gauges when the force acts near the joint 
also makes calibration in this region difficult. Generally 
we found that as more pressure is applied to the spike, 
our error percentage dropped significantly. 
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Figure 8: Results of Experiment I: Graphs (top to bot- 
tom) show force data when spike is at 13" from outer 
joint, 24mm, 40mm, and 51". Solid Line represents 
modeled linear relationship between strain gauge values 
and forces for a contact at the given distance along the 
finger. Points are actual force readings from the AT1 
force sensing wrist for contact at  the distance determined 
by vision. Contacts farther out on the link were modeled 
more accurately due to the limited range of the finger 
forces and strain gauge resolution near the finger joint. 
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Figure 9: Tactile sensor mounted on Barrett Hand. 

4.3 Experiment I1 

While the previous experiment showed the utility of 
vision in tracking fingers and determining contact points, 
it is important to note that occlusion can prevent the vi- 
sion sensor from reporting this information. This can be 
overcome by the use of a finger mounted tactile sensor 
that can estimate contact point localization. We are us- 
ing a capacitive tactile sensor designed by Howe [13] that 
is based upon an earlier design of Fearing’s [4]. The sen- 
sor is designed to be slipped on to  the outer link of the 
finger as shown in Figure 9. We are currently building 
additional sensors for the inner links and palmar surfaces 
of the hand. The tactile sensor geometry is a 4x8 grid 
with each capacitive cell approximately 3 mm by 3 mm 
and 1 ”spacing between tactile elements (tactels), and 
the sensor can bend to the curve of the fingertip. The 
sensor is covered with a compliant elastomer that allows 
force distributions to be spread over the sensing surface. 
While the intensity values have not yet been calibrated 
to provide accurate force information, it is possible to use 
their relative responses to compute the weighted center of 
contact of the applied force using moments. To calibrate 
the sensor to provide the point of contact, we probed one 
column of the sensor which was aligned along the length 
of the finger at different distances along its length and it 
reported the contact center with a precision of about 1.2 
mm. Figure 10 shows the predicted relationship between 
tactel location and distance along the finger and sample 
probes along the sensor attached to the outer link. 

Tactile sensors can also be used without vision to  es- 
timate forces and contacts [8, 91. However, the robust- 
ness of these sensors is always a problem, and the vision 
sensing can serve to verify as well as improve the tactile 
localization, particularly in dead spots between tactels. 
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0: Contact distance vs. tactile localization along 
column of the tactile sensor. 

4.4 Experiment I11 

One of the Barrett Hand’s unique features is its abil- 
ity to complete a grasp of an object after the inner link’s 
motion has been obstructed. During this breakaway sit- 
uation, the clutch mechanism in each finger allows the 
outer links to continue closing after its inner link has 
been stopped. This feature is especially useful for grasp- 
ing large objects or irregularly shaped objects where the 
inner links may be blocked early, and the outer links 
finish the grasp. 

Each of the four motors in the hand is equipped with 
an optical position encoder that can supply angular data 
for the finger joint where i t  meets the palm (referred to 
as the inner joint). Using the kinematic parameters of 
the hand, this allows us to calculate the endpoint of the 
inner link. There is no encoder at the joint between the 
inner and outer links (referred to as the outer joint). In 
normal operation, the outer joint of each finger is driven 
at a 4:3 ratio with respect to the inner joint, and using 
the kinematic equations and this angle ratio, the finger’s 
position in space can be computed. Often, however, due 
to backlash, this information is not exact. Moreover, in a 
breakaway situation, the angle of the outer joint cannot 
be derived from the optical encoder in the inner joint 
since the clutch has disengaged the links and the 4:3 
ratio no longer is valid. Vision sensing can provide the 
joint angle by calculating the difference in orientation 
angle for the two line trackers along the inner and outer 
links of the finger. Knowing this joint angle and the link 
geometry allows us to  use forward kinematics and locate 
the last link in space. During breakaway, without vision 
sensing, we cannot localize the contact along the outer 
link. 

