XL-320 NXC Programming: Intro (LED)

Hands-on Lab

XL-320 NXC Programming – “Hello World (LED)” Example

This lab introduces NXC Programming of the Robotis XL-320 Dynamixel servo. The Lego NXT Brick’s Port 4 features a serial interface (RS-485 protocol). This allows the Brick to communicate to the TTL-level serial port on the XL-320. Changing the XL-320’s LED color is a “Hello World” example to introduce RS-485 programming and writing instructions to the XL-320.

Preliminary: Hardware connections and explanation

Hardware Connections

Figure A: NXT-to-XL320 connections (left). NPN Transistor for half-duplex (top right) and NXT cable wire description (bottom right)

[image:]

[image:]

[image:]

Figure A shows the hardware connections. RS-485 protocol digitizes at -7 to +12 Volts. However, the XL-320 uses transistor-to-transistor logic (TTL) to convert bytes digitally (+5V and Ground). As such, a converter is needed. The Maxim MAX485 is a popular chip for such conversion. Its popularity is underscored by $2 boards complete with supporting passive components. One caveat of the XL-320 is that it uses half-duplex RS-485 interfacing. The Molex connector has wires for power, ground, and data. Thus only 1-wire is used to read and/or write bytes (i.e. half-duplex). As such, a NPN transistor is used to implement half-duplexing (Figure A top right). Lastly, the NXT cable’s Yellow (YLW) and Blue (BLU) wires (Figure A bottom right) serve serial purposes when RS485 is invoked.

Dynamixel Protocol 2.0 and XL-320 Firmware

As introduced earlier, the XL-320 is a smart servo; firmware is embedded. Firmware is used to permanently hold device information like identifiers (e.g. model or ID number, communication settings like baud rate, and firmware version). Firmware often consists of Random Access Memory (RAM) and/or Electronically Erasable Programmable Read-Only Memory (EEPROM). RAM holds temporary information like encoder positions and LED states. EEPROM stores more permanent information like read/write instructions.

Robotis’ information on the XL-320 is comprehensive, albeit cryptic:

1. XL-320 specifications http://emanual.robotis.com/docs/en/dxl/x/xl320/
2. EEPROM and RAM Control Table http://emanual.robotis.com/docs/en/dxl/x/xl320/#control-table
3. Robotis Protocol 2.0 Instruction and Status packets and Packet Processing http://emanual.robotis.com/docs/en/dxl/protocol2/

The XL-320 has powerful features and the above links are needed to exploit them.

Concept 1 Create Definition Header File (H-File) xl320-defines1_0a.h

Step 1: Create Definition Header File (H-File) – EEPROM Area

A cursory view of links underscores many details of the XL-320. It is helpful to first create a definition header file. This file will #define constants that will be needed to read and/or write Instruction and Status packets. Such packets reference the firmware to command the XL-320.

Section 2.2 of http://emanual.robotis.com/docs/en/dxl/x/xl320/ details the EEPROM Control Table and shown in Figure 1A.

[image:]
Figure 1A: Addresses (in Decimal) for each Data Name in EEPROM. This table can be found in Section 2.2 (Control Table) of the Robotis XL-320 E-Manual.

In the C programming language, all-uppercase is conventionally used to define constants. For this and future labs, the prefix EEPROM_, RAM_, and INSTRUCTION_ will be used before the Data Name. Also, the underscore character will be used between each word. Example, for Model Number (top line in Figure 1A) would be represented in the H-file as:

#define EEPROM_MODEL_NUMBER	0x00 // 2 bytes; motor’s model number

Following this conventional, the EEPROM defines for the H-file (Yellow highlight) would look like Figure 1B.

// FILE: xl320-defines1_0a.h
// AUTH: P.Oh
// DATE: 09/19/19 12:24
// VERS: 1.0a: XL-320 motor defines in Control Table; no functions in this file
// DESC: Refers to Section 2
// http://emanual.robotis.com/docs/en/dxl/x/xl320/#control-table
// Section 2.2 is EEPROM Control Table defines
// Section 2.3 is the RAM Control Table defines
// REFS: F:\nationalInstruments\nxcProjects\rs-485\dynamixel\Dynamixel XL-320\
// paulOhDynamixelXl320HeaderFile-1.0d.h

// Instruction related Defines

#define HEADER_1			0xFF // For Instruction Packet Header 1
#define HEADER_2			0xFF // For Instruction Packet Header 2
#define HEADER_3			0xFD // For Instruction Packet Header 3
#define RESERVED			0x00 // For Instruction Packet Reserved

