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Introduction

SLAM Objective

• Place a robot in an unknown location in an unknown environment and 
have the robot incrementally build a map of this environment while 
simultaneously using this map to compute vehicle location

• SLAM began with seminal paper by R. Smith, M. Self, and P. 
Cheeseman in 1990

• A solution to SLAM has been seen as the “Holy Grail”
– Would enable robots to operate in an environment without a priori 

knowledge of obstacle locations

• Research over the last decade has shown that a solution is possible!!



The Localization Problem

Defined

• A map m of landmark locations is known a priori

• Take measurements of landmark location zk (i.e. distance and bearing)

• Determine vehicle location xk based on zk

– Need filter if sensor is noisy!

• xk: location of vehicle at time k

• uk: a control vector applied at k-1 to 
drive the vehicle from xk-1 to xk

• zk: observation of a landmark taken 
at time k

• Xk: history of states {x1, x2, x3, …, xk}

• Uk: history of control inputs {u1, u2, 
u3, …, uk}

• m: set of all landmarks



The Mapping Problem

Defined

• The vehicle locations Xk are provided

• Take measurement of landmark location zk (i.e. distance and bearing)

• Build map m based on on zk

– Need filter if sensor is noisy!

• Xk: history of states {x1, x2, x3, …, xk}

• zk: observation of a landmark taken at 
time k

• mi: true location of the ith landmark

• m: set of all landmarks



Simultaneous Localization and Mapping

Defined

• From knowledge of observations Zk

– Determine vehicle locations Xk

– Build map m of landmark locations

• xk: location of vehicle at time k

• uk: a control vector applied at k-1 to 
drive the vehicle from xk-1 to xk

• mi: true location of ith landmark

• zk: observation of a landmark taken 
at time k

• Xk: history of states {x1, x2, x3, …, xk}

• Uk: history of control inputs {u1, u2, 
u3, …, uk}

• m: set of all landmarks

• Zk: history of all observations {z1, z2, 
…, zk} H. Durrant-Whyte, D. Rye, E. Nebot, “Localisation of 

Automatic Guided Vehicles”, ISRR 1995



Simultaneous Localization and Mapping

Characteristics

• Localization and mapping are coupled problems
– Two quantities are to be inferred from a single measurement

• A solution can only be obtained if the localization and mapping 
processes are considered together

H. Durrant-Whyte, D. Rye, E. Nebot, “Localisation of Automatic Guided Vehicles”, 
Robotics Research: The 7th International Symposium (ISRR 1995)



SLAM Fundamentals

Setting

• A vehicle with a known kinematic model moving through an 
environment containing a population of landmarks (process model)

• The vehicle is equipped with a sensor that can take measurements
of the relative location between any individual landmark and the
vehicle itself (observation model)



SLAM Fundamentals

Process Model

• For better understanding, a linear model of the vehicle is assumed

• If the state of the vehicle is given as xv(k) then the vehicle model is

where
– Fv(k) is the state transition matrix

– uv(k) is a vector of control inputs

– wv(k) is a vector of uncorrelated process noise errors with zero mean and 
covariance Qv(k)

• The state transition equation for the ith landmark is

SLAM considers all landmarks stationary!
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SLAM Fundamentals

Process Model

• The augmented state vector containing both the state of the vehicle 
and the state of all landmark locations is

• The state transition model for the complete system is now

where
– Ipi is the dim(pi) x dim(pi) identity matrix

– 0pi is the dim(pi) null vector

  T
T
N

TT
v ppkxkx ...)()( 1



















 





















 



























































 

NNN p

p

v

p

p

v

N

v

p

p

v

N

v kwku

p

p

kx

I

I

kF

p

p

kx

0

0

)1(

0

0

)1()(

000

0

00

00)()1(

111 11











SLAM Fundamentals

Observation Model

• Assuming the observation to be linear, the observation model for the 
ith landmark is given as

where
– vi(k) is a vector of uncorrelated observation errors with zero mean and 

variance Ri(k)

