Seeing With OpenCV

Implementing Eigenface

Last xplaine:
how recognition
method called eigenface works.
This month’s article concludes
both the OpenCV series and the
eigenface topic with a detailed
look at a complete program for
implementing eigenface with
OpenCV.

FIGURE 1. The two input files for the
eigenface program: train.txt and test.txt.
The paths in these input files point to
| images in the ORL face database.

ere's a brief recap of last month'’s
Harticle explaining how eigenface
works.

Eigenface consists of two phases:
learning and recognition. In the learning
phase, you give eigenface one or more
face images for each person you want it
to recognize. These images are called the
training images. In the recognition phase,
when you give eigenface a face image, it
responds by telling you which training
image is “closest” to the new face image.

Eigenface uses the training images
to "“learn” a face model. This face
model is created by applying a method
called Principal Components Analysis

(PCA) to reduce the “dimensionality” of
these images. Eigenface defines image
dimensionality as the number of pixels
in an image.

The lower dimensionality represen-
tation that eigenface finds during the
learning phase is called a subspace. In
the recognition phase, it reduces the
dimensionality of the input image by
"projecting” it onto the subspace it
found during learning. “Projecting onto
a subspace” means finding the closest
point in that subspace. After the
unknown face image has been project-
ed, eigenface calculates the distance
between it and each training image. Its
output is a pointer

' P train.txt - Note... [;@

File Edit Format View Help

1 s1/1.pgm
2 s2/1.pgm
4 s4/1.pgm

ﬂ

P test.txt - Notepad E]@®

File Edit Format View Help

s1/1.pgm
s2/1.pgm
s4/1.pgm
s1/2.pgm
s2/2.pgm
s4/2.pgm
slig.pgm
s2/3.pgm
s4/3.pgm
s1/4.pgm
s2/4.pgm
s4/4.pgn|
s1/5.pgm
s2/5.pgm
s4/5.pgm
s1/6.pgm
s2/6.pgm
s4/6.pgm

T N N N N e N e N

44 SERVO 05.2007

/ Functice
! void learn();
void recognize();
void doPCA();
. woid storeTrainingData(};

int findNearestNeighbor {float *
int loadFaceImgArray(char * filename);
void printUsage(};

void main{ int arge, char** argv)
2
i validate tha
if(argc '= 2)
{

printUsage();

return;

}

else
{

printUsage();
)
}

int loadTrainingData(CwvMat ** pTrainPersentumMat) ;
projectedTestFace);

t an input was specified

if({ !stremp(argvill, "train®™))} learn{);
else if{ !strcmplargv[l], "test")) recognizell;

printf ("Unknown command: %s\n", argv[l]);

Lo to the closest train-
#include <stdio.h> ing 1mage_ You can
#include <string.h> .
B e v then look up which
| #include "cvaux.h" person eigenface
$#include "highgui.h" z S
identified.
:lobal wariables
int nTrainFaces = 0; w
int nEigens = 0; settlng
Iplimage ** faceImghrr = 0;
CvMat + personNumTruthMat = 0; Up for
Iplimage * pavgTrainlmg = 0; -
! IplImage ** eigenVecthArr = 0;
CwMat * eigenValMat = 0; Elgenface
. CvMat * projectedIrainFaceMat = 0; T ce
n prototypes In use, you'”

probably want to
combine eigenface
with the face
detection method
presented in Part 2
of this series. To
simplify the exam-
ple code for this
article, however,
Il be assuming
you already have a
set of training
images and a set

FIGURE 2. The
top-level source
listing for the
eigenface program.

of test images. These face images must
il be exactly the same size.

For the examples in this article, I've
Jsed a free, publicly available face data-
nase — the Olivetti Research Lab's (ORL)
Face Database. The URL is listed in the
References and Resources sidebar.

To set up for using eigenface, unzip
ne ORL database in the same directory
jou’ll use to run eigenface. This data-
nase contains 10 face images for each
of 40 subjects. These are organized into
10 directories, named s1-s40. Each
directory contains 10 images, named
1.pgm-10.pgm. All the ORL images are
already the same size — 92 x 112 pixels.

You'll also need two input files:
train.txt and test.txt. Figure 1 shows an
example of these input files. Both files
use the same format: person number,
whitespace, path to image file.