// EEPROM Address related Defines
// See Robotis Section 2.2 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define EEPROM_MODEL_NUMBER 	0x00 // 2 bytes; motor's model number
#define EEPROM_FIRMWARE_VERSION	0x02 // 1 byte; motor's firmware version
#define EEPROM_ID			0x03 // 1 byte; motor's ID number [0-252]
#define EEPROM_BAUD_RATE		0x04 // 1 byte; baud [0-3]
#define EEPROM_RETURN_DELAY_TIME	0x05 // 1 byte; instruction packet send time
#define EEPROM_CW_ANGLE_LIMIT	 	0x06 // 2 bytes; minimum value of Goal Position
#define EEPROM_CCW_ANGLE_LIMIT	0X08 // 2 bytes; maximum value of Goal Position
#define EEPROM_CONTROL_MODE 	0x0B // 1 byte; Wheel (1) or Joint (2) modes
#define EEPROM_TEMPERATURE_LIMIT 	0x0C // 1 byte; overheat shutdown value [0-100]
#define EEPROM_MIN_VOLTAGE_LIMIT 	0x0D // 1 byte; minimum operational voltage
#define EEPROM_MAX_VOLTAGE_LIMIT 	0x0E // 1 byte; maximum operational voltage
#define EEPROM_MAX_TORQUE 	0x0F // 2 bytes; maximum torque value
#define EEPROM_STATUS_RETURN_LEVEL 	0x11 // 1 byte; how to send status packet
#define EEPROM_SHUTDOWN		0x12 // 1 byte; when to shutdown motor

Figure 1B: #defines for the EEPROM Control Table constants

Step 2: Create Definition Header File (H-File) – RAM Area

Section 2.3 of http://emanual.robotis.com/docs/en/dxl/x/xl320/ details the RAM Control Table and shown in Figure 1C. Following the aforementioned naming convention, Figure 1D shows the #defines to be added to the H-file in Figure 1B.

[image:]
Figure 1C: Addresses (in Decimal) for each Data Name in RAM. This table can be found in Section 2.2 (Control Table) of the Robotis XL-320 E-Manual.

// RAM Address related Defines
// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color
#define RAM_D_GAIN		 0x1B // 1 byte; motor's derivative gain
#define RAM_I_GAIN		 0x1C // 1 byte; motor's integral gain
#define RAM_P_GAIN		 0x1D // 1 byte; motor's proportional gain
#define RAM_GOAL_POSITION	 0x1E // 2 bytes; destination position value
#define RAM_MOVING_SPEED 0x20 // 2 bytes; Wheel or Joint dependent
#define RAM_TORQUE_LIMIT 0x23 // 2 bytes; maximum torque limit value
#define RAM_PRESENT_POSITION	 0x25 // 2 bytes; motor's present position
#define RAM_PRESENT_SPEED 0x27 // 2 bytes; Wheel or Joint mode dependent [0-2047]
#define RAM_PRESENT_LOAD	 0x29 // 2 bytes; currently applied load value is [0-2047]
#define RAM_PRESENT_VOLTAGE	 0x2D // 1 byte; present supply voltage
#define RAM_PRESENT_TEMPERATURE 0x2E // 1 byte; motor's internal temperature in Celsius
#define RAM_REGISTERED		 0x2F // 1 byte; REG_WRITE instruction received or not
#define RAM_MOVING	 0x31 // 1 byte; Goal Position completed or in-progress
#define RAM_HARDWARE_ERROR_STATUS 0x32 // 1 byte; present hardware error status
#define RAM_PUNCH		 0x33 // 2 bytes; minimum current to drive motor

Figure 1D: #defines for the RAM Control Table constants

Step 3: Create Definition Header File (H-File) – Instruction Area

The XL-320 is one of about a dozen different Dynamixel servos. Their EEPROM and RAM constants may differ but instructions are common. Robotis calls this Protocol 2.0. Section 2.5 of http://emanual.robotis.com/docs/en/dxl/protocol2/#instruction-packet details the Instruction Packet and given in Figure 1E.
[image:]

Figure 1E: Addresses (in Hex) for each Instruction. This table can be found in Section 2.5 (Instruction) of the Robotis Protocol 2.0 E-Manual.

Continuing with the naming convention, the #defines in Figure 1F can be added to the H-file.
// Instruction related Defines
// See Section 2.5
// http://emanual.robotis.com/docs/en/dxl/protocol2/#instruction-packet

#define INSTRUCTION_PING 0x01 // checks if arriving packet ID is same as packet ID
#define INSTRUCTION_READ	 0x02 // read data from device
#define INSTRUCTION_WRITE	 0x03 // write data to device
#define INSTRUCTION_REG_WRITE	 0x04 // registers instruction packet to set for standby
#define INSTRUCTION_ACTION	 0x05 // executes packet by INSTRUCTION_ REG_WRITE
#define INSTRUCTION_FACTORY_RESET 0x06 // reset Control Table to factory default
#define INSTRUCTION_REBOOT	 0x08 // reboot device
#define INSTRUCTION_CLEAR	 0x10 // reset certain information
#define INSTRUCTION_STATUS_RETURN 0x55 // return instruction for the Instruction packet
#define INSTRUCTION_SYNC_READ	 0x82 // multiple devices: read all devices
#define INSTRUCTION_SYNC_WRITE 0x83 // multiple devices: write all devices
#define INSTRUCTION_BULK_READ	 0x92 // multiple devices: read different devices
#define INSTRUCTION_BULK_WRITE 0x93 // multiple devices: write different devices

