
DASL-100.2

C++ Programming and

Linux

Week 4-1
1. IDE (Integrated

Development Environment)

2. Vector

3. Thread

Instructor: Truc Tran 02-18-2023

DASL-100.2

C++ Programming and

Linux
1. IDE (Integrated Development Environment)

• IDE is a software application that integrates a code editor, compiler, debugger, and other tools to facilitate the

development, testing, and debugging of C++ programs. It offers many features include:

• Editing source code

• Building executables, and debugging

• Syntax highlighting, auto complete

• Common IDE are Visual Studio, Esclipse, Visual Studio Code, Code::Blocks or Clion.

DASL-100.2

C++ Programming and

Linux
1. IDE (Integrated Development Environment)

• We will be using Visual Studio Code:

• Go to: https://code.visualstudio.com/download

• Click on .deb button (This is for linux ubuntu)

https://code.visualstudio.com/download

DASL-100.2

C++ Programming and

Linux
1. IDE (Integrated Development Environment)

• Installing Visual Studio Code in Ubuntu:

• Check for the downloaded file in Downloads folder (code_1.75.1-1675893397_amd64.deb)

• Open terminal and type in the command: sudo dpkg -i code_1.75.1-1675893397_amd64.deb

DASL-100.2

C++ Programming and

Linux
1. IDE (Integrated Development Environment)

• Open applications and add Visual Studo Code to Favorite.

• Run Visual Studio Code > Click File > Click Open Folder

DASL-100.2

C++ Programming and

Linux
1. IDE (Integrated Development Environment)

• Navigate to Documents folder > Click add folder (top left icon) > Create a “c++ class” folder.

• Now we can create new .cpp files by clicking “New Files..”.

• The terminal can also be accessed in Visual Studio Code.

DASL-100.2

C++ Programming and

Linux
2. Vector

• Recall array is a collection of elements of the same data type stored in contiguous memory locations.

• In C++, vector is a dynamically resizable container that can store a collection of elements of a specific data

type. Similar to std::string, std::vector is also a class that is part of the Standard Template Library (STL) and is

defined in the <vector> header file. The common member functions of the vector class include:

• push_back(): adds an element to the end of the vector.

• pop_back(): removes the last element of the vector.

• size(): returns the number of elements in the vector.

• empty(): checks if the vector is empty or not. It returns true if the vector is empty and false otherwise.

• clear(): removes all elements from the vector.

• insert(): inserts an element at a specified position in the vector.

• erase(): removes an element at a specified position in the vector.

• front(): returns the first element of the vector.

• back(): returns the last element of the vector.

• begin(): returns an iterator to the beginning of the vector.

• end(): return an integrator to the end of the vector.

DASL-100.2

C++ Programming and

Linux
2. Vector

Feature Vector Array

Size Dynamic sizing Size is fixed

Inserting elements
Efficient, with functions like

push_back and insert

Not efficient, elements need to

be shifted to make room for new

ones

Removing elements
Efficient, with functions like

pop_back and erase

Not efficient, elements need to

be shifted to close the gap

Memory management

Managed automatically,

memory is allocated and

deallocated as needed

Managed manually, requires

explicit allocation and

deallocation of memory

Standard Library support
More built-in functions, more

functionality

Fewer built-in functions, limited

functionality

DASL-100.2

C++ Programming and

Linux
2. Vector

DASL-100.2

C++ Programming and

Linux
3. Thread

• In C++, code is executed in a top-to-bottom flow, meaning that the statements in a program are executed in

the order in which they appear. The code is compiled into machine code by the compiler and executed by the

operating system, which reads the code line by line and performs the operations specified by each statement.

• In this example, “Read_Sensor_Data” function needs to wait for the “Read_Servo_Position” function to finish first

before it can start. This can cause a delay in your robotic system. You wish your control system to operate in a

continuous time frame and all the components are working “Independently”.

• In C++, a thread is a lightweight execution context that can run in parallel

with other threads. A thread can execute code independently from the

main program, and multiple threads can run concurrently to perform tasks

simultaneously.

• Threads are commonly used to improve the performance and

responsiveness of programs by parallelizing workloads across multiple CPUs

or processor cores.

DASL-100.2

C++ Programming and

Linux
3. Thread

• The std::thread class is not specifically part of the STL, it is part of the C++ Standard Library, which includes a

variety of libraries for different purposes. The common member functions of the thread class include:

• thread(): the default constructor, which creates a thread object that is not associated with any thread of

execution.

• join(): a member function that blocks the calling thread until the associated thread has completed

execution.

• detach(): a member function that allows the associated thread to execute independently of the thread

that created it.

• get_id(): a member function that returns the unique identifier of the thread.

• joinable(): a member function that returns true if the thread object is associated with a thread of execution,

and false otherwise.

DASL-100.2

C++ Programming and

Linux
3. Thread

• Let’s demonstrate the code without using thread.

DASL-100.2

C++ Programming and

Linux
3. Thread

• Now using thread. Note that we need to link the “pthread” library using “-pthread” at the end of g++ complier.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