You may have noticed that the first
three test images are the same as the
training images. These are useful test
cases, because eigenface should
always give the right answer when you
ask it to recognize one of its training
mages. If it doesn't, you know you
nave some debugging to do!

To run the learning phase of this
eigenface program, enter

sigenface train

at the command prompt. To run the
recognition phase, enter

eigenface test

Source Code

Figures 2-10 contain the complete
source listing for a basic eigenface pro-
gram. To keep the presentation simple,
I've omitted most of the error checking.

The Top-Level Listing

Figure 2 shows the top-level source
listing for eigenface — a program to learn
and recognize faces with OpenCV's
eigenface methods. At line 4, it includes
cvaux.h. Until now, we've only included
cv.h and highgui.h. But we'll use
two specialized functions for face
recognition, cvCalcEigenCbjects ()

FIGURE 4. The learn() function.
This function implements the
learning phase of eigenface.

FIGURE 3. The printUsage ()

printUsage ()

helper function.

and cvEigenDecomposite (), {

that are defined in cvaux.h.
The primary variables for

eigenface are defined at lines | @

8-15. One of the datatypes | ' !

| woid printUsage()

printf("Usage: eigenface <command>\n",

" valid commands are‘\n"
L) train\n"
n test\n");

here, CvMat, is one we haven't

used before. This is OpenCV’'s matrix
datatype. A matrix contains a table of
data, arranged as rows and columns.

If you only need to hold data
temporarily within your program, an
ordinary C-style array is usually a little
easier to use than cvMat. But the cvMat
datatype can be nice when you want to
take advantage of OpenCV functions for
working with matrix data. The ones we'll
use are OpenCV's persistence functions.
With these, you can store matrix data
with a single line of code. Reading it back
into your programs later is just as easy.
Here, I've used a C array for two variables
(faceImgArr and eigenVectArr) and
cvMat for several others.

The main() function simply reads
the input string, then calls either the
learn() method or the recognize()
method. Figure 3 shows the
| printUsage() helper function.

The Learning Phase

Figure 4 shows the learn()
function, which implements the
learning phase as four steps:

1) Load the training data (line 6).

2) Do PCA on it to find a subspace
(line 16).

3) Project the training faces onto the
PCA subspace (lines 20-29).

4) Save all the training information
(line 32).
a) Eigenvalues
b) Eigenvectors
c) The average training face image
d) Projected faces
e) Person ID numbers

The next four subsections analyze each

learn()

| wvoid learn()
int i;
// load training data
if(nTrainFaces < 2)

{
fprintf(stderr,

12 return;

for (i=0; i<nTrainFaces; i++)
{
22 cvEigenDecomposite (
23 faceImgarr(i],
2 nEigens,
25 eigenVectArr,
Oi' 0!’
pAvgTrainimg,

storeTrainingDatal();

projectedTrainFaceMat = cvCreateMat (nTrainFaces, nEigens,

nTrainFaces = loadFacelImgArray("train.txt");

"Need 2 or more training faces\n"
"Input file contains only %d\n", nTrainFaces);

1

// do PCA on the training faces

doPCA[();

'/ project the training images onto the PCA subspace

CV_32FC1);

projectedTrainFaceMat—>data.fl + i*nEigens);

/ store the recognition data as an xml file

SERVO 05.2007 45

loadFaceImgArray ()

{
FILE * imgListFile = 0;
char imgFilename[512];
int iFace, nFaces=0;

/ open the input file

'/ count the number of faces

rewind {imgListFile);

personNumTruthMat

{

fscanf (imgListFile,

// load the face image
}
fclose(imgListFile);

return nFaces;

int loadFaceImgArray(char * filename)

imgListFile = fopen(filename, "

while(fgets(imgFilename, 512, imgListFile)) ++nFaces;

‘/ allocate the face-image array and person number matrix
faceImghrr = (IplImage **)cvAlloc(nFaces*sizeof (IplImage *) });
= cvCreateMat(1, nFaces, CV_325Cl);

// store the face images in an array

for (iFace=0; iFace<nFaces; iFace++)
'/ read person number and name of image file

%d %s, personNumTruthMat->data.i+iFace, imgFilename);

faceImghrr [iFace] = cvLoadImage (imgFilename, CV_LOAD_IMAGE_GRAYSCALE) ;

FIGURE 5. The loadFacelImgArray ()
function loads face images and person
ID numbers for both the learning and

recognition phases.

of these steps in detail.

