
Visual Servoing

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoin
PC performs the computation
computations like inverse kinematics and motor servoing.

Concept:

Figure A
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single
frame grabbed by camera. Then the
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately
command the XL

As such, the Master NXT runs the same
code. The Slave modifies
manipulator
new program needed is the Scilab one

Step 1:

The listing i
Distributed Computing lab
and formulation of strings to serially send to the Master NXT. Additionally,
sections of code from the
scilabTracking1_0a.sce

Additions begin
length

Figure A
USB cable and black Lego Cross piece (yellow boxes) added (left). The f
runs the image processing program vs1_0a.sce which incorporates serial communications.
Demo video:

Visual Servoing

Visual Servoing the XL

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoin
PC performs the computation
computations like inverse kinematics and motor servoing.

Concept: Open

Figure A (right) is the flow diagram. One notices that there is no feedback loop from the XL
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single
frame grabbed by camera. Then the
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately
command the XL-320 2

As such, the Master NXT runs the same
code. The Slave modifies
manipulator’s inverse kinematics (which can be called
new program needed is the Scilab one

Step 1: For the PC, write a Scilab

The listing is given in
ibuted Computing lab

and formulation of strings to serially send to the Master NXT. Additionally,
sections of code from the
scilabTracking1_0a.sce

Additions begin with definitions of parameters like the baseplate
lengths and lens-to

Figure A: Almost identical to the figure in the Distributed Comput
USB cable and black Lego Cross piece (yellow boxes) added (left). The f
runs the image processing program vs1_0a.sce which incorporates serial communications.
Demo video: https://youtu.be/gUJ1

Visual Servoing the XL

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoin
PC performs the computation-heavy image processing and the NXT just performs less intensive
computations like inverse kinematics and motor servoing.

Open-loop visual

(right) is the flow diagram. One notices that there is no feedback loop from the XL
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single
frame grabbed by camera. Then the
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately

320 2-link planar manipulator.

As such, the Master NXT runs the same
code. The Slave modifies btS

s inverse kinematics (which can be called
new program needed is the Scilab one

he PC, write a Scilab

s given in Figure 1A
ibuted Computing lab (serialPc

and formulation of strings to serially send to the Master NXT. Additionally,
sections of code from the
scilabTracking1_0a.sce).

with definitions of parameters like the baseplate
to-target distance.

Almost identical to the figure in the Distributed Comput
USB cable and black Lego Cross piece (yellow boxes) added (left). The f
runs the image processing program vs1_0a.sce which incorporates serial communications.

https://youtu.be/gUJ1

Hands

Visual Servoing the XL-320 Lego 2

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoin

heavy image processing and the NXT just performs less intensive
computations like inverse kinematics and motor servoing.

loop visual-servoing

(right) is the flow diagram. One notices that there is no feedback loop from the XL
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single
frame grabbed by camera. Then the mapping from
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately

link planar manipulator.

As such, the Master NXT runs the same PC-
btS-R-1_0a.nxc

s inverse kinematics (which can be called
new program needed is the Scilab one.

he PC, write a Scilab (version 6.1.0)

Figure 1A. It looks long, but most of the code is the same as the
serialPc-M-1_0b

and formulation of strings to serially send to the Master NXT. Additionally,
sections of code from the video processing

with definitions of parameters like the baseplate
target distance.

Almost identical to the figure in the Distributed Comput
USB cable and black Lego Cross piece (yellow boxes) added (left). The f
runs the image processing program vs1_0a.sce which incorporates serial communications.

https://youtu.be/gUJ1-CzoqHk

Hands-on Lab

320 Lego 2-link Planar Manipulator

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoin

heavy image processing and the NXT just performs less intensive
computations like inverse kinematics and motor servoing.

 vs1_0a.sce

(right) is the flow diagram. One notices that there is no feedback loop from the XL
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single

mapping from
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately

link planar manipulator.

