
Distributed Computing

The NXT Brick has only 1 serial port and does not have the computational power to process
images. These
distributed computer approach. To demonstrate this, the visual
planar manipulator will be explored
process video and yield the robot’s desired end
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives
and processes the string. It then wirelessly transmi
NXT (Slave). The Slave NXT is connected to the XL
RS-485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward
or inverse kinemat

Concept 1:

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be
established.

Step 1:

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
Figure 1A

The program begins with the toolbox function
4800 baud, 8N1). The for
90, 90. Each setting represents the desired angles of the robot’s two XL
setting’s first and second nu
manipulator.
has 4 characters: the sign followed by 3 digits e.g
angle is less than 3 digits, then a white space is used e.g.
communications of
and formatting).

Figure A
The flow diagram (right) shows the process of passing infor
320 robot. Demo video:

Distributed Computing

Distributed Computing: PC to Master NXT to Slave NXT to Robot

The NXT Brick has only 1 serial port and does not have the computational power to process
images. These hardware limitations are common in robotics and hence one often sees a
distributed computer approach. To demonstrate this, the visual
planar manipulator will be explored
process video and yield the robot’s desired end
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives
and processes the string. It then wirelessly transmi
NXT (Slave). The Slave NXT is connected to the XL

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward
or inverse kinemat

Concept 1: Establish PC

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be
established. Figure A

Step 1: For the PC, write a Scilab

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
Figure 1A demonstrates how the serial port is opened, and messages are written and read.

The program begins with the toolbox function
4800 baud, 8N1). The for
90, 90. Each setting represents the desired angles of the robot’s two XL
setting’s first and second nu
manipulator. These
has 4 characters: the sign followed by 3 digits e.g
angle is less than 3 digits, then a white space is used e.g.
communications of

formatting).

Figure A: Distributed computing setup (left) uses both serial and Bluetooth communications.
The flow diagram (right) shows the process of passing infor
320 robot. Demo video:

Distributed Computing

Distributed Computing: PC to Master NXT to Slave NXT to Robot

The NXT Brick has only 1 serial port and does not have the computational power to process
hardware limitations are common in robotics and hence one often sees a

distributed computer approach. To demonstrate this, the visual
planar manipulator will be explored
process video and yield the robot’s desired end
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives
and processes the string. It then wirelessly transmi
NXT (Slave). The Slave NXT is connected to the XL

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward
or inverse kinematics) and commands the XL

Establish PC-to

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be
Figure A (right) shows that 3 programs need to be created.

For the PC, write a Scilab

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
demonstrates how the serial port is opened, and messages are written and read.

The program begins with the toolbox function
4800 baud, 8N1). The for-loop goes thru 4 different position settings e.g. 0, 90; 90, 0; 0,
90, 90. Each setting represents the desired angles of the robot’s two XL
setting’s first and second numbers are respectively joint angles 1 and 2 of the 2

These numbers form part of the string that will be sent to the Master.
has 4 characters: the sign followed by 3 digits e.g
angle is less than 3 digits, then a white space is used e.g.
communications often prescribes

: Distributed computing setup (left) uses both serial and Bluetooth communications.
The flow diagram (right) shows the process of passing infor
320 robot. Demo video: https://youtu.be/BDz0

Hands

Distributed Computing: PC to Master NXT to Slave NXT to Robot

The NXT Brick has only 1 serial port and does not have the computational power to process
hardware limitations are common in robotics and hence one often sees a

distributed computer approach. To demonstrate this, the visual
planar manipulator will be explored (Figure A
process video and yield the robot’s desired end
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives
and processes the string. It then wirelessly transmi
NXT (Slave). The Slave NXT is connected to the XL

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward
ics) and commands the XL

to-Master-to

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be
(right) shows that 3 programs need to be created.

For the PC, write a Scilab (version 6.1.0)

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
demonstrates how the serial port is opened, and messages are written and read.