Loading Face Images for
Training or Test

The loadFaceImgarray () function
(Figure 5) loads face images and
person ID numbers for both the
learning and recognition phases.

The face images — assumed here
to be all the same size — are stored
in the global variable faceImghrr;
loadFaceImgBArray () returns the
number of face images. loaded.

The person ID numbers are stored in
a CvMat variable, personNumTruthMat.
“Truth” here refers to the Al term,
“ground truth.” It means the values in
this variable are the true (correct)
values for each face image. During the
learning phase, those are the only type
of person ID numbers we have.
But during the recognition phase, the
program will have both ground truth
values (specified in the file test.txt) and
the output from eigenface. Having
both allows us to evaluate how
well eigenface does under varying
conditions.

The cvCreateMat () function —
called at line 16 — creates the
personNumTruthMat variable. This func-
tion takes three parameters: the number

46 SERVO 05.2007

of rows, the number of columns, and
the datatype for the matrix. On a 32-bit
operating system, the datatype for a
matrix of int values is cv_32sc1. The 8
here stands for “signed,” and c1 indi-
cates that the matrix has one channel.
(A matrix can have up to four channels.
Multiple channels allow you to add a
third dimension to a matrix variable.)

The cvMat datatype is a struct,
with the raw data stored in the struct
element data; data is defined as a
union (the definition is given in the
CXCORE documentation), with int
data accessed as data.i. Lines
22-23 show one way to access CviMat
values — as offsets from the start of the
data buffer.

Matrix rows are aligned to start
on four-byte intervals. The in-memory
row width, in bytes, is stored
in CvMat.step. Since we're using a
four-byte datatype with this matrix
(and also, since it has only one row),
we can ignore CvMat.step. But, if you
create a matrix of, for example, char
data, you may need to take the step
size into account when you access the
data elements.

Finding the PCA Subspace
The code to find the PCA subspace

is in Figure 6. It calls the builtin
OpenCV function for doing PCA,
cvCalcEigenObjects (), at lines 27-36.
The remainder of doPCA() creates the
output variables that will hold the PCA
results when cvCalcEigenObjects ()
returns.

At line 8, the number of eigenval-
ues is set to one less than the number
of training images. (As explained last
month, this is the maximum number of
eigenvalues we can find.)

Lines 11-15 create the global
image array eigenVectArr. When
cvCalcEigenObjects() returns, each
image in this array will hold one eigenvec-
tor, one “eigenface,” in other words. Note
that these are floating-point images, with
data depth = IPL DEPTH 32F.

At line 18, another matrix is creat-
ed — eigenvalMat. This matrix will hold
the eigenvalues. The eigenvalues are
floating-point numbers, and we only
need one channel for this, so the
matrix type is cvV_32FC1. That gives us
a one-channel matrix, with 32-bit,
floating-point data values.

To do PCA, the dataset must first
be “centered.” For our face images,
this means finding the average image
— an image in which each pixel
contains the average value for that
pixel across all face images in the
training set. The dataset is centered by
subtracting the average face's pixel
values from each training image.

You don't have to do that yourself. It
happens inside cvCalcEigenObjects ().
But you do need to hold onto the
average image, because you'll need it
later to project the data. So you'll need
to allocate memory for the average
image. The code for doing that is at
line 21. Note that — like the eigenvec-
tors — this is a floating-point image.

The last step before calling
cvCalcEigenObjects () is to prepare a
data structure called cvTermCriteria.
The fields in this structure specify termi-
nation criteria for iterative algorithms
such as PCA. You can read more
about CvTermCriteria options in the
CXCORE documentation. Here, we can
simply tell it to compute each eigenval-
ue, then stop, since that’s all we need.

FIGURE 6. dorca () finds the
PCA subspace using OpenCV's
‘ cvCalcEigenObiects () function.

doPCA ()

1 wvoid doPCA()
{

int i;
CvTermCriteria calcLimit;
CvSize faceImgSize;

The code for that is at line 24.