-M-S-1_0a.nxc
1_0a.nxc to incorporate the XL

s inverse kinematics (which can be called btS

(version 6.1.0) program that adds SSD tracking

. It looks long, but most of the code is the same as the
1_0b.sce). A quick skim recalls the serial port setup

and formulation of strings to serially send to the Master NXT. Additionally,
processing lab (

with definitions of parameters like the baseplate

Almost identical to the figure in the Distributed Comput
USB cable and black Lego Cross piece (yellow boxes) added (left). The f
runs the image processing program vs1_0a.sce which incorporates serial communications.

CzoqHk .

on Lab

link Planar Manipulator

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoin

heavy image processing and the NXT just performs less intensive
computations like inverse kinematics and motor servoing.

.sce

(right) is the flow diagram. One notices that there is no feedback loop from the XL
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single

mapping from image space
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately

1_0a.nxc (renamed
to incorporate the XL

btS-R-IK-1_0a.nxc

program that adds SSD tracking

. It looks long, but most of the code is the same as the
 A quick skim recalls the serial port setup

and formulation of strings to serially send to the Master NXT. Additionally,
lab (scilabHelloVision1_0a.sce

with definitions of parameters like the baseplate’s width and hei

Almost identical to the figure in the Distributed Computing lab, one sees the camera’s
USB cable and black Lego Cross piece (yellow boxes) added (left). The f
runs the image processing program vs1_0a.sce which incorporates serial communications.

Laptop

Process frame
data and send
RS-485 string to
NXT Master

© Copyright Paul Oh

link Planar Manipulator

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoin

heavy image processing and the NXT just performs less intensive

(right) is the flow diagram. One notices that there is no feedback loop from the XL
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single

space to robot t
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately

(renamed PC-M-S-IK
to incorporate the XL-320 Lego 2

1_0a.nxc). As such, the only

program that adds SSD tracking

. It looks long, but most of the code is the same as the
A quick skim recalls the serial port setup

and formulation of strings to serially send to the Master NXT. Additionally, one recognizes
scilabHelloVision1_0a.sce

s width and hei

ing lab, one sees the camera’s
USB cable and black Lego Cross piece (yellow boxes) added (left). The flow diagram (right)
runs the image processing program vs1_0a.sce which incorporates serial communications.

USB
Camera

NXT
Master

RS485

Send data like
pixel coordinate
or desired motor
command

Send
frame data

NXT Slave

Bluetooth

XL-320
Robot

RS485

PC Laptop runs Scilab
program vs1_0a.sce

© Copyright Paul Oh

link Planar Manipulator

The previous distributed computing lab demonstrated that one can split processes among a PC
and a pair of Master and Slave NXT Bricks. This is especially useful in visual servoing. Here the

heavy image processing and the NXT just performs less intensive

(right) is the flow diagram. One notices that there is no feedback loop from the XL-320
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single

to robot task space
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately

IK-1_0a.nxc
320 Lego 2-link planar

As such, the only

. It looks long, but most of the code is the same as the one in the
A quick skim recalls the serial port setup

one recognizes
scilabHelloVision1_0a.sce and

s width and height, lens focal

ing lab, one sees the camera’s
low diagram (right) now

runs the image processing program vs1_0a.sce which incorporates serial communications.

Camera

Master

NXT Slave

Bluetooth

• Read RS485 string
• Send Bluetooth message

• Read Bluetooth message
• Send RS485 string to XL-

320
Robot

RS485

Slave runs btS-R-1_0a.nxc

Master runs PC-M-S-1_0a.nxc

© Copyright Paul Oh

The previous distributed computing lab demonstrated that one can split processes among a PC
g. Here the

heavy image processing and the NXT just performs less intensive

320
robot to the laptop. This is for simplicity; the PC shall detect the location of a template in a single

 is
performed. The location passes along NXT Bricks serially and via Bluetooth to ultimately