The program begins with the toolbox function
loop goes thru 4 different position settings e.g. 0, 90; 90, 0; 0,

90, 90. Each setting represents the desired angles of the robot’s two XL
mbers are respectively joint angles 1 and 2 of the 2

numbers form part of the string that will be sent to the Master.
has 4 characters: the sign followed by 3 digits e.g
angle is less than 3 digits, then a white space is used e.g.

ten prescribes how strings are defined

: Distributed computing setup (left) uses both serial and Bluetooth communications.
The flow diagram (right) shows the process of passing infor

https://youtu.be/BDz0

Hands-on Lab

Distributed Computing: PC to Master NXT to Slave NXT to Robot

The NXT Brick has only 1 serial port and does not have the computational power to process
hardware limitations are common in robotics and hence one often sees a

distributed computer approach. To demonstrate this, the visual
Figure A left). Here, the PC uses a webcam to

process video and yield the robot’s desired end-effector location. The PC’s serial port connects to
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives
and processes the string. It then wirelessly transmits via Bluetooth, these locations to another
NXT (Slave). The Slave NXT is connected to the XL-320 2

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward
ics) and commands the XL-320 servos.

to-Slave-to-

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be
(right) shows that 3 programs need to be created.

(version 6.1.0) Serial Port Program

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
demonstrates how the serial port is opened, and messages are written and read.

The program begins with the toolbox function openserial
loop goes thru 4 different position settings e.g. 0, 90; 90, 0; 0,

90, 90. Each setting represents the desired angles of the robot’s two XL
mbers are respectively joint angles 1 and 2 of the 2

numbers form part of the string that will be sent to the Master.
has 4 characters: the sign followed by 3 digits e.g. “+102
angle is less than 3 digits, then a white space is used e.g.

how strings are defined

: Distributed computing setup (left) uses both serial and Bluetooth communications.
The flow diagram (right) shows the process of passing infor

https://youtu.be/BDz0-FkbjOM

on Lab

Distributed Computing: PC to Master NXT to Slave NXT to Robot

The NXT Brick has only 1 serial port and does not have the computational power to process
hardware limitations are common in robotics and hence one often sees a

distributed computer approach. To demonstrate this, the visual-servoing of the XL
. Here, the PC uses a webcam to

effector location. The PC’s serial port connects to
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives

ts via Bluetooth, these locations to another
320 2-link planar manipulator (Robot) via its

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward
320 servos.

-Robot communications

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be
(right) shows that 3 programs need to be created.

Serial Port Program serialPc

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
demonstrates how the serial port is opened, and messages are written and read.

openserial to open and set the serial port (e.g.
loop goes thru 4 different position settings e.g. 0, 90; 90, 0; 0,

90, 90. Each setting represents the desired angles of the robot’s two XL
mbers are respectively joint angles 1 and 2 of the 2

numbers form part of the string that will be sent to the Master.
+102” (without the quotes). If the desired

angle is less than 3 digits, then a white space is used e.g. “+90 “ (without the quotes).
how strings are defined (e.g. with headers, comma delimiters,

: Distributed computing setup (left) uses both serial and Bluetooth communications.
The flow diagram (right) shows the process of passing information from to USB camera to XL

© Copyright Paul Oh

Distributed Computing: PC to Master NXT to Slave NXT to Robot

The NXT Brick has only 1 serial port and does not have the computational power to process
hardware limitations are common in robotics and hence one often sees a

servoing of the XL
. Here, the PC uses a webcam to

effector location. The PC’s serial port connects to
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives

ts via Bluetooth, these locations to another
link planar manipulator (Robot) via its

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward

Robot communications

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be
(right) shows that 3 programs need to be created.

serialPc-M

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
demonstrates how the serial port is opened, and messages are written and read.

pen and set the serial port (e.g.
loop goes thru 4 different position settings e.g. 0, 90; 90, 0; 0,

90, 90. Each setting represents the desired angles of the robot’s two XL-320 servos. The
mbers are respectively joint angles 1 and 2 of the 2

numbers form part of the string that will be sent to the Master.
the quotes). If the desired

(without the quotes).
(e.g. with headers, comma delimiters,

: Distributed computing setup (left) uses both serial and Bluetooth communications.
mation from to USB camera to XL

© Copyright Paul Oh

Distributed Computing: PC to Master NXT to Slave NXT to Robot

The NXT Brick has only 1 serial port and does not have the computational power to process
hardware limitations are common in robotics and hence one often sees a

servoing of the XL-320 2-link
. Here, the PC uses a webcam to capture and

effector location. The PC’s serial port connects to
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives

ts via Bluetooth, these locations to another
link planar manipulator (Robot) via its

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward

Robot communications

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be

M-1_0b.sce

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.
demonstrates how the serial port is opened, and messages are written and read.