Now that all the output variables are
ready, we call cvCalcEigenObjects()
to compute the PCA subspace for the // set the number
training faces. The last parameter, | 8 nBlgens = nTrainfaces-1;
eigenvalMat->data.fl, is the pointer
to the data values in eigenValMat.
Here, we use the data.fl field, not
data. i, since this matrix variable holds
floating-point data.

of eigenvalues to use

'/ allocate the eigenvector images

faceImgSize.width = faceImgiArr[0]->width;

faceImgSize.height = facelmglrr[0]->height;

eigenVectArr = (IplImage**)cvAlloc(sizeof(IplImage*) * nEigens);
14 for (i=0; i<nEigens; i++)
15 eigenVectArr[i] = cvCreatelImage(faceImgSize, IPL_DEPTH_32F, 1);

Projecting the Training Faces

1 // allocate the eigenvalue array
Now that you've found a subspace |:¢ eigenvValMat = cvCreateMat(1, nEigens, CV_32FCl);
using PCA, you can convert the [!®
training images to pOiI’TtS in this 20 // allocate the averaged image

) . AvgTrainimg = cvCreatelImage(faceImgSize, IPL_DEPTH_32F, 1);
subspace. As explained last month, this - . ¢ . '

step is called “"projecting” the training |23 // set the PCA termination criterion
image. The OpenCV function for this |2¢ calcLimit = cvTermCriteria(CV_TERMCRIT_ITER, nEigens, 1);
step is called cvEigenDecomposite() [“-

(Figure 4, line 22).

The OpenCV function names are,
unfortunately, confusing. Not only is
the projection function oddly named,
but there's also a function named

;

compute average image, eigenvalues, and eigenvectors
cvCalcEigenObjects(

28 nTrainFaces,

(void*) facelmghArr,

(void*)eigenVecthArr,

CV_EIGOBJ_NO_CALLBACK,

32 0,

“EigenProjection” that doesn't project [-°)

image data onto the subspace. In |-, f e iiniitiits

fact, it does the opposite. It |:s pAvgTrainImg,

restores (uncompresses) projected |[:z6 eigenValMat->data.fl);
data, turning it back into the original |>7 !}

image. The correct name for doing

that is Reconstruction, not Projection!

You'll need a place to put the
projected training images. Line 19 in
Figure 4 creates a matrix for that
purpose. The for loop, at lines 20-29,
calls cvEigenDecomposite () once for
each training image.

CV_STORAGE WRITE, which means to
create (or overwrite) that file and open
it for writing.

To write basic Clanguage data —
integers, floating-point values, and
strings — in XML format, you can use
the function cviWrite<datatype>().

For example, the call to cviiriteInt ()
at line 10 writes the number of
eigenvalues as <nEigens>2</nEigens>.

The really nice thing about using
OpenCV's persistence functions is that
it's just as easy to save complex
datatypes, such as an image or matrix.

Saving the Learned Face Model

storeTrainingData()

The small bit of extra effort to
use OpenCV's cvMat datatype really
pays off when it comes time to save
the training data! Figure 7 shows the
complete code for saving all the data
for your learned face representation
as an XML file using OpenCV's built-
in persistence functions.

At line 7, the «call to
cvOpenFileStorage() opens an
XML file named facedata.xml. The
last parameter to this function
controls the access mode. Here, it's

FIGURE 7. storeTrainingData() saves
all the data for the learned face
representation as an XML file using

R R Ry TN . SR, 7, R g S

T T iy o

(7 IR U Y- B

(O TR R N R S

OpenCV's built-in persistence functions.

void storeTrainingDataf()

{
CvFileStorage # fileStorage:
int 1i:

77 create a file-storage interface

fileStorage = cvOpenFileStorage("facedata.xml®, 0. CV_STORAGE WRITE):

/7 store all the data

cvlritelnt(fileStorage, "nEigens”, nEigens):

cviritelnt(fileStorage, "nTrainFaces", nTrainFaces):

“trainPersonNunMat”, personNumTruthMat, cvAttrList(0.0)):
"eigenValMat", eigenValMat. cvAttrList(0.0)):
“projectedTrainFaceMat", projectedTrainFaceMat. cvAttrList(0,0)):
*avgTrainIng”, pivgTrainImg., cvAttrList{0.0}):

cvlirite(fileStorage.
cvirite(fileStorage.
cvlirite(fileStorage.
cvirite(fileStorage.
for(i=0: i<nEigens: i++)
{

char varname[200]:

sprintf(warname, “eigenVect_Xd", i):
cvlirite(fileStorage, varname, eigenVecthrr[i]. cvAttrList(0,0)):