1_0a.nxc)
link planar

As such, the only

he
A quick skim recalls the serial port setup

one recognizes
and

focal

ing lab, one sees the camera’s
now

Read Bluetooth message
-320

1_0a.nxc

Visual Servoing

© Copyright Paul Oh

// FILE: vs1_0a.sce - Works!
// DATE: 04/24/20 09:54
// AUTH: P.Oh
// VERS: 1_0a: cleaned up version of vs0_1d1.sce (works)
// REFS: serialPc-M-IK-1_0a.sce (for PC->Master serial communications)
// scilabTrackingLego0_1a.sce (for SSD tracking)
// DESC: Goal: SSD detects location of black Lego Cross piece on white 32x32 baseplate
// and sends serially, task space coordinates to Master NXT, which then
// sends via Bluetooth, to Slave NXT. Slave performs IK and commands
// XL-320 Lego 2-link planar manipulator's end-effector to hover over
// Black Lego Cross piece

h = openserial(10,"4800,n,8,1"); // initialize PC's serial port
strHeader = " @"; // white space + at character
stringRoger = "ROGER";
stringRogerFound = 1; // not TRUE

// Definitions
W = 14.5*8; // = 116 mm = Lego 32x32 baseplate width from image file shows 14.5 studs
H = 15.0*8; // = 120 mm = Lego 32x32 baseplate height from image file shows 15 studs
u = 0; // row location wrt image frame [pix]
v = 0; // col location wrt image frame [pix]
x = 0; // row location wrt robot frame [mm]
y = 0; // col location wrt robot frame [mm]
fRow = 278.65; // [pix] focal length along image rows
fCol = 277.89; // [pix] focal length along image cols
z = 103; // [mm] target-to-lens distance

// (A) Initialize Scilab Computer Vision Module; Get ID of webcam; Setup graphic window
scicv_Init();
// Usually 0: computer's build-in webcam; 1: USB webcam. If 1 doesn't work try 2
videoCapture = new_VideoCapture(2);
f =scf(0); // set current graphic figure
[ret, frame] = VideoCapture_read(videoCapture); // grab and return a frame

subplot(1,3,1); // Set up 1 row and 2 columns of sub-plots. Draw in Plot 1
matplot(frame);
disp("Size:");
disp(size(frame));
disp("Number of cols:");
disp(Mat_cols_get(frame));
disp("Number of rows:");
disp(Mat_rows_get(frame));

counterFlag = 0; // just want to save one frame to file

// (A) Endless loop that grabs frame, displays it, and repeats
while is_handle_valid(f)
 [ret, frame] = VideoCapture_read(videoCapture); // grab and return a frame
 // (A-1) Video seen by camera (left); grey-scale(middle); threshold (right)
 if is_handle_valid(f) then
 // ret is TRUE, so display frame
 subplot(1,3,1); // Set up 1 row and 2 columns of sub-plots. Draw in Plot 1
 matplot(frame);
 greyFrame = cvtColor(frame, CV_BGR2GRAY);
 subplot(1,3,2);
 matplot(greyFrame);
 thresholdValue = 30; // 0 (whiter stuff becomes white) and 255 (blacker stuff becomes
black)
 [thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255,
THRESH_BINARY);
 subplot(1,3,3);
 matplot(thresholdedFrame);

Figure 1A: Scilab program vs1_0a.sce

Visual Servoing

© Copyright Paul Oh

 if counterFlag == 10 then // Grab (10th))frame after video starts/settles
 // (B)Perform SSD
 // (B-1) Grab a single image. NB: define path where to save image files
 imwrite(fullfile("H:\00courses\me7XX\XX-visualServoing",
"thresholdedFrame.png"), thresholdedFrame);
 imwrite(fullfile("H:\00courses\me7XX\XX-visualServoing", "greyFrame.png"),
greyFrame);

 // (B-2) Perform SSD and find target center location in pixels
 img = imread("H:\00courses\me7XX\XX-visualServoing\thresholdedFrame.png");
 img_template = imread("H:\00courses\me7XX\XX-visualServoing\template.png");
 img_result = matchTemplate(img, img_template, CV_TM_SQDIFF); // 0 = match
 [min_value, max_value, min_value_loc, max_value_loc] = minMaxLoc(img_result)
 disp("min_value =");
 disp(min_value);
 disp("location in image:")
 disp(min_value_loc);
 u = min_value_loc(2); // [pix]
 v = min_value_loc(1); // [pix]

