

Simultaneous Localization and Mapping (SLAM)

Lecture 01

Introduction

SLAM Objective

- Place a robot in an unknown location in an unknown environment and have the robot incrementally build a map of this environment while simultaneously using this map to compute vehicle location
- SLAM began with seminal paper by R. Smith, M. Self, and P. Cheeseman in 1990
- A solution to SLAM has been seen as the "Holy Grail"
 - Would enable robots to operate in an environment without a priori knowledge of obstacle locations
- Research over the last decade has shown that a solution is possible!!

The Localization Problem

Defined

- A map m of landmark locations is known a priori
- Take measurements of landmark location z_k (i.e. distance and bearing)
- Determine vehicle location x_k based on z_k
 - Need filter if sensor is noisy!
- x_k : location of vehicle at time k
- u_k: a control vector applied at k-1 to drive the vehicle from x_{k-1} to x_k
- z_k: observation of a landmark taken at time k
- X^k: history of states {x₁, x₂, x₃, ..., x_k}
- U^k: history of control inputs {u₁, u₂, u₃, ..., u_k}
- m: set of all landmarks

The Mapping Problem

Defined

- The vehicle locations X^k are provided
- Take measurement of landmark location z_k (i.e. distance and bearing)
- Build map m based on on z_k
 - Need filter if sensor is noisy!

- X^k: history of states {x₁, x₂, x₃, ..., x_k}
- z_k: observation of a landmark taken at time k
- m_i: true location of the ith landmark
- m: set of all landmarks

Simultaneous Localization and Mapping

Defined

- From knowledge of observations Z^k
 - Determine vehicle locations X^k
 - Build map m of landmark locations
- x_k: location of vehicle at time k
- u_k: a control vector applied at k-1 to drive the vehicle from x_{k-1} to x_k
- m_i: true location of ith landmark
- z_k: observation of a landmark taken at time k
- X^k: history of states {x₁, x₂, x₃, ..., x_k}
- U^k: history of control inputs {u₁, u₂, u₃, ..., u_k}
- m: set of all landmarks
- Z^k: history of all observations {z₁, z₂, ..., z_k}

H. Durrant-Whyte, D. Rye, E. Nebot, "Localisation of Automatic Guided Vehicles", ISRR 1995

Simultaneous Localization and Mapping

Characteristics

- Localization and mapping are coupled problems
 - Two quantities are to be inferred from a single measurement
- A solution can only be obtained if the localization and mapping processes are considered together

H. Durrant-Whyte, D. Rye, E. Nebot, "Localisation of Automatic Guided Vehicles", Robotics Research: The 7th International Symposium (ISRR 1995)

Setting

- A vehicle with a known kinematic model moving through an environment containing a population of landmarks (process model)
- The vehicle is equipped with a sensor that can take measurements of the relative location between any individual landmark and the vehicle itself (observation model)

Process Model

- For better understanding, a linear model of the vehicle is assumed
- If the state of the vehicle is given as x_v(k) then the vehicle model is

$$x_{v}(k+1) = F_{v}(k)x_{v}(k) + u_{v}(k+1) + w_{v}(k+1)$$

where

- $F_v(k)$ is the state transition matrix
- u_v(k) is a vector of control inputs
- w_v(k) is a vector of uncorrelated process noise errors with zero mean and covariance Q_v(k)
- The state transition equation for the ith landmark is

$$p_i(k+1) = p_i(k) = p_i$$

SLAM considers all landmarks stationary!

Process Model

 The augmented state vector containing both the state of the vehicle and the state of all landmark locations is

$$x(k) = \begin{bmatrix} x_v^T(k) & p_1^T & \dots & p_N^T \end{bmatrix}^T$$

The state transition model for the complete system is now

$$\begin{bmatrix} x_{v}(k+1) \\ p_{1} \\ \vdots \\ p_{N} \end{bmatrix} = \begin{bmatrix} F_{v}(k) & 0 & \dots & 0 \\ 0 & I_{p_{1}} & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & I_{p_{N}} \end{bmatrix} \begin{bmatrix} x_{v}(k) \\ p_{1} \\ \vdots \\ p_{N} \end{bmatrix} + \begin{bmatrix} u_{v}(k+1) \\ 0_{p_{1}} \\ \vdots \\ 0_{p_{N}} \end{bmatrix} + \begin{bmatrix} w_{v}(k+1) \\ 0_{p_{1}} \\ \vdots \\ 0_{p_{N}} \end{bmatrix}$$

where

- I_{pi} is the dim(p_i) x dim(p_i) identity matrix
- 0_{pi} is the dim(p_i) null vector

Observation Model

 Assuming the observation to be linear, the observation model for the ith landmark is given as

$$z(k) = H_i x(k) + v_i(k)$$

where

- v_i(k) is a vector of uncorrelated observation errors with zero mean and variance R_i(k)
- H_i is the observation matrix that relates the sensor output $z_i(k)$ to the state vector x(k) when observing the i^{th} landmark and is written as

$$H_i = [-H_v, 0...0, H_{p_i}, 0...0]$$

Re-expressing the observation model

$$z(k) = H_{p_i} p - H_v x_v(k) + v_i(k)$$

Objective

- The state of our discrete-time process x_k needs to be estimated based on our measurement z_k
- This is the exact definition of the Kalman filter!!