}

/7 release the file-storage interface
cvReleaseFileStorage(&fileStorage):

SERVO 05.2007 47

recognize()

void recognize()
{
int i, nTestFaces = 0;
CvMat * trainPersonNumMat = 0;
float * projectedTestFace = 0;
/ load test images and ground truth for pe
nTestFaces = loadFacelImghrray("test.txt");
printf("%d test faces loaded\n", nTestFaces);

1 numben

+

lpad the saved training data

if({ !loadTrainingData(&trainPersonbumMat)) return;

/ project the test images onto the PCR subspace
projectedTestFace = (float *)cvAlloc(nEigens*sizeof (float));
for(i=0; i<nTestFaces; i++)

{

int iNearest, nearest, truth;

project the test image onto the PCA subspace
cvEigenDecomposite (
faceImghrr[il,

nEigens,

eigenVectArr,

0, 0,

phvgTrainImg,

projectedTestFace);
iNearest = findNearestNeighbor (projectedTestFace);
truth = personNumTruthMat->data.i[i];

nearest = trainPersonNumMat->data.i[iNearest];

printf ("nearest = %d, Truth = %d\n", nearest, truth);

FIGURE 8, The recognize () function
implements the recognition phase of
the eigenface program.

Lines 12-15 add three matrices and an <eigenValMat type id="opencv-

image to the same XML file. The "“iig;’:;;/rows)

built-in persistence functions save not <colss2</cols>

only the row and column data, but all <dt>f</dt>
<data>

the header information, as well. Here's

the XML that line 13 generates: Mat>.

14279064. 9614034.</data></eigenval

loadTrainingData ()

1 int loadTrainingData(CvMat ## pTrainPersonNumMat)
CvFileStorage # fileStorage:
4 int i:

b // create a file-storage interface
7 fileStorage = cvOpenFileStorage("facedata.xml", 0, CV_STORAGE_READ):
if(|fileStorage)

fprintf(stderr. "Can’'t open facedata.xml™n"}:
1 return 0

}

4 nEigens = cvReadIntByName(fileStorage, 0. "nEigens®, 0):
5 nTrainFaces = cvReadIntByName{fileStorage., 0. "nTrainFaces", 0):
#pTrainPersonNumMat = (CvMat #)cvReadByHame(fileStorage, 0.
17 esigenValMat = (CvMat #)cvReadByName(fileStorage, 0. "eigenValMat®. 0):
18 projectedTrainFaceMat =

(CvMat ®)cvReadByName(fileStorage, 0. "projectedTrainFaceMat”, 0):
19 pavgTrainIng = (IplImage *)cvReadByName(fileStorage, 0. "avgTrainlmg". 0):
20 eigenVectirr = (IplImage »%)cvilloc{nTrainFaces#sizeof(IplImage #)):
21 for(i=0; i<nEigens: i++)
{
23 char varname[200]:
24 sprintf(varname, "eigenVect_¥d", i):
25 sigenVectArr(i] = (IplImage *)cvReadByName(fileStorage, 0, varname. 0):
}

8 s/ release the file-storage interface
29 cvReleaseFileStorage(&fileStorage).

31 return 1;

"trainPersonNumMat®,

0):

The second parameter to the
Write() functions is a string. The
string can be anything you like, but to
ensure uniqueness — and for clarity's
sake — it's usually a good idea to make
it the same as your variable name.

When you've finished writing
data, close the file and release the file
storage as in line 24.

The Recognition Phase

Figure 8 shows the recognize()
function, which implements the recogni-
tion phase of the eigenface program. It
has just three steps. Two of them - load-
ing the face images and projecting them
onto the subspace — are already familiar.

As described above, the face
images for recognition testing should
be listed in a file named test.txt, using
the same format as in train.txt. At line
8, the call to loadFaceImgArray ()
loads these into the faceImgArr and
stores the ground truth for the person
ID number in personNumTruthMat. This
step is similar to line & of the learn()
function in Figure 4. Here, the number
of face images is stored in the local
variable, nTestFaces.