 // (B-3) Calculate target center. Recall target template is 66 rows and 66
cols
 uCenter = u + (66/2); // [pix]
 vCenter = v + (66/2); // [pix]
 // (B-4) Convert pix to mm
 uCenterMM = (z * uCenter)/fRow; // [mm]
 vCenterMM = (z * vCenter)/fCol; // [mm]
 disp("uCenter [mm] = ");
 disp(uCenterMM);
 disp("vCenter [mm] = ");
 disp(vCenterMM);
 // (B-5) Convert image space 0_I to robot task space O_R) coordinates
 if vCenterMM <= W then
 // target in +X and +Y quadrant
 x = H - uCenterMM; // [mm]
 y = W - vCenterMM' // [mm]
 else
 // target in +X and -Y quadrant
 x = H - uCenterMM; // [mm]
 // --- y = vCenterMM - W; // [mm]
 y = -(vCenterMM - W); // [mm]
 end;
 positionX = round(x);
 positionY = round(y);
 disp("x [mm] = ");
 disp(positionX);
 disp("y [mm] = ");
 disp(positionY);
 // (B-6) Convert positions into string to send serially to Master NXT
 strPositionX = string(positionX);
 strPositionY = string(positionY);
 strI = strcat([strHeader, strPositionX, ", ", strPositionY]);
 disp(strI);

Figure 1A continued: vs1_0a.sce

Visual Servoing

© Copyright Paul Oh

After a call to scicv_Init the code enters Step (A) with an endless while-loop that displays
the camera’s raw, greyscale and thresholded views. Step (B) grabs an image frame (10th in this
example) and performs SSD tracking using a pre-defined template.png file. Steps (B-2) thru
(B-6) map the image space locations to robot task space ones and creates the necessary string.

Step (C) serially sends this string to the Master NXT. Once completed in Step (C-3), the program
exits (by calling abort) but first closes the serial port, all display frames, the graphic figure, and
video connection.

Closing Remarks

Project 2 asks one to demonstrate open-loop visual servoing. As such, the details for writing the
NXC programs are left to the user. As mentioned in the beginning, these programs are very
similar to those introduced in earlier labs.

One could improve vs1_0a.sce with more advanced Scilab programming like graphical user
interfaces (GUIs) and timing controls. SSD is OK, but more advanced similarity measures could
be implemented. Moreover, unwarping techniques can be implemented to account for skewed
images. These are beyond the scope of this course, but are the next steps for improving visual-
servoing performance and adding closed-loop feedback.

 // (C) Send coordinates PC->Master
 // (C-1) serially transmit target's center to Master NXT
 writeserial(h, strI);
 buf = readserial(h);
 // (C-2)Check if Master ready to receive next string
 stringRogerFound = strcmp(stringRoger, buf); // 0: means identical strings
 while (stringRogerFound ~=0) // then NXT -> PC string not ROGER, so wait
 buf = readserial(h);
 stringRogerFound = strcmp(stringRoger, buf);
 sleep(200); // min about 50 ms before reading serial port again
 end; // exit reading serial port when ROGER received
 disp(buf);
 sleep(5000); // just slows down loop so user can see what's happening
 disp("All done!");
 // (C-3) gracefully terminate program
 closeserial(h);
 disp("Closed serial port");
 // sleep(500); // Not needed but uncomment if want time to read console
 delete("all"); // kill all frames
 delete(f); // kill the set graphic figure
 disp("Closed graphics windows");
 // sleep(500); // Not needed but uncomment if want time to read console
 delete_VideoCapture(videoCapture);
 disp("Closed Video Capture");
 // sleep(500); // Not needed but uncomment if want time to read console
 abort; // This just exits of the program without killing Scilab
 end
 counterFlag = counterFlag + 1;
 end // end if
end // end while
// close gracefully if user quits process manually
closeserial(h);
delete("all"); // kill all frames
delete(f); // kill the set graphic figure
delete_VideoCapture(videoCapture);

Figure 1A continued: vs1_0a.sce

