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Visual Servoing 

Visual Servoing the XL

The previous distributed computing lab demonstrated that one can split processes among a PC 
and a pair of Master and Slave NXT Bricks.  This is especially useful in visual servoin
PC performs the computation
computations like inverse kinematics and motor servoing.  
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Visual Servoing the XL-320 Lego 2
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Hands-on Lab

 
320 Lego 2-link Planar Manipulator
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// FILE: vs1_0a.sce - Works! 
// DATE: 04/24/20 09:54 
// AUTH: P.Oh 
// VERS: 1_0a: cleaned up version of vs0_1d1.sce (works) 
// REFS: serialPc-M-IK-1_0a.sce (for PC->Master serial communications) 
//       scilabTrackingLego0_1a.sce (for SSD tracking) 
// DESC: Goal: SSD detects location of black Lego Cross piece on white 32x32 baseplate 
//       and sends serially, task space coordinates to Master NXT, which then  
//       sends via Bluetooth, to Slave NXT.  Slave performs IK and commands 
//       XL-320 Lego 2-link planar manipulator's end-effector to hover over 
//       Black Lego Cross piece 
 
h = openserial(10,"4800,n,8,1"); // initialize PC's serial port       
strHeader = " @"; // white space + at character 
stringRoger = "ROGER"; 
stringRogerFound = 1; // not TRUE 
 
// Definitions 
W = 14.5*8;     // = 116 mm = Lego 32x32 baseplate width from image file shows 14.5 studs 
H = 15.0*8;     // = 120 mm = Lego 32x32 baseplate height from image file shows 15 studs 
u = 0;          // row location wrt image frame [pix] 
v = 0;          // col location wrt image frame [pix] 
x = 0;          // row location wrt robot frame [mm] 
y = 0;          // col location wrt robot frame [mm] 
fRow = 278.65;  // [pix] focal length along image rows 
fCol = 277.89;  // [pix] focal length along image cols 
z = 103;        // [mm] target-to-lens distance 
 
// (A) Initialize Scilab Computer Vision Module; Get ID of webcam; Setup graphic window 
scicv_Init();  
// Usually 0: computer's build-in webcam; 1: USB webcam.  If 1 doesn't work try 2 
videoCapture = new_VideoCapture(2); 
f =scf(0); // set current graphic figure 
[ret, frame] = VideoCapture_read(videoCapture); // grab and return a frame 
 
subplot(1,3,1); // Set up 1 row and 2 columns of sub-plots.  Draw in Plot 1 
matplot(frame); 
disp("Size:"); 
disp(size(frame)); 
disp("Number of cols:"); 
disp(Mat_cols_get(frame)); 
disp("Number of rows:"); 
disp(Mat_rows_get(frame)); 
 
counterFlag = 0; // just want to save one frame to file 
 
// (A) Endless loop that grabs frame, displays it, and repeats 
while is_handle_valid(f) 
    [ret, frame] = VideoCapture_read(videoCapture); // grab and return a frame 
    // (A-1) Video seen by camera (left); grey-scale(middle); threshold (right) 
    if is_handle_valid(f) then       
        // ret is TRUE, so display frame 
        subplot(1,3,1); // Set up 1 row and 2 columns of sub-plots.  Draw in Plot 1 
        matplot(frame); 
        greyFrame = cvtColor(frame, CV_BGR2GRAY); 
        subplot(1,3,2); 
        matplot(greyFrame); 
        thresholdValue = 30; // 0 (whiter stuff becomes white) and 255 (blacker stuff becomes 
black) 
        [thresh, thresholdedFrame]  = threshold(greyFrame, thresholdValue, 255, 
THRESH_BINARY); 
        subplot(1,3,3); 
        matplot(thresholdedFrame); 
                
 

Figure 1A: Scilab program vs1_0a.sce 
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        if counterFlag == 10 then // Grab (10th) )frame after video starts/settles 
            // (B)Perform SSD  
            // (B-1) Grab a single image.  NB: define path where to save image files 
            imwrite(fullfile("H:\00courses\me7XX\XX-visualServoing", 
"thresholdedFrame.png"), thresholdedFrame); 
            imwrite(fullfile("H:\00courses\me7XX\XX-visualServoing", "greyFrame.png"), 
greyFrame); 
 