Figure 1F: #defines for the Robotis Dynamixel Protocol 2.0 Instruction Packet

Step 4: Create Definition Header File (H-File) – Packet Headers

Section 3 of Protocol 2.0 http://emanual.robotis.com/docs/en/dxl/protocol2/#status-packet provides details of packets. The XL-320’s firmware uses packets to read and/or write instructions. The packets are delivered via RS-485. A packet is information, typically in the form of bytes. Each byte and its location within the packet, connotes instructions. Figure 1G shows the packet form:

[image:]
Figure 1G: Section 3 of the Robotis Dynamixel Protocol 2.0 illustrates the packet format

The first 4 bytes do not change and hence included in the H-file. See (the un-highlighted section) of Figure 1B.

Concept 2 Create Definition Header File (H-File) xl320-functions1_0c.h

Preamble:

The XL-320’s firmware communicates via packets that have the form of Figure 1G. Code is simplified if one creates a separate H-file consisting of functions. The main C program can then call these functions. Function naming is not unique. Defining a naming convention would make code more readable; one could more easily recognize a function specifically written for the XL-320. For this Concept (and future ones), the convention used is the prefix XL320_ and then a name (first word lower case and subsequent words’ first letter capitalized). For example, for lighting up the XL-320’s LED, the function would be:

void XL320_setLed(unsigned char, unsigned char XL320_ledColor)

Packet Structure: Figure 2A annotates Figure 1G with more details.

[image:]

Figure 2A: Annotated explanation of each byte in a packet

[image:]
Figure 2A continued – Table with Values is from Figure 1E

One notices that a packet length is not fixed. Some instructions require more information. As such, the Param field (see [9] in Figure 2A) could be multiple bytes. One references Figure 1C to determine how many bytes (and hence Parameters) will be needed.

Writing the XL320_setLed function

Step 1: Calculate lengths Len_L and Len_H for the packet (see Figure 2A [5] and [6])

The XL-320’s LED

Figure 1C shows that the XL-320’s LED has an address of 25 Decimal (DEC). Also the size is 1-byte which can take a value from 0 to 7. Figure 2A shows that the packet length is the number of parameters + 3. One thus has:

Number of Parameters = Reserved Byte + Packet ID Byte + Value Byte + 3 Bytes = 6

The XL-320 uses 16-bit integer values. Thus to represent as two 8-bit numbers (i.e. 2 bytes), Protocol 2.0 employs a Little Endian format. Little Endian means that the lower significant bits are stored in the first byte, and the higher ones in the second byte. Hence to express 6 DEC (or 0x06) one uses sets Len_L to 0x06 and Len_H to 0x00. The yellow highlight in Figure 2B shows this expressed using the naming convention.

 // Variables to set Length 1 and Length 2
 unsigned char XL320_setLedLength_L;
 unsigned char XL320_setLedLength_H;

 // Variables to set up packet array
 unsigned char tempPacket[]; // temporary packet
 unsigned char finalPacket[]; // final packet to transmit

 // Variables for checksum CRC
 unsigned short setLed_CRC;
 byte CRC_L, CRC_H;

 // 1. Calculate lengths
 // Recall that Length 1 and Length 2 = number of parameters + 3
 // Setting LED requires only 3 parameters: address, 0x00 and output color
 // Hence number of parameters + 3 is 3 + 3 = 6 Dec = 0x06

 XL320_setLedLength_L = 0x06;
 XL320_setLedLength_H = 0x00;

Figure 2B: Len_L (or XL320_setLedLength_L) and Len_H (or XL320_setLedLength_H) set to 0x06 and 0x00 respectively, represents a packet length of 6 DEC

Step 2: Construct first part of the Packet

Thus far, the packet for setting the LED looks like Figure 2C:

[image:]
Figure 2C: From left to right: the first 4 bytes do not change.

The Packet ID is the servo ID number (which one sets under Dynamixel Wizard). The Length1 and Length2 bytes were calculated in the previous step.

In the definition H-file (xl320-defines1_0a.h) one used #define for constants (see Figure 2D):

#define HEADER_1			0xFF // For Instruction Packet Header 1
#define HEADER_2			0xFF // For Instruction Packet Header 2
#define HEADER_3			0xFD // For Instruction Packet Header 3
#define RESERVED			0x00 // For Instruction Packet Reserved
:
:
#define RAM_LED 	0x19 // 1 byte; changes motor's LED color
:
:
#define INSTRUCTION_WRITE		0x03 // write data to device

Figure 2D: Snippets of xl320-defines1_0a.h created in Concept 1

In NXC Programming, Figure 2C can be represented by the code snipped in Figure 2E. Here, the NXC function ArrayBuild is used to create a multi-byte packet called tempPacket.