Kalman Filter

- Recursively computes estimates of state x(k) which is evolving according to the process and observation models
- The filter proceeds in three stages
 - Prediction
 - Observation
 - Update

Prediction

- After initializing the filter (i.e. setting values for $\hat{x}(k)$ and P(k)), a prediction is generated for
 - The a priori state estimate

$$\hat{x}(k+1|k) = F(k)\hat{x}(k|k) + u(k)$$

The a priori observation relative to the ith landmark

$$\hat{z}_i(k+1|k) = H_i(k)\hat{x}(k+1|k)$$

 The a priori state covariance (e.g. a measure of how uncertain the states computed by the process model are)

$$P(k+1|k) = F(k)P(k|k)F^{T}(k) + Q(k)$$

Observation

- Following the prediction, an observation z_i(k+1) of the ith landmark is made using the observation model
- An innovation and innovation covariance matrix are calculated
 - Innovation is the discrepancy between the actual measurement $z_{\mathbf{k}}$ and the predicted measurement \hat{z}_k

$$v_i(k+1) = z_i(k+1) - \hat{z}_i(k+1|k)$$

$$S_i(k+1) = H_i(k)P(k+1|k)H_i^T(k) + R_i(k+1)$$

Update

 The state estimate and corresponding state estimate covariance are then updated according to

$$\hat{x}(k+1 | k+1) = \hat{x}(k+1 | k) + W_i(k+1)w_i(k+1)$$

$$P(k+1|k+1) = P(k+1|k) - W_i(k+1)S(k+1)W_i^T(k+1)$$

where the gain matrix W_i(k+1) is given by

$$W_i(k+1) = P(k+1|k)H_i^T(k)S_i^{-1}(k+1)$$

Kalman Filter

A Closer Look...

Kalman Filter

Background

- Developed by Rudolph E. Kalman in 1960
- A set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process
- It supports estimations of
 - Past states
 - Present states
 - Future states

and can do so when the nature of the modeled system is unknown!

Process Model

Assumes true state at time k evolves from state (k-1) according to

$$x(k) = Fx(k-1) + Gu(k-1) + w(k)$$

where

- F is the state transition model (A matrix)
- G is the control input matrix (B matrix)
- w(k) is the process noise which is assumed to be white and have a normal probability distribution

$$p(w) \sim N(0, Q)$$

Observation Model

At time k, a measurement z(k) of the true state x(k) is made according to

$$z(k) = Hx(k) + v(k)$$

where

- H is the observation matrix and relates the measurement z(k) to the state vector x(k)
- v(k) is the observation noise which is assumed to be white and have a normal probability distribution

$$p(v) \sim N(0, R)$$
 covariance

Algorithm

- It's recursive!
 - Only the estimated state from the previous time step and the current measurement are needed to compute the estimate for the current state
- The state of the filter is represented by two variables
 - x(k): estimate of the state at time k
 - P(k|k): error covariance matrix (a measure of the estimated accuracy of the state estimate)
- The filter has two distinct stages
 - Predict (and observe)
 - Update

Discrete Kalman Filter (Notation 1)

Prediction

Predicted state

- $\hat{x}(k \mid k-1) \neq F(k)\hat{x}(k-1 \mid k-1) + B(k)u(k-1)$
- Predicted covariance $P(k | k-1) = F(k)P(k-1 | k-1)F(k)^T + Q(k)$

Observation

Innovation

- $\widetilde{y}(k) = z(k) H(k)\hat{x}(k \mid k-1)$
- Innovation covariance

$$S(k) = H(k)P(k | k-1)H(k)^{T} + R(k)$$

Update

- Not the same variable!!
- Optimal Kalman gain
- $K(k) = P(k | k-1)H(k)^{T} S(k)^{-1}$
- **Updated state**

- $|\hat{x}(k|k)| = \hat{x}(k|k-1) + K(k)\tilde{y}(k)$
- Updated covariance
- P(k | k) = (I K(k)H(k))P(k | k 1)

Not the same variable!!

Discrete Kalman Filter (Notation 2)

Prediction

- Predicted state $\hat{x}(k)^- = F(k)\hat{x}(k-1) + Bu(k-1)$
- Predicted estimate covariance $P(k)^- = FP(k-1)F^T + Q$

Observation

- Innovation $\widetilde{y}(k) = z(k) H\hat{x}(k)^{-}$
- Innovation covariance $S(k) = HP(k)^{-}H^{T} + R$

Update

- Optimal Kalman gain $K(k) = P(k)^{-}HS(k)^{-1}$
- Updated state estimate $\hat{x}(k) = \hat{x}(k)^{-} + K(k)\tilde{y}(k)$
- Updated estimate covariance $P(k) = (I K(k)H)P(k)^{-}$

Prediction

(1) Project the state ahead

$$\hat{x}(k)^{-} = F(k)\hat{x}(k-1) + Bu(k-1)$$

(2) Project the error covariance ahead

$$P(k)^{-} = FP(k-1)F^{T} + Q$$

Observation and Update

(1) Compute the Kalman gain

$$K(k) = P(k)^{-}H^{T}(HP(k)^{-}H^{T} + R)^{-1}$$

(2) Update estimate with measurement z(k)

$$\hat{x}(k) = \hat{x}(k)^{-} + K(k)[z(k) - H\hat{x}(k)^{-}]$$

(3) Update error covariance

$$P(k) = (I - K(k)H)P(k)^{-}$$

Initial estimates for

$$\hat{x}(k-1)$$
 & $P(k-1)$

A Kalman Filter in Action

An Example...

Kalman Filter Example

Process Model

- Estimate a scalar random constant (e.g. voltage)
 - Measurements are corrupted by 0.1 volt RMS white noise

Kalman Filter Example

Process Model

Governed by the linear difference equation

$$x(k) = Fx(k-1) + Gu(k-1) + w(k)$$

$$x(k) = x(k-1) + w(k)$$

State doesn't change (F=0)
No control input (u=0)

with a measurement

$$z(k) = Hx(k) + v(k)$$

$$z(k) = x(k) + v(k)$$

Measurement is of state directly (H=1)

Kalman Filter Example

Output