We also need to load the global
variable nTrainFaces, as well as most
of the other training data — nEigens,
EigenVectArr, pAvgTrainImg, and so
on. The function loadTrainingData ()
in Figure 9 does that for us. Again,
OpenCV's persistence functions make
this step easy. To open file storage for
reading, use the CV_STORAGE READ
flag. Then, simply call the appropriate
Read() function for each variable.
OpenCV locates and loads each data |
value in the XML file by name. When
the variable is a cvMat type, OpenCV
creates a new matrix for you automati-
cally, then sets its data values.

The last parameter in the Read()
function's interface is a default value. If
a named variable is missing from the
XML file, it will be set to the default.
For pointer types — such as the
matrices — it's a good idea to set the
default to 0. You can then add a

FIGURE 9. OpenCV’s persistence
functions make it easy to load the
saved training data from the XML file.

48 SERVO 05.2007

FIGURE 10. The findNearestNeighbor (}
function computes the distance |
from the projected test image to each |
projected training example to find the
closest training image.

validation check to make sure these
pointers have a non-zero value
before you use them. To simplify the
example code, I've omitted these (and
similar) validation steps from the
loadTrainingData() function.

After all the data are loaded,
the final step in the recognition phase
is to project each test image onto
the PCA subspace and locate the
closest projected training image.
The for loop at lines 16-34 of the
recognize () function (Figure 8)
implements this final step. The call
to cvEigenDecomposite(), which
projects the test image, is similar to the
face-projection code in the learn()
function.

As before, we pass it the number
of eigenvalues (nEigens), and the array
of eigenvectors (eigenvectarr). This
time, however, we pass a test image,
instead of a training image, as the
first parameter. The output from
cvEigenDecomposite () is stored in a
local variable — projectedTestFace.
Because there’'s no need to store the
projected test image, I've used a C
array for projectedTestFace, rather
than an OpenCV matrix.

Finding the Nearest Neighbor

As last month's article explained,
eigenface “recognizes” a face image by
looking for the training image that's clos-
est to it in the PCA subspace. Finding the
closest training example in a learned sub-
space is a very common Al technique.
It's called Nearest Neighbor matching.

Figure 10 shows the code for the
findNearestNeighbor () function. [t
computes distance from the projected
test image to each projected training
example. The distance basis here is
"Squared Euclidean Distance.” As last
month'’s column explained, to calculate
Euclidean distance between two
points, you'd add up the squared dis-
tance in each dimension, then take the
square root of that sum. Here, we take
the sum, but skip the square root step.
The final result is the same, because
the neighbor with the smallest distance
also has the smallest squared distance,
SO we can save some computation time

findNearestNeighbor ()

int findNearestWNeighbor (float * projectedTestFace)

{

double leastDistSq = DBL_MAY;
iNearest = 0;

int i, iTrain,
for (iTrain=0;
{

double distSg=0;

for (i=0; i<nEigens; i++)
{

float d_i =

projectedTestFace[i]
projectedTrainFaceMat->data.fl[iTrain*nEigens + i];

distSg += d_i*d_i;
}
if (distSg < leastDistS5qg)
{

leastDistS8qg = distSg;
iNearest = iTrain;

}

return iNearest;

iTrain<nTrainFaces; iTrain++)

by comparing squared values.

The for loop at lines 6-22
computes the squared distance to each
projected training image, and keeps
track (at lines 18-21) of which training
image is closest.

The return value is the index of
the closest training image. In the
recognize () function (Figure 8), this
return value is used, at line 31, to look
up the person ID number associated
with the nearest training image.

Here is the print output from the
recognize () function;

nearest = 1, Truth = 1
nearest = 2, Truth = 2
nearest = 4, Truth = 4
nearest = 1, Truth = 1
nearest = 2, Truth = 2
nearest = 4, Truth = 4
nearest = 1, Truth = 1
nearest = 2, Truth = 2
nearest = 4, Truth = 4
nearest = 1, Truth = 1
nearest = 2, Truth = 2
nearest = 4, Truth = 4
nearest = 1, Truth = 1
nearest = 2, Truth = 2
nearest = 4, Truth = 4
nearest = 1, Truth = 1
nearest = 2, Truth = 2
nearest = 1, Truth = 4

Not bad! We only have one
mismatch: the last test image was

misrecognized as Subject 1 instead of 4.