 // 2. Construct first part of packet
 ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_servoId,
 XL320_setLedLength_L, XL320_setLedLength_H, INSTRUCTION_WRITE,
 RAM_LED, 0x00, XL320_ledColor);

Figure 2E: Code snippet of xl320-functions1_0c.h

In yellow-highlight are variables that are passed to the XL320_setLed function, namely, the servo’s ID number and desired color.

Step 3: Perform Checksum

Checksum is often employed to verify packets were correctly transferred between devices. The XL-320 uses the Cyclic Redundancy Check (CRC) method to perform the checksum as seen in http://emanual.robotis.com/docs/en/dxl/crc/. The Robotis XL-320 E-Manual provides this function in C as shown in Figure 2F.

[image:]

Figure 2F: Section 1 of the CRC Calculation from Robotis E-Manual

The details of how CRC operates are beyond the scope of this lab. Essentially, an NXC equivalent of Figure 2F is created as a function update_crc in the xl320-functions1_0c.nxc file.

The function is called with the following NXC code:

// 3. Perform checksum, see Section 1.2 of http://emanual.robotis.com/docs/en/dxl/crc/
unsigned int packetLength = (XL320_setLedLength_H >> 8) + XL320_setLedLength_L;

// See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
setLed_CRC = update_crc(0, tempPacket, 5 + packetLength);
CRC_L = (setLed_CRC & 0x00FF);
CRC_H = (setLed_CRC >> 8) & 0x00FF;

Figure 2G: CRC values are called using the update_crc function call

Note that the logic AND operator and bit-wise operator >> are used to create the Little Endian forms of the low and high bytes for CRC_L and CRC_H respectively.

Step 4: Concatenate final packet and transmit

Now that the CRC bytes have been calculated, the final form of the packet can be built, transmitted via a NXC RS485Write call and confirmed via a NXC waitForMessageToBeSent call (see Figure 2H).

 // 4. Concatenate into final packet and sent thru NXT RS485
 ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);
 RS485Write(finalPacket);

 // 5. Call inline function
 waitForMessageToBeSent();

}; // end XL320_setLed function

Figure 2H: Final packet creation, transmission and confirmation

Concept 3 Create NXC Main program xl320-helloLed1_0a.nxc

With firmware constants defined (Concept 1) and the packet formation for the LED (Concept 2) H-files ready, one can write a simple NXC program to light the XL-320’s LED.

Step 1: Start NXC code with comments and #includes to H-files
// FILE: xl320-helloLed1_0a.nxc - Works!
// DATE: 09/19/19 13:06
// AUTH: P.Oh
// DESC: Cycles thru XL-320 LED colors
// VERS: 1.0a:
// REFS: xl320-setLed1_0b.nxc; xl320-functions1_0a.h; xl320-defines.h
// NOTE: If factory default XL-320 used, then ID is 0x01
// ID of 0xFE commands any and all XL-320 motors

#include "xl320-defines1_0a.h" // XL-320 defines from Control Table
#include "xl320-functions1_0c.h" // P.Oh functions written for XL-320

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X01 // Assumes Motor 1 configured with ID = 1

The yellow-highlights shows include the H-files from Concepts 1 and 2. The ID_MOTOR01 is defined as a constant. This should be the Servo ID number that was set in Dynamixel Wizard (e.g. 0x01). A servo ID number of 0xFE is defined by the XL-320 firmware as commanding any and all connected servos.

Step 2: Declare NXT buttons and establish RS-485 connections
task main() {

 byte ledColor;
 bool orangeButtonPushed; // Detect Brick Center button state
 bool rightArrowButtonPushed; // Detect Brick right arrow button state
 bool leftArrowButtonPushed; // Detect Brick left arrow button state

 UseRS485();
 RS485Enable();
 // Note: First, use Dynamixel Wizard to set XL-320 to desired baud rate
 // Then, use RS485Uart to match this baud rate e.g. 9600
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); // 57600 baud, 8bit, 1stop, no parity

 ClearScreen();
 // Prompt user to begin
 TextOut(0, LCD_LINE1, "Stop: Press ORG");

The program will detect pushing of the NXT Brick’s center button (orange-colored one) to commence cycling thru LED colors. The NXC RS-485 functions UseRS485, RS485Enable, and RS485Uart establish a 57600 baud rate and 8N1 (8-bits, no-parity, 1 stop-bit) protocol.