pen and set the serial port (e.g.
loop goes thru 4 different position settings e.g. 0, 90; 90, 0; 0, -90; and

320 servos. The
mbers are respectively joint angles 1 and 2 of the 2-link planar

numbers form part of the string that will be sent to the Master. Each number
the quotes). If the desired

(without the quotes). Serial
(e.g. with headers, comma delimiters,

: Distributed computing setup (left) uses both serial and Bluetooth communications.
mation from to USB camera to XL-

© Copyright Paul Oh

The NXT Brick has only 1 serial port and does not have the computational power to process
hardware limitations are common in robotics and hence one often sees a

link
e and

effector location. The PC’s serial port connects to
an NXT (Master). The PC then serially sends the locations in a string. The Master NXT receives

ts via Bluetooth, these locations to another
link planar manipulator (Robot) via its

485 port. The Slave uses the Bluetooth message to calculate robot positions (either forward

Camera data is ignored to begin. Instead, the distributed computing framework first needs to be

A previous lab went thru the installation of the ATOMS Serial Communications toolbox in Scilab.

pen and set the serial port (e.g.
90; and

320 servos. The
link planar

Each number
the quotes). If the desired

ial
(e.g. with headers, comma delimiters,

Distributed Computing

© Copyright Paul Oh

The Scilab function strcat is used to create a specific message. Its form is:

“ @position01, position02”

Here, there is a whitespace followed by the @ character. This was assigned by the string
variable strHeader. This header is non-unique. A header is often read by the receiver (i.e.
NXT Master) to ensure the transmitted message is valid. Such validation is important when
communication amongst a mix of computers.

// FILE: serialPc-M-1_0b.sce - Works! Fixed 1_0a
// DATE: 04/18/20 07:40
// AUTH: P.Oh
// DESC: PC USB RS485 connect to (Master) NXT. Scilab running on PC sends
// serial message e.g. " @90, -90" (without quotes) containing desired
// angles for XL-320 Lego-based 2-DOF planar manipulator. Master
// (running PC-M-S-1_0a.nxc) processes this message (and sends to Slave
// via Bluetooth).
// VERS: 1_0a: based on scilabPcSerialToNxt0_1h.sce
// 1_0b: Different angles for homework
// REFS: Works with Master NXT running PC-M-S-1_0a.nxc and Slave running
// btS-R-1_0a.nxc

h = openserial(10,"4800,n,8,1"); // initialize PC's serial port
strHeader = " @"; // white space + at character
stringRoger = "ROGER";
stringRogerFound = 1; // not TRUE

for i = 1:4 // four different angle pairs
 // 1_0a used: (0,90); (90,0); (0,-90); (90,90) - and worked!
 // 1_0b: each coordinate must be sign followed by 3 characters here, created the string
 // directly with specific format i.e. a 4 character string: sign and 3 characters the 3
 // characters are the digits or when value < 3, then substitute with white space
 if i == 1 then
 strPosition01 = "+102"; // NB1: sign and 3 digits
 strPosition02 = "+102";
 end
 if i == 2 then
 strPosition01 = "+90 "; // NB2: sign and 2 digits + white space = 3
 strPosition02 = "-90 "; // NB2: sign and 2 digits + white space = 3
 end
 if i == 3 then
 strPosition01 = "-90 "; // same as above
 strPosition02 = "+90 ";
 end
 if i == 4 then
 strPosition01 = "+45 ";
 strPosition02 = "+45 ";
 end

 strI = strcat([strHeader, strPosition01, ", ", strPosition02]);
 disp(strI);
 writeserial(h, strI); // transmit serially to Master NXT

 buf = readserial(h);
 // Check if Master ready to receive next string
 stringRogerFound = strcmp(stringRoger, buf); // 0: means identical strings
 while (stringRogerFound ~=0) // then NXT -> PC string not ROGER, so wait
 buf = readserial(h);
 stringRogerFound = strcmp(stringRoger, buf);
 sleep(200); // min about 50 ms before reading serial port again
 end; // exit reading serial port when ROGER received
 disp(buf);
 sleep(5000); // just slows down loop so user can see what's happening
end

disp("All done!");
closeserial(h)

Figure 1A: Scilab program serialPc-M-1_0b.sce

Distributed Computing

© Copyright Paul Oh

Scilab then transmits the string by calling writeserial. The while-loop repeatedly pings the
receiver using a readserial call and compares any incoming string with “ROGER”. Here, the
Master NXT transmits “ROGER” to the PC when it received a valid message (one with a white
space, followed by an @ character and numbers). Here, “ROGER” is not unique but makes sense
as a suitable reply that Master NXT received a valid message from the PC.

