
DASL-100.2 

C++ Programming and 

Linux 

Week 4-2
1. Headers

2. Library

3. Make and CMake

Instructor: Truc Tran 02-18-2023



DASL-100.2 

C++ Programming and 

Linux 
1. Headers

• In C++, a header is a file that contains function and class declarations, constants, and other definitions that can 

be used by other parts of a program. It helps making programming easier and more efficient.

• Header files typically have the ".h" and they are included in a C++ source file using the #include directive.

• Header files allow the separation of interface and implementation in a C++ program. Therefore, it is easier to 

change the implementation without affecting the interface.

• There are two types of headers:

• Pre-existing header files: Already exists in C/C++ compiler, we just need to import them. For example, 

#include <iostream> or #include <string>.

• User-defined header files: Defined by the user and can be imported using “include”.



DASL-100.2 

C++ Programming and 

Linux 
1. Headers

• We will be exploring the user-defined header files. 

• Example 1, a single header file (.h) without additional source file (.cpp).



DASL-100.2 

C++ Programming and 

Linux 
1. Headers

• In the header file header1.h, #ifndef and #define are preprocessor directives in C++ that are commonly used 

together in header files to prevent multiple inclusions of the same header file. 

• The #ifndef directive stands for "if not defined“.

• The #define directive is used to define a macro or identifier. 



DASL-100.2 

C++ Programming and 

Linux 
1. Headers

• Example 2, a header file (.h) with additional source file (.cpp).



DASL-100.2 

C++ Programming and 

Linux 
1. Headers

• Note that if we use the traditional way “g++ headers.cpp –o headers” to compile this, we will get an error.

• Because the additional source file (.cpp) is not able to be linked to our executable file.

• Use “g++ headers.cpp functions.cpp header1. h –o headers” instead.



DASL-100.2 

C++ Programming and 

Linux 
1. Libraries

• C++ class libraries are collections of pre-written C++ classes that provide developers with pre-built solutions for 

common programming tasks. These libraries can help to speed up development time and reduce the amount 

of code needed to build an application. 

• The object library provides compiled functions and data that are linked with your program to produce an 

executable program. Types of Libraries include:

• Standard Libraries: provides several generic, function objects, generic strings and streams (including 

interactive and file I/O), etc. 

• Static Libraries.

• Dynamic (Shared) Libraries.



DASL-100.2 

C++ Programming and 

Linux 
1. Libraries

• A static library is linked directly into an executable during the build process, resulting in a larger executable file 

that includes all the library code. The library code is loaded directly into memory at runtime, making it more 

efficient.

• A dynamic library is loaded at runtime by an executable or another shared library, resulting in a smaller 

executable file that only contains a reference to the library code. The library code is loaded into memory at 

runtime by the operating system, making it more flexible.

• Overall, static libraries are good for small projects where performance is 

critical and library size is not a concern. Dynamic libraries are good for 

larger projects where library size and flexibility are important.

• Static libraries are .a files in Linux and .lib files in Windows.

• Dynamic libraries are .so in Linux and .dll in Windows.



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Static

• Example 1, static libraries:

• Step 1, create a main source code “staticlibexample.cpp”.

• Create a folder name “libraries”.

• Create functions.cpp file and header1.h file inside libraries folder.



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Static

• Example 1, static libraries:

• Step 2, navigate to libraries folder and generate an object file (.o) from the function.cpp file by using the 

command: “g++ -c functions.cpp -o functions.o”.



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Static

• Example 1, static libraries:

• Step 3, generate a static library file (.a) to contain all the object files (.o) by using the command: “ar rc

libfunctions.a functions.o”.



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Static

• Example 1, static libraries:

• Step 4, navigate back to the main source code folder and generate an executable file with the static 

library file by using the command :”g++ staticlibexample.cpp -o staticlibexample -L ./libraries/ -lfunctions” 



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Dynamic

• Example 2, dynamic libraries:

• Step 1, create a main source code “dynamiclibexample.cpp”.

• Create a folder name “libraries”.

• Create avgfunction.cpp file and header1.h file inside libraries folder.



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Dynamic

• Example 2, dynamic libraries:

• Step 2, navigate to libraries folder and generate an object file (.o) from the sum.cpp file by using the 

command: “g++ -c avgfunction.cpp -o avgfunction.o”.



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Dynamic

• Example 2, dynamic libraries:

• Step 3, generate a dynamic library file (.so) to contain all the object files (.o) by using the command: “g++ -

shared -o libavgfunction.so avgfunction.o”



DASL-100.2 

C++ Programming and 

Linux 
2. Libraries - Dynamic

• Example 2, dynamic libraries:

• Step 4, navigate back to the main source code folder and 

generate an executable file with the dynamic library file by 

using the command :”g++ dynamiclibexample.cpp -o 

dynamiclibexample -L ./libraries/ -lavgfunction” 

• Note that when we try to run the executable file it gives us 

an error.



DASL-100.2 

C++ Programming and 

Linux 
3. Make

• Often, a program is considered of several files. It is painful to 

link and complie as we demonstrated in the libraries. 

• Make is a build automation tool that is used to build software 

projects by specifying a set of rules and dependencies 

between files. Make reads a file called "Makefile" that 

contains the rules and dependencies for the project. The 

Makefile specifies the targets, dependencies, and 

commands needed to build the software.

• We can simply do “g++ main.cpp avgfunction.cpp” but if 

there are a lot of files, we would have to incorporate them 

all in the command line.



DASL-100.2 

C++ Programming and 

Linux 
3. Make

• Install make, type in command : “sudo apt install make”

• Create a Makefile by click new file and name it as “Makefile”



DASL-100.2 

C++ Programming and 

Linux 
3. CMake

• Similar to Make, CMake is a cross-platform build system that is used to manage the build process for C++ 

projects. CMake generates native build files for various platforms such as Unix, Windows, and macOS. The build 

process for C++ projects typically involves compiling the source code, linking object files, and generating 

executables or libraries.

• CMake uses a file called "CMakeLists.txt" to define the build process for a project. The CMakeLists.txt file specifies 

the source files, libraries, and dependencies for the project, and defines how the project should be built. CMake

can also be used to generate project files for various integrated development environments (IDEs), such as 

Visual Studio, Eclipse, and Xcode.



DASL-100.2 

C++ Programming and 

Linux 
3. CMake

• Install cmake, type in the command “sudo apt install cmake”.

• Create a new file “CMakeLists.txt”.



DASL-100.2 

C++ Programming and 

Linux 
3. CMake

• Check CMake version by type in command : “cmake --version”

• Type in the CMake file as follow:



DASL-100.2 

C++ Programming and 

Linux 
3. CMake

• Create a build folder by type in command : “mkdir build”

• Navigate to build folder. 



DASL-100.2 

C++ Programming and 

Linux 
3. CMake

• Type in the command : “cmake ..”



DASL-100.2 

C++ Programming and 

Linux 
3. CMake

• Now, to generate executable file, type in the command : “make”.

• Executable file “CMakeExample” is generated.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