Step 3: Call XL320_setLed function to change LED color

Section 2.4.14 of the XL-320 E-manual http://emanual.robotis.com/docs/en/dxl/x/xl320/#led details the different LED colors on the servo (see Figure 3A)
[image:]

Figure 3A: Section 2.4.14 of the XL-320 E-Manual shows LED color values

There are 8-states for the XL-320 LED: off or 7 different colors. A switch statement, in a do-while loop, cycles thru the colors.

 // See Section 2.4.14 LED http://emanual.robotis.com/docs/en/dxl/x/xl320/#led
 // LED values: 0 (Off); 1 (Red); 2 (Green); 3 (Yellow); 4 (Blue); 5 (Purple)
 // 6 (Cyan); 7 (White)

 ledColor = 0; // set LED to off first
 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 XL320_setLed(ID_ALL_MOTORS, ledColor);
 switch(ledColor) {
 case 0: TextOut(0, LCD_LINE3, FormatNum("%d OFF" , ledColor));
 break;
 case 1: TextOut(0, LCD_LINE3, FormatNum("%d RED" , ledColor));
 break;
 case 2: TextOut(0, LCD_LINE3, FormatNum("%d GRN" , ledColor));
 break;
 case 3: TextOut(0, LCD_LINE3, FormatNum("%d YLW" , ledColor));
 break;
 case 4: TextOut(0, LCD_LINE3, FormatNum("%d BLU" , ledColor));
 break;
 case 5: TextOut(0, LCD_LINE3, FormatNum("%d PUR" , ledColor));
 break;
 case 6: TextOut(0, LCD_LINE3, FormatNum("%d CYA" , ledColor));
 break;
 case 7: TextOut(0, LCD_LINE3, FormatNum("%d WHT" , ledColor));
 break;
 }; // end switch

 Wait(1000);
 ledColor++;
 if(ledColor > 7) ledColor = 0;
 } while(!orangeButtonPushed);
 ClearScreen();

} // end main

The yellow-highlighted line shows the call to XL320_setLed, which passes the servo’s ID number and desired color). The color name is displayed based on values in Figure 3A.

[bookmark: _GoBack]Congratulations! You can change the XL-320 LED color.

© Copyright Paul Oh
image2.png
D1

Tx/Rx Tx
} R1

10K

NPN
Qi

image20.png
D1

Tx/Rx Tx
} R1

10K

NPN
Qi

image3.png
NXT Pinout Information 7y)

Input mode: 4

1. White - Analog Input

2. Black - Ground \\,/% 'F
3. Red - Ground (?) 7/ #
4. Green - ~ 4.5 Volts /

5. Yellow - Serial data (I2C Clock

6. Blue - Serial data (I2C SDA?)

image30.png
NXT Pinout Information 7y)

Input mode: 4

1. White - Analog Input

2. Black - Ground \\,/% 'F
3. Red - Ground (?) 7/ #
4. Green - ~ 4.5 Volts /

5. Yellow - Serial data (I2C Clock

6. Blue - Serial data (I2C SDA?)

image4.png
2.2. Control Table of EEPROM Area

Size Initial

Address 1 Data Name Description Access ("% Min Max
0 2| Model Number Model Number R 30 - -
2 1 Firmware Version | Firmware Version R R
3 1D DYNAMIXEL ID RW 1 0 252
4 1 BaudRate Communication Speed RW 3 0 3
5 1 Retum Delay Time | Response Delay Time RW 250 0 | 254
3 2 CWAnglelimt Clockwise Angle Limit RW 0 0 1023
8 2 CCWAnglelLimit Counter-Clockwise Angle Limit RW 1023 0 1023
1 1 Control Mode Control Mode RW 2 1 2
12 1 Temperature Limit | Maximum Intemal Temperature Limit ~ RW | 65 0 150
13 1 MinVoltage Limit | Minimum Input Voltage Limit RW 60 50 250
i 1 Max\Voltage Limit Maximum Input Vohage Limit RW | 90 50| 250
15 2| MaxTorque Maximun Torque RW 1023 0 1023
17 1 Status Retum Level - Select Types of Status Retum RW 2 0 2

18 1| Shutdown ‘Shutdown Error Information RW 3 0 7

image40.png
2.2. Control Table of EEPROM Area

Size Initial

Address 1 Data Name Description Access ("% Min Max
0 2| Model Number Model Number R 30 - -
2 1 Firmware Version | Firmware Version R R
3 1D DYNAMIXEL ID RW 1 0 252
4 1 BaudRate Communication Speed RW 3 0 3
5 1 Retum Delay Time | Response Delay Time RW 250 0 | 254
3 2 CWAnglelimt Clockwise Angle Limit RW 0 0 1023
8 2 CCWAnglelLimit Counter-Clockwise Angle Limit RW 1023 0 1023
1 1 Control Mode Control Mode RW 2 1 2
12 1 Temperature Limit | Maximum Intemal Temperature Limit ~ RW | 65 0 150
13 1 MinVoltage Limit | Minimum Input Voltage Limit RW 60 50 250
i 1 Max\Voltage Limit Maximum Input Vohage Limit RW | 90 50| 250
15 2| MaxTorque Maximun Torque RW 1023 0 1023
17 1 Status Retum Level - Select Types of Status Retum RW 2 0 2