Improving Eigenface

Having a framework like this for
training and testing will make it
easier for you to add improvements to
eigenface and to test their effects.

One of the first improvements you
might want to add is to change the
way distance is measured. The original
eigenface paper wused Euclidean
distances between points, and that's
the distance basis I've used in
findNearestNeighbors(). But a
different basis, called Mahalanobis
distance (after its inventor), usually
gives better results.

One of the things that happens
when you project a face image onto
the PCA subspace is that each dimen-
sion receives a certain amount of
stretch. The amount of stretch isn't the
same, though, in every direction. The
directions that correspond to the
largest eigenvalues get stretched far
more than the directions associated
with smaller eigenvalues. Because
Euclidean distance ignores this stretch-
ing, using it to measure distance is
approximately the same as using only
one eigenvector and ignoring the rest!

It's easy to switch from Euclidean
to Mahalanobis distance. Just change

SERVO 05.2007 49

References and Resources Where to Go From Here?

* OpenCV on Sourceforge
http://sourceforge.net/projects/opencvlibrary

» Official OpenCV Usergroup
http://tech.groups.yahoo.com/group/OpenCY

 Turk, M., Pentland, A., Face recognition using eigenfaces,
Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, 1991.

* ORL Database
www.cl.cam.ac.uk/research/dtg/attarchive/facedata
base.html

= Source code in this article can be downloaded from
www.cognotics.com/opencv/servo.

line 15 in findNearestNeighbors () from
distSg += d i*d i;
to
distSq += d_i*d i/eigenvalMat->data.fl[i];
Switching to Mahalanobis distance eliminates the mis-

match error mentioned above, bringing recognition accuracy
up to 100% for these three subjects.

This article introduced several new OpenCV concepts. You
can gain a deeper understanding of these from the OpenCV
documentation. The persistence functions, the CvTermCriteria
struct, and the CcvMat datatype are described in detail in the
CXCORE documentation. The eigenface functions are
described in the CVAUX documentation. The CVAUX documen-
tation isn't linked from the documentation index page, but you
can find it in the documentation subdirectory named ref.

If you want to incorporate eigenface into a system that
detects faces in live video, you'll first need to detect the face, then
extract it into a separate image. Since each face image must be
exactly the same size, the easiest way to do that is to define a
standard size, say 50 x 50 pixels, ahead of time. Then, when you
detect a face, you can use code like this to extract and resize it:

CvRect * pFaceRect = (CvRect*)cvGetSegElem(pRectSeq, 0);
cvSetImageROI (pImg, *pFaceRect);
IplImage * pFacelmg =
cvCreateImage(STD SIZE, IPL DEPTH 8U, 1 };
cvResize (pImg, pFacelmg, CV_INTER ARER) ;

There are more capabilities built into OpenCV, and many,
many more computer vision programs one can create using
this library. | hope this short series of articles has given
you a taste of what's possible with OpenCV, and perhaps
motivated you to explore more of its capabilities.

Be seeing you!

STEER WINNING ROBOTS
WITHOUT SERVOS!

P only two Radio/Control channels for vehicles using two
separate brush-type electric motors mounted right and left |
with our mixing RDFR dual speed control. Used in many |
successful competitive robots. Single joystick operation: up |
goes straight ahead, down is reverse. Pure right or left twirls 'l
vehicle as motors turn opposite directions. In between stick |
positions completely proportional. Plugs in like a servo to fi
vour Futaba, JR, Hitec, or similar radio. Compatible with gyro
steering stabilization. Various volt and amp sizes available.
" The RDFRA7E 55V 75A per motor unit pictured above. ||
" www.vantec.com '

Order at ‘
I&W/E-_C‘ (888) 929-5055

50 SERVO 05.2007

See our website for other offers

¢ 2 sided boards up to 20 sq" size
¢ FR-4, 0.062" thick
"¢ 7 mil trace/space
~¢ 15 mil min. finished hole size
+ As many drill sizes as you want
¢ Free Tooling, Soldermask, Silkscreen

ne: 408.522.1500

