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Introduction

SLAM Objective

Place a robot in an unknown location in an unknown environment and
have the robot incrementally build a map of this environment while
simultaneously using this map to compute vehicle location

SLAM began with seminal paper by R. Smith, M. Self, and P.
Cheeseman in 1990

A solution to SLAM has been seen as the “Holy Grail”

— Would enable robots to operate in an environment without a priori
knowledge of obstacle locations

Research over the last decade has shown that a solution is possible!!



The Localization Problem

Defined

« A map m of landmark locations is known a priori
« Take measurements of landmark location z, (i.e. distance and bearing)
» Determine vehicle location x, based on z,

— Need filter if sensor is noisy!

* X, location of vehicle at time k

* U, acontrol vector applied at k-1 to
drive the vehicle from x,_; to x,

» 2z, observation of a landmark taken
at time Kk

. XK history of states {X;, X5, X3, ..., X}

. U~ history of control inputs {u,, u,,
Ug, ..., Uy}

 m: set of all landmarks
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The Mapping Problem

Defined

« The vehicle locations X* are provided
« Take measurement of landmark location z, (i.e. distance and bearing)

e Build map m based on on z,
— Need filter if sensor is noisy!

| ITIj \
3
\\ajﬁ 2
X" history of states {X1s Xoy Xz +eny Xi}
« z,: observation of a landmark taken at *%‘
time k Zij sce <\7

« m; true location of the i landmark

- m: set of all landmarks |>Y7




Simultaneous Localization and Mapping

Defined

 From knowledge of observations Z"
— Determine vehicle locations X*
— Build map m of landmark locations

* X location of vehicle at time k

* U, acontrol vector applied at k-1 to
drive the vehicle from x,_; to x,

e m; true location of i"" landmark

» 2z, observation of a landmark taken
at time Kk

X history of states {X1s Xoy X3y +eny Xi}
. US history of control inputs {u,, u,,

Us, ..., Uy}
 m: set of all landmarks *
- Z* history of all observations {z,, z,,
e Zi} H. Durrant-Whyte, D. Rye, E. Nebot, “Localisation of

Automatic Guided Vehicles”, ISRR 1995



Simultaneous Localization and Mapping

Characteristics

« Localization and mapping are coupled problems
— Two quantities are to be inferred from a single measurement

e A solution can only be obtained if the localization and mapping
processes are considered together

H. Durrant-Whyte, D. Rye, E. Nebot, “Localisation of Automatic Guided Vehicles”,
Robotics Research: The 7t International Symposium (ISRR 1995)



SLAM Fundamentals

Setting

A vehicle with a known kinematic model moving through an
environment containing a population of landmarks (process model)

The vehicle is equipped with a sensor that can take measurements
of the relative location between any individual landmark and the
vehicle itself (observation model)
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SLAM Fundamentals

Process Model

* For better understanding, a linear model of the vehicle is assumed
 If the state of the vehicle is given as x (k) then the vehicle model is

X,(k+1) =F, (k)x, (k) +u,(k+1) +w,(k +1)
where
— F,(K) Is the state transition matrix

— u,(Kk) is a vector of control inputs

— w,(k) is a vector of uncorrelated process noise errors with zero mean and
covariance Q,(k)

e The state transition equation for the it landmark is

p;(k+1) = p;(k) = p;

SLAM considers all landmarks stationary!



SLAM Fundamentals

Process Model

The augmented state vector containing both the state of the vehicle
and the state of all landmark locations is

X, (k +1)]
P,

Pn

where

— | Is the dim(p,) x dim(p)) identity matrix
— 0, Is the dim(p)) null vector

F, (k)
0

0
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P1

0

x(k) = [x] (k)

The state transition model for the complete system is how
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SLAM Fundamentals

Observation Model

« Assuming the observation to be linear, the observation model for the
i [andmark is given as

2(k) = H.x(K) + V. (K)

where

— Vi(k) is a vector of uncorrelated observation errors with zero mean and
variance R;(k)

— H, is the observation matrix that relates the sensor output z,(k) to the state
vector x(k) when observing the it landmark and is written as

H, =|-H,.,0...0,H, ,0...0]

— Re-expressing the observation model

2(k) = H, p—H,x, (k) +V,(K)



Estimation Process

Objective

« The state of our discrete-time process X, needs to be estimated based
on our measurement z,

 This is the exact definition of the Kalman filter!!