18 1| Shutdown ‘Shutdown Error Information RW 3 0 7

image5.png
2.3. Control Table of RAM Area

Address

2

2%

27

2

2

20

2

E3

37

Ed

4

45

46

a7

49

50

51

Size
(Byte)
1

1

Data Name

Torque Enable
LeD

D Gain

1 Gain

P Gain

Goal Position

Moving Speed

Torque Limit

Present Position
Present Speed
Present Load

Present Voltage
Present Temperature
Registered

Moving

Hardware Error Status

Punch

Description

Motor Torque On/Off
Status LED On/Off

Derivative Gain

Integral Gain

Proportional Gain

Desired Position

Moving Speed(Moving Velocity)
Torque Limit(Goal Torque)
Present Position

Present Speed

Present Load

Present Voltage

Present Temperature

If Instruction is registered
Movement Status

Hardware Error Status

Minimum Current Threshold

Access

RW

RW

RW

RW

RW

RW

RW

RW

»m ™ ®» ™D D DD

RW

Initial

Vatue "
o o
o o
o o
o o
2 0
-0
-0
-0
0o -
0o -
0o -
2 0

1023

2047

1023

1023

image50.png
2.3. Control Table of RAM Area

Address

2

2%

27

2

2

20

2

E3

37

Ed

4

45

46

a7

49

50

51

Size
(Byte)
1

1

Data Name

Torque Enable
LeD

D Gain

1 Gain

P Gain

Goal Position

Moving Speed

Torque Limit

Present Position
Present Speed
Present Load

Present Voltage
Present Temperature
Registered

Moving

Hardware Error Status

Punch

Description

Motor Torque On/Off
Status LED On/Off

Derivative Gain

Integral Gain

Proportional Gain

Desired Position

Moving Speed(Moving Velocity)
Torque Limit(Goal Torque)
Present Position

Present Speed

Present Load

Present Voltage

Present Temperature

If Instruction is registered
Movement Status

Hardware Error Status

Minimum Current Threshold

Access

RW

RW

RW

RW

RW

RW

RW

RW

»m ™ ®» ™D D DD

RW

Initial

Vatue "
o o
o o
o o
o o
2 0
-0
-0
-0
0o -
0o -
0o -
2 0

1023

2047

1023

1023

image6.png
2.5. Instruction
The field that defines the type of command.

Value Instructions. Description
001 Ping Instruction that checks whether the Packet has arrived to a device with the same ID as Packet ID
0x02 Read Instruction to read data from the Device.
0x03 Wite Instruction to write data on the Device

0x04 RegWrite Instruction that registers the Instruction Packet to a standby status; Packet s later executed through the Action command

0x05 Action Instruction that executes the Packet that was registered beforehand using Reg Wiite
0x06 | Factory Reset Instruction that resets the Control Table to its iitial factory default settings

0x08 Reboot Instruction to reboot the Device

ox10 Clear Instruction to reset certain information

0x55 | Status(Retur) Retur Instruction for the Instruction Packet

0x82 SyncRead For muliple devices, Instruction to read data from the same Address with the same length at once
0x83 Sync Write For mulple devices, Instruction to wite data on the same Address with the same length at once
0x92 BukRead For multiple devices, Instruction to read data from different Addresses with different lengths at once

0x93 Buk Wiite For multiple devices, Instruction to write data on different Addresses with different lengths at once

image60.png
2.5. Instruction
The field that defines the type of command.

Value Instructions. Description
001 Ping Instruction that checks whether the Packet has arrived to a device with the same ID as Packet ID
0x02 Read Instruction to read data from the Device.
0x03 Wite Instruction to write data on the Device

0x04 RegWrite Instruction that registers the Instruction Packet to a standby status; Packet s later executed through the Action command

0x05 Action Instruction that executes the Packet that was registered beforehand using Reg Wiite
0x06 | Factory Reset Instruction that resets the Control Table to its iitial factory default settings

0x08 Reboot Instruction to reboot the Device

ox10 Clear Instruction to reset certain information

0x55 | Status(Retur) Retur Instruction for the Instruction Packet

0x82 SyncRead For muliple devices, Instruction to read data from the same Address with the same length at once
0x83 Sync Write For mulple devices, Instruction to wite data on the same Address with the same length at once
0x92 BukRead For multiple devices, Instruction to read data from different Addresses with different lengths at once

0x93 Buk Wiite For multiple devices, Instruction to write data on different Addresses with different lengths at once

image7.png
3. Status Packet

Header! Header2 Header3 Reserved PacketID Lengthl Length2 Instruction ERR PARAM PARAM PARAM CRC1 CRC2