            // (B-2) Perform SSD and find target center location in pixels 
            img = imread("H:\00courses\me7XX\XX-visualServoing\thresholdedFrame.png"); 
            img_template = imread("H:\00courses\me7XX\XX-visualServoing\template.png"); 
            img_result = matchTemplate(img, img_template, CV_TM_SQDIFF); // 0 = match 
            [min_value, max_value, min_value_loc, max_value_loc] = minMaxLoc(img_result) 
            disp("min_value ="); 
            disp(min_value); 
            disp("location in image:") 
            disp(min_value_loc); 
            u = min_value_loc(2); // [pix] 
            v = min_value_loc(1); // [pix] 
 
            // (B-3) Calculate target center.  Recall target template is 66 rows and 66 
cols 
            uCenter = u + (66/2); // [pix] 
            vCenter = v + (66/2); // [pix] 
            // (B-4) Convert pix to mm  
            uCenterMM = (z * uCenter)/fRow; // [mm] 
            vCenterMM = (z * vCenter)/fCol; // [mm] 
            disp("uCenter [mm] = "); 
            disp(uCenterMM); 
            disp("vCenter [mm] = "); 
            disp(vCenterMM);                         
            // (B-5) Convert image space 0_I to robot task space O_R) coordinates 
            if vCenterMM <= W then 
               // target in +X and +Y quadrant 
               x = H - uCenterMM; // [mm] 
               y = W - vCenterMM' // [mm] 
            else 
               // target in +X and -Y quadrant 
               x = H - uCenterMM; // [mm] 
               // --- y = vCenterMM - W; // [mm] 
               y = -(vCenterMM - W); // [mm] 
            end;     
            positionX = round(x);  
            positionY = round(y);  
            disp("x [mm] = "); 
            disp(positionX); 
            disp("y [mm] = "); 
            disp(positionY); 
            // (B-6) Convert positions into string to send serially to Master NXT 
            strPositionX = string(positionX); 
            strPositionY = string(positionY); 
            strI = strcat([strHeader, strPositionX, ", ", strPositionY]); 
            disp(strI); 

 
Figure 1A continued: vs1_0a.sce 
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After a call to scicv_Init the code enters Step (A) with an endless while-loop that displays 
the camera’s raw, greyscale and thresholded views.  Step (B) grabs an image frame (10th in this 
example) and performs SSD tracking using a pre-defined template.png file.  Steps (B-2) thru 
(B-6) map the image space locations to robot task space ones and creates the necessary string. 
 
Step (C) serially sends this string to the Master NXT.  Once completed in Step (C-3), the program 
exits (by calling abort) but first closes the serial port, all display frames, the graphic figure, and 
video connection. 
 
Closing Remarks  
 
Project 2 asks one to demonstrate open-loop visual servoing.  As such, the details for writing the 
NXC programs are left to the user.  As mentioned in the beginning, these programs are very 
similar to those introduced in earlier labs.   
 
One could improve vs1_0a.sce with more advanced Scilab programming like graphical user 
interfaces (GUIs) and timing controls.  SSD is OK, but more advanced similarity measures could 
be implemented.  Moreover, unwarping techniques can be implemented to account for skewed 
images.  These are beyond the scope of this course, but are the next steps for improving visual-
servoing performance and adding closed-loop feedback.  

            // (C) Send coordinates PC->Master 
            // (C-1) serially transmit target's center to Master NXT             
            writeserial(h, strI);  
            buf = readserial(h); 
            // (C-2)Check if Master ready to receive next string 
            stringRogerFound = strcmp(stringRoger, buf); // 0: means identical strings 
            while (stringRogerFound ~=0) // then NXT -> PC string not ROGER, so wait 
                buf = readserial(h); 
                stringRogerFound = strcmp(stringRoger, buf); 
                sleep(200); // min about 50 ms before reading serial port again 
            end; // exit reading serial port when ROGER received            
            disp(buf); 
            sleep(5000); // just slows down loop so user can see what's happening     
            disp("All done!"); 
            // (C-3) gracefully terminate program 
            closeserial(h);  
            disp("Closed serial port"); 
            // sleep(500); // Not needed but uncomment if want time to read console 
            delete("all"); // kill all frames 
            delete(f); // kill the set graphic figure 
            disp("Closed graphics windows"); 
            // sleep(500); // Not needed but uncomment if want time to read console 
            delete_VideoCapture(videoCapture); 
            disp("Closed Video Capture");  
            // sleep(500);  // Not needed but uncomment if want time to read console 
            abort; // This just exits of the program without killing Scilab 
        end 
        counterFlag = counterFlag + 1; 
    end // end if   
end // end while 
// close gracefully if user quits process manually 
closeserial(h);  
delete("all"); // kill all frames 
delete(f); // kill the set graphic figure 
delete_VideoCapture(videoCapture); 
 

Figure 1A continued: vs1_0a.sce 