In this experiment we rigidly mounted a small block to 
the palm of the hand and closed the third finger around 
it. By securing the block from sliding, we were able 
to  better ensure the obstruction of the first link, and 
cause the grasp to  result in two contacts by the inner 
and outer links on the block which we attempted to lo- 
cate. The motion trackers in this experiment included 
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two SSD trackers and three corner trackers. One SSD 
tracker was initialized on the end of the finger and a 
second one was centered on a cross hair marking the 
inner joint's axis. Two corner trackers were placed on 
the block, one on each side, and the third corner tracker 
was placed along the inside edges of the finger as before. 
After the trackers had been initialized, the finger was 
closed around the block (see Figures 11, 12, and 13). 
Using this method, we were able to track the angle of the 
joint between inner and outer links at all times. At this 
point the points of contact could be computed by using 
a method similar to the previous experiment. First the 
intersection of each side of the block with the two lines of 
the corner tracker was computed and then using the SSD 
trackers as reference points, the distance along the link 
could be determined. We found that the vision system 
reported contact points that were within 2 mm of the 
actual contact points. We encountered some difficulty 
in keeping the first SSD tracker centered on the mark 
near the end of the finger. In future revisions of this 
system we hope to improve the tracker or the pattern 
being tracked and thus improve our accuracy. We also 
attached the tactile sensor to  the outer link of finger 3 to 
provide us with additional contact information. In this 
experiment, the actual contact distance along the outer 
link was determined to be 38 mm as read by a ruler. The 
vision system reported 40.0" as the distance and the 
tactile sensor reported it as 36.6". The actual contact 
distance along the inner link was determined to be 49 
mm as read by a ruler and the vision system reported 
51.3 mm as the distance (we did not have an inner link 
tactile sensor). 

Figure 11: The trackers after initialization. 

5 Conclusions and Future Work Figure 12: The inner link is stopped, and breakaway 

As stated above, grasping with a robotic hand is an 
inherent multi-sensor fusion problem. Humans appear 
to have very easily integrated position, force and vision 
sensing during grasping. One way to extend these capa- 
bilities to robotic hand systems is to add complementary 
sensors that provide both unique and redundant infor- 
mation relating to force and position. In this paper, we 
have described a set of visual trackers that can be used 
in a control loop to 1) determine if contact has occurred 
and 2) estimate the position of contact along a finger. 
Vision has the advantage of being fast and simple to 
add to an existing hand system that may be lacking in 
sensory capability. We have also calibrated the internal 
force sensors of the hand to fuse the visual contact po- 
sition information with the modeled strain gauge values 
and correctly predict applied finger forces. This will al- 
low a grasping task to 1) visually determine the grasping 
points of contact and 2) modify the control of the finger 
to apply pre-determined forces on an object. Finally, we 
have also integrated a tactile sensor on the outer link 

Figure 13: The outer link completes the grasp and the 
'Ontact points are 
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of the finger to complement the position sensing of the 
vision system. The tactile sensor can report positional 
contact location also (in a limited region of coverage), 
which can be used when vision is occluded, as well as 
confirming any visually determined contact positions. 

We are currently extending the system described here 
in a number of ways. First, we are extending the vision 
system to a 3-D binocular stereo setup. By using pairs 
of feature trackers, one in each image, we will be able 
to compute depth information in the scene. Also, by us- 
ing more than one camera for external visual sensing, we 
can reduce the occlusion problems during grasping. We 
are also extending these visual trackers to track multiple 
finger features robustly. Second, we are applying these 
methods to a set of grasping tasks that include handling 
deformable and fragile objects, where finger forces need 
to be pre-determined and monitored. Third, we are in- 
strumenting all three fingers of the hand with tactile sen- 
sors on inner and outer links, as well as a palmar sensor. 
We still need to characterize the finger forces from the 
tactile responses. Our previous work with tactile sensors 
has shown that this is often difficult to do accurately and 
robustly; we hope the multi-sensor approach described 
above will allow us to complement the tactile responses 
with strain gauge and vision sensing for robustness. This 
will also include investigating the role of dynamics of the 
fingers and sensors for integrating force and vision. 