OFF OFF | 0D 000 D Lenl LenH Instructon Error Param 1 ParamN CRC_L CRC_H

image70.png
3. Status Packet

Header! Header2 Header3 Reserved PacketID Lengthl Length2 Instruction ERR PARAM PARAM PARAM CRC1 CRC2

OFF OFF | 0D 000 D Lenl LenH Instructon Error Param 1 ParamN CRC_L CRC_H

image8.png
o] [rroB M (5] [6]
CRC2

Header! Header2 Header3 Reserved PacketlD Lengthl Length? Instruction Param Param Param CRC1
.)
OFF | OFF 0D Lenl LlenH Instucton Param 1 "ParamN CRC_L CRC_H

e

Headers start the packet Reserved. XL-320ID# The length after the Packet Length field (Instruction,
andthese value dont Value ranges Parameter, CRCfiles). Packet Length = number of
change doesnt fromOto Parameters + 3
change 252 (0X00
10 0FC)

image80.png
o] [rroB M (5] [6]
CRC2

Header! Header2 Header3 Reserved PacketlD Lengthl Length? Instruction Param Param Param CRC1
.)
OFF | OFF 0D Lenl LlenH Instucton Param 1 "ParamN CRC_L CRC_H

e

Headers start the packet Reserved. XL-320ID# The length after the Packet Length field (Instruction,
andthese value dont Value ranges Parameter, CRCfiles). Packet Length = number of
change doesnt fromOto Parameters + 3
change 252 (0X00
10 0FC)

image9.png
71

(8]

01

Instruction Param Param Param CRC1 CRC2

Instruction Param 1

= L

0x92
0x93

Instructions.
Ping
Read
Write
Reg Write
Action
Factory Reset
Reboot
Clear
Status(Return)
Sync Read
Sync Write
Bulk Read

Bulk Write

ParamN CRC_L CRC_H

16-bit cyclic redundancy check (CRC). Function can be found in
hitp:/lemanual robotis.com/docs/en/dxl/crc/

Ausiliary data filed for Instruction. These are different
depending on the particular instruction

Description
Instruction that checks whether the Packet has arrived to a device with the same ID as Packet ID
Instruction to read data from the Device
Instruction to write data on the Device
Instruction that registers the Instruction Packet to a standby status; Packet is ater executed through the Action command
Instruction that executes the Packet that was registered beforehand using Reg Wiite
Instruction that resets the Control Table to s intial factory default settings
Instruction to reboot the Device
Instruction to reset certain information
Retum Instruction for the Instruction Packet
For multiple devices, Instruction to read data from the same Address with the same length at once
For multiple devices, Instruction to wite data on the same Address with the same length at once.
For multiple devices, Instruction to read data from different Addresses with different lengths at once.

For multiple devices, Instruction to write data on different Addresses with different lengths at once.

image90.png
71

(8]

01

Instruction Param Param Param CRC1 CRC2

Instruction Param 1

= L

0x92
0x93

Instructions.
Ping
Read
Write
Reg Write
Action
Factory Reset
Reboot
Clear
Status(Return)
Sync Read
Sync Write
Bulk Read

Bulk Write

ParamN CRC_L CRC_H

16-bit cyclic redundancy check (CRC). Function can be found in
hitp:/lemanual robotis.com/docs/en/dxl/crc/

Ausiliary data filed for Instruction. These are different
depending on the particular instruction

Description
Instruction that checks whether the Packet has arrived to a device with the same ID as Packet ID
Instruction to read data from the Device
Instruction to write data on the Device
Instruction that registers the Instruction Packet to a standby status; Packet is ater executed through the Action command
Instruction that executes the Packet that was registered beforehand using Reg Wiite
Instruction that resets the Control Table to s intial factory default settings
Instruction to reboot the Device
Instruction to reset certain information
Retum Instruction for the Instruction Packet
For multiple devices, Instruction to read data from the same Address with the same length at once
For multiple devices, Instruction to wite data on the same Address with the same length at once.
For multiple devices, Instruction to read data from different Addresses with different lengths at once.

For multiple devices, Instruction to write data on different Addresses with different lengths at once.