Kalman Filter

* Recursively computes estimates of state x(k) which is evolving
according to the process and observation models
* The filter proceeds in three stages
— Prediction
— Observation
— Update



Estimation Process

Prediction

. After initializing the filter (i.e. setting values for X(k) and P(k)), a
prediction is generated for

— The a priori state estimate

R(k +1| k) = F (K)R(K | k) + u(k)

— The a priori observation relative to the it" landmark

Z.(k+1|k)=H.(k)X(k +1| k)

— The a priori state covariance (e.g. a measure of how uncertain the states
computed by the process model are)

P(k+1]k)=F(Kk)P(k|k)F"(k)+Q(k)



Estimation Process

Observation

« Following the prediction, an observation z,(k+1) of the i"" landmark is

made using the observation model

* An innovation and innovation covariance matrix are calculated
— Innovation is the discrepapcy between the actual measurement z, and the

predicted measurement £
vi(k+1) =2z (k+1) -2 (k+1
S (k+1) =H. (k)P(k +1|k)H(

K)

K)+ R (k+1)



Estimation Process

Update

 The state estimate and corresponding state estimate covariance are
then updated according to

R(k +1]k +1) = R(k +1| k) + W (k +Dw; (K +1)

P(k+1|k +1) = P(k +1| k) =W, (k +1)S(k + )W (k +1)
where the gain matrix W,(k+1) is given by

W, (k +1) = P(k +1| K)H. (K)S*(k +1)



Kalman Filter
A Closer Look...



Kalman Filter

Background

* Developed by Rudolph E. Kalman in 1960

« A set of mathematical equations that provides an
efficient computational (recursive) means to
estimate the state of a process

e |t supports estimations of

— Past states

— Present states

— Future states

and can do so when the nature of the modeled
system is unknown!




Discrete Kalman Filter

Process Model

 Assumes true state at time k evolves from state (k-1) according to
x(k) = Fx(k —1) + Gu(k —2) + w(k)

where
— F is the state transition model (A matrix)

— G is the control input matrix (B matrix)
— Ww(K) is the process noise which is assumed to be white and have a normal

probability distribution

p(w) ~N(0,Q)
_L covariance



Discrete Kalman Filter

Observation Model

At time k, a measurement z(k) of the true state x(k) is made according to

2(K) = Hx(K) + v(K)

where
— H is the observation matrix and relates the measurement z(k) to the state

vector X(K)
— V(k) Is the observation noise which is assumed to be white and have a normal

probability distribution

p(v) ~ N(O,R)

_L covariance



Discrete Kalman Filter

Algorithm

e |t's recursive!

— Only the estimated state from the previous time step and the current
measurement are needed to compute the estimate for the current state

» The state of the filter is represented by two variables
— X(k): estimate of the state at time k

— P(K|k): error covariance matrix (a measure of the estimated accuracy of the
state estimate)

* The filter has two distinct stages ,./ \\
— Predict (and observe) Predict Update

— Update N /



Discrete Kalman Filter (Notation 1)

Prediction

 Predicted state X(k|k-1)+ F(k)X(k -1k -1) + B(k)u(k —1)
« Predicted covarignee{P (k |k —1) £ F (k)P (k —=1|k —1)F (k)" + Q (k)

Observation

* Innovation y(k)=2z(k)-H (k)x(k |k =1)
 |nnovation covaliance S(k)=H (k)P(k |k -1)H (k)T + R (k)

Update Not the same variable!!

« Optimal Kalman/gain K (k)= P(k |k =1)H (k)" S(k)™
« Updated state X(k k)= Xx(k |k —-1)+ K (k)y (k)
« Updated covariance P(k|k)=(l-K(k)H(K)P(k]|k-1)




Discrete Kalman Filter (Notation 2)

Prediction

« Predicted state X(k)” = F(k)X(k =1) + Bu(k -1)
 Predicted estimate covariance P (k)" = FP (k = 1)F L Q

Observation

e Innovation y(k)=1z(k)—-HX(k)"
* Innovation covariance S(k)=HP (k) H "+ R

Update

« Optimal Kalman gain K(k)=P(k) HS (k)"
o Updated state estimate X(k)=x(k) + K(k)y(k)
 Updated estimate covariance P(k)=(1 —-K(k)H)P (k)"



Discrete Kalman Filter

Prediction

(1) Project the state ahead
R(k)™ = F(K)X(k 1) + Bu(k —1)
(2) Project the error covariance ahead

P(k)" =FP(k-1)F'" +Q

Initial estimates for
X(k -1 & P(k-1)

Observation and Update

(1) Compute the Kalman gain
K(k)=P(k) H"(HP(k) H" +R)™

(2) Update estimate with measurement z(k)
x(k) = x(k)” + K(k)[z(k) - Hx(k)"]

(3) Update error covariance

P(k)=(1-K(k)H)P(k)"




A Kalman Filter in Action

An Example...



Kalman Filter Example

Process Model

« Estimate a scalar random constant (e.g. voltage )
— Measurements are corrupted by 0.1 volt RMS white noise
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Kalman Filter Example

Process Model

 Governed by the linear difference equation

x(k) = Fx(k —1) + Gu(k —1) + w(k)

_ _ : State doesn’t change (F=0)
X(k) a X(k 1) + W(k) No control input (u=0)

with a measurement

2(K) = Hx(K) + v(K)

Z(k) — X(k) + V(k) > Measgirrir;?ynzlils:i; state




Output

voltage

0.1 |

0.2 H

03k

04 7 \) U y V | V’\{
0sf \/
0sf
07 ' ' ' ' ' ' ' ' '
0 5 10 15 20 25 30 35 40 45 A0

Kalman Filter Example

EEEEEEEE

aaaaaa

tirne