Acknowledgment: We would like to thank Rob 
Howe, Jae Son, Bill Peine, and Parris Wellman from the 
Harvard Robotics Lab for their help in building the tac- 
tile sensor system. 

References 

[l] P. Allen, A. Timcenko, B. Yoshimi, and P. Michel- 
Automated tracking and grasping of a moving 

IEEE Trans. 
man. 
object with a robotic hand-eye system. 
on Robotics and Automation, 9(2):152-165, 1993. 

[2] A. Bendiksen and G. Hager. A vision-based grasping 
system for unfamiliar planar objects. In IEEE Inter- 
national Conference of Robotics and Automation, pages 
2844-2849, May 1994. 

[3] A. Castano and S. Hutchinson. Visual compliance: Task- 
directed visual servo control. IEEE Trans. on Robotics 

[4] R. S. Fearing. Tactile sensing for shape interpretation. 
In S. T. Venkataraman and T. Iberall, editors, Deztrous 
Robot Hands. Springer-Verlag, 1989. 

[5] G. D. Hager and K. Toyama. X vision: A portable sub- 
strate for real-time vision applications. Technical report, 
Department of Computer Science, Yale University, 1995. 

Uncalibrated stereo 
hand-eye coordination. Technical Report CUED/F- 
INFENG/TR126, Department of Engineering, Univer- 
sity of Cambridge, 1993. 

and Automation, 10(3):334-342, June 1994. 

[6] N. Hollinghurst and R. Cipolla. 

[7] N. Houshangi. Control of a robot manipulator to grasp 
a moving target using vision. In IEEE International 
Conference on Robotics and Automation, pages 604-609, 
Cincinnati, May 13-18 1990. 

[8] D. Johnston, P. Zhang, J. Hollerbach, and S. Jacobsen. 
A full tactile sensing suite for dextrous robot hands and 
use in contact force control. In Proc. of the 1996 IEEE 
International Conference on Robotics and Automation, 
pages 3222-3227, 1996. 

Dynamic 
grasping force control using tactile feedback for grasp 
of multifingered hand. In Proc. of the 1996 IEEE Inter- 
national Conference on Robotics and Automation, pages 

[lo] R. Sharma, J. Herve, and P. Cucka. Analysis of dynamic 
hand positioning tasks using visual feedback. Technical 
Report CAR-TR-574, Center for Auto. Res., University 
of Maryland, 1991. 

[11] C. Smith and N. Papanikolopoulos. Vision-guided 
robotic grasping: Issues and experiments. In Proc. of 
the 1996 IEEE International Conference on Robotics and 
Automation, pages 3203-3208, 1996. 

[12] T. M. Sobh and R. Bajcsy. Autonomous observation 
under uncertainty. In Proc. of IEEE International Con- 
ference on Robotics and Automation, pages 1792-1798, 
May 1992. 

[13] J. Son and R. Howe. Tactile sensing and stiffness control 
with multifingered hands. In Proc. of the 1996 IEEE 
International Conference on Robotics and Automation, 
pages 3228-3233, 1996. 

[14] M. Taylor, A. Blake, and A. Cox. Visually guided grasp- 
ing in 3d. In IEEE International Conference of Robotics 
and Automation, pages 761-766, May 1994. 

[15] B. Yoshimi. Visual Control of Robotics Tasks. PhD 
thesis, Dept.of Computer Science, Columbia University, 
1995. 

[16] B. Yoshimi and P. Allen. Alignment using an uncali- 
IEEE Trans. on Robotacs and 

[9] H. Maekawa, K. Tanie, and K. Komoriya. 

2462-2469, 1996. 

brated camera system. 
Automation, 11(4):516-521, August 1995. 

[17] B. H. Yoshimi and P. Allen. Visual control of grasp- 
ing and manipulation tasks. In MFI '94: 1994 IEEE 
International Conference on Multisensor Fusion and In- 
tegration for Intelligent Systems, pages 575-582, 1994. 

356 