image10.png
Lengtnt

cret

orE

orE

oD

o0

o0e

o0

Insuction

image100.png
Lengtnt

cret

orE

orE

oD

o0

o0e

o0

Insuction

image11.png
unsigned short update crc(unsigned short crc_accum, unsigned char *data_blk ptr, unsigned short data blk size)
€
unsigned short i, 3
unsigned short cre_table[256] = {
00000, 0xB05, OXBOOF, Gx000A, BxBO1S, Gx0O1E, 0x0014, OxEOL1,
xB033, 00036, 0x0O3C, OxB033, Bx0028, OxBOZD, BxE027, 0x0022,
0xB063, 00066, OXDOGC, OxBO63, BX0O7S, OxBOTD, BxE077, 0x0072,
00050, 0xBOS5, OXBOSF, Ox0OSA, BxBO4G, Ox004E, Bx0044, 0xE041,
0xBAC3, 0x00C6, OxDOCC, OXBOC3, Bx0ODE, GxBODD, BxEAD7, 0x00D2,
0x00F0, OXBOFS, OXBOFF, OxOOFA, GXBOEG, Ox0OEE, Ox00E4, OXBOEL,
©x00AD, 0xBOAS, OXBOAF, OxOOAR, BXBOBG, Ox0OBE, 0x00B4, 0x0B1,
0xB033, 00096, 0x0OIC, OxB099, Bx008S, OxBOED, OxGOB7, 0x0082,
xB183, 00186, OXO1EC, OXB183, BXO198, OXBISD, OxE197, 0x0192,
00160, 0xB165, OXBIEF, OxO1BA, BXBLAS, OXOLAE, OxOLA4, OXEIAL,
©x01£0, OXBIES, OXBLEF, OXOLEA, BXBLFE, OXOIFE, OxO1F4, OXEIF,
xB103, 00106, @xB10C, OxB1D3, BXO1CE, GxBICD, BxBLCT, Ox01C2,
00140, 0xB145, OXBI4F, OxO14A, BXBISE, OXOISE, Ox0154, OXEISI,
@xB173, 00176, Ox017C, OB173, BXO168, OXB1ED, OxS167, 0x0162,
08123, 0x0126, 0x012C, OxB129, BX0138, OXBLID, OxS137, 0x0132,
0110, 0xB115, OXBLIF, GxO11A, BXB106, OxO10E, 0x0104, OxElol,
0xB303, 0x0306, 0x030C, OxB303, Bx0318, GxB3LD, BxE317, 0x0312,
00330, 0xB335, OXB33F, Ox033A, BXB32B, OxO32E, Ox0324, OxE32L,
00360, 0xB365, OXBI6F, Ox036A, BXB3TB, GxOITE, Ox0374, OXEITI,
0xB353, 0x0356, Gx03SC, OxB353, BX0348, OXB3AD, OxE34T, 0x0342,
©x03Ca, 0xB3C5, OXBICF, Ox03CA, BxB3DB, Ox03DE, Gx23D4, OxE3D1,
OxB3F3, 0x03F6, OXO3FC, OXB3FI, BXO3ES, OXBIED, OXBIET, OXO3E2,
0xB3A3, 0x0346, OXO3AC, OXB3AI, BX0388, OxBIED, OxE3B7, 0x362,
©x03%9, 0xB395, OXB3OF, Ox039A, BXB38G, OxO3BE, Ox0384, OXE3BL,
00280, 0xB285, OXB2EF, Ox028A, BXB296, OxO29E, 0x0294, OxE291,
0xB283, 00286, OxO28C, OXB2BI, BXO2A8, OXB2AD, OXB2AT, Ox02A2,
OxB2E3, 0x02E6, OXO2EC, OXB2ES, BXO2FE, OXB2FD, OXB2F7, OxO2F2,
00200, 0xB205, OXB2DF, OxO2DA, BXB2CE, GXOLCE, Ox02C4, OXE2(1,
0xB243, 0x0246, OXO24C, OxB243, BX0258, OXB2SD, OXE257, 0x0252,
00270, 0xB275, OXB2TF, Ox027A, BXB268, OXO26E, 0x0264, OxE261,
00220, 0xB225, OXB22F, Ox022A, BXB236, OXO23E, 0x0234, OxE231,
@xB213, 0x0216, @x021C, OxB219, 0x0208, OXB20D, Gx8207, 0x0202

for(j = ©;
<

3 < data_blic_size; 3++)

= ((unsigned short)(erc_accum »> &) * data_blk_ptr[3]) & 0xFF;
cre_aceum = (crc_accum << 5) * cre_table[il;

return cre_accum;

image13.png
2.4.14. LED(25)
The combination of bit changes the output color of XL-320

Enabled Bit Decimal Value Output Color

NONE 0 OFF
0 1 Red
1 2 Green
2 4 Blue
0+1 3 Yellow
142 3 Cyan
0+2 5 Purple

0+1+2 7 White

image1.png
9V wall wart
(not shown)
to AC outlet

9V pigtail for
powering XL-320

Molex 3P-XL
3-wire cable

MAX485 TTL-RS485 Board

NPN C1815 Transistor (for
Half-Duplex)

Mezzanine Breadboard

XL-320 Servo ;nd Lego-based Mount

image12.png
9V wall wart
(not shown)
to AC outlet

9V pigtail for
powering XL-320

Molex 3P-XL
3-wire cable

MAX485 TTL-RS485 Board

NPN C1815 Transistor (for
Half-Duplex)

Mezzanine Breadboard

XL-320 Servo ;nd Lego-based Mount