– Hi is the observation matrix  that relates the sensor output zi(k) to the state 
vector x(k) when observing the ith landmark and is written as

– Re-expressing the observation model

)()()( kvkxHkz ii 

 00,,00, 
ipvi HHH 

)()()( kvkxHpHkz ivvpi




Estimation Process

Kalman Filter

• Recursively computes estimates of state x(k) which is evolving 
according to the process and observation models

• The filter proceeds in three stages
– Prediction

– Observation

– Update

Objective

• The state of our discrete-time process xk needs to be estimated based 
on our measurement zk

• This is the exact definition of the Kalman filter!!



Estimation Process

Prediction

• After initializing the filter (i.e. setting values for          and P(k)), a 
prediction is generated for
– The a priori state estimate

– The a priori observation relative to the ith landmark

– The a priori state covariance (e.g. a measure of how uncertain the states 
computed by the process model are)
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Estimation Process

Observation

• Following the prediction, an observation zi(k+1) of the ith landmark is 
made using the observation model

• An innovation and innovation covariance matrix are calculated
– Innovation is the discrepancy between the actual measurement zk and the 

predicted measurement 
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Estimation Process

Update

• The state estimate and corresponding state estimate covariance are 
then updated according to

where the gain matrix Wi(k+1) is given by
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Kalman Filter
A Closer Look…



Kalman Filter

Background

• Developed by Rudolph E. Kalman in 1960

• A set of mathematical equations that provides an 
efficient computational (recursive) means to 
estimate the state of a process

• It supports estimations of
– Past states

– Present states

– Future states

and can do so when the nature of the modeled 
system is unknown!



Discrete Kalman Filter

Process Model

• Assumes true state at time k evolves from state (k-1) according to

where
– F is the state transition model (A matrix)

– G is the control input matrix (B matrix)

– w(k) is the process noise which is assumed to be white and have a normal 
probability distribution
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Discrete Kalman Filter

Observation Model

• At time k, a measurement z(k) of the true state x(k) is made according to

where
– H is the observation matrix and relates the measurement z(k) to the state 

vector x(k)

– v(k) is the observation noise which is assumed to be white and have a  normal 
probability distribution

)()()( kvkHxkz 
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Discrete Kalman Filter

Algorithm

• It’s recursive!
– Only the estimated state from the previous time step and the current 

measurement are needed to compute the estimate for the current state

• The state of the filter is represented by two variables
– x(k): estimate of the state at time k

– P(k|k): error covariance matrix (a measure of the estimated accuracy of the 
state estimate)

• The filter has two distinct stages
– Predict (and observe)

– Update



Discrete Kalman Filter (Notation 1)

Prediction

• Predicted state

• Predicted covariance

)1()()1|1(ˆ)()1|(ˆ  kukBkkxkFkkx
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• Optimal Kalman gain

• Updated state

• Updated covariance

Update
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Observation

• Innovation

• Innovation covariance

Not the same variable!!

Not the same variable!!



Discrete Kalman Filter (Notation 2)

Prediction

• Predicted state

• Predicted estimate covariance
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• Optimal Kalman gain

• Updated state estimate

• Updated estimate covariance

Update
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Observation

• Innovation

• Innovation covariance



Discrete Kalman Filter

(1) Project the state ahead

(2) Project the error covariance ahead

QFkFPkP T  )1()(

Prediction

(1) Compute the Kalman gain

(2) Update estimate with measurement z(k)

(3) Update error covariance

Observation and Update
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A Kalman Filter in Action
An Example…



Kalman Filter Example

Process Model

• Estimate a scalar random constant (e.g. voltage )
– Measurements are corrupted by 0.1 volt RMS white noise



Kalman Filter Example

Process Model

• Governed by the linear difference equation

with a measurement

)()1()1()( kwkGukFxkx 

)()1()( kwkxkx  State doesn’t change (F=0)
No control input (u=0)
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Measurement is of state
directly (H=1))()()( kvkxkz 



Kalman Filter Example

Output