Once the PC received “ROGER” from the Master NXT, the for-loop iterates to send the next set
of positions.

Step 2: Master NXT NXC program for Serial and Bluetooth communications PC-M-S-1_0a.nxc

In Figure A (right), the Master NXT sits between the PC and Slave NXT. As such, the Master
NXT must perform serial (with the PC) and Bluetooth (with the Slave) communications. In a
previous lab, the NXT performed serial communications with a terminal emulator (Hercules) with
the NXC program nxtReadFromPC1_0b.nxc. In yet another lab, Master-Slave Bluetooth
communications was performed using the NXC program btMaster0_2a.nxc. The code in
Figure 1B uses portions of both those NXC programs to serially communicate with the PC
running Scilab and Bluetooth communicate with a Slave NXT.

// FILE: PC-M-S-1_0a.nxc - Works!
// DATE: 04/15/20 11:31
// AUTH: P.Oh
// DESC: Scilab runs serialPc-M-1_0b.sce on PC to serially send a pair of
// angles in a string. Master NXT (running this code) receives and
// verifies string and extracts angles. Master NXT then
// sends Bluetooth message containing these angles, to Slave. Slave NXT
// runs btS-R-1_0a.nxc applies these angles to forward kinematics
// and command the XL-320 servos of the Lego 2-DOF planar manipulator
// VERS: 1_0a: based on btM0_1f.nxc
// Works with Slave (btS-R-1_0a.nxc) and PC (serialPc-M-1_0b.sce)

#include "protocol0_2a.h"

task main() {

 // Bluetooth related variables
 string stringFromSlave; // any messages from slave
 int i; // dummy index
 string strMaster; // string to be sent by Master
 string message; // string containing message
 string ok = "OK" ; // OK message for Slave -> Master
 string roger = "ROGER" ; // ROGER message for Master -> PC

 // Serial port related variables
 byte readBuffer[]; // array to store bytes received from PC
 string charsRead; // string of ASCII characters read from PC
 int lenCharsRead; // strlen of charsRead
 byte byteC; // ASCII value of character read
 int atPosition; // position in string of @ character
 bool atPositionFound; // @ character found
 int commaPosition; // position in string of , character
 string strValue01, strValue02; // extracted numbers as strings
 float value01, value02; // numeric values of extracted string

 // Set up NXT's serial port
 UseRS485(); // (1) Configure S4 for RS-485
 RS485Enable(); // (2) Activate RS-485
 RS485Uart(HS_BAUD_4800, HS_MODE_DEFAULT); // (3) Baud and default parity
 Wait(MS_1); // (4) Brief wait for port settings

Figure 1B: PC-M-S-1_0a.nxc implements serial and Bluetooth communications

Distributed Computing

© Copyright Paul Oh

 TextOut(0, LCD_LINE1, "Master");
 mastercheck(); // check Master bluetooth connection

 while(true) { // read and display strings received from PC until abort
 while(!RS485DataAvailable()) {
 // if no ASCII chars available, then do nothing
 };
 atPosition = 0;
 atPositionFound = FALSE;

 // Some character(s) is on the serial port, so read and check it
 RS485Read(readBuffer);
 // Convert bytes into ASCII string
 charsRead = ByteArrayToStr(readBuffer);
 message = "PC->M:" ;
 strcat(message, charsRead);
 TextOut(0, LCD_LINE2, message);
 lenCharsRead = strlen(charsRead);
 for(i=0; i<=lenCharsRead; i++) {
 byteC = StrIndex(charsRead, i);
 if(byteC == 64) { // 64 DEC is ASCII character for @
 atPosition = i;
 atPositionFound = TRUE;
 ClearLine(LCD_LINE5); // clear @: None message from LCD
 }; // end if
 }; // end for loop to check for @ character
 if(atPositionFound != TRUE) {
 TextOut(0, LCD_LINE5, "@: None");
 };
 if(atPositionFound == TRUE) { // valid message received
 PlayTone(TONE_A3, 100);
 // (1) find comma position
 for(i=0; i<=lenCharsRead; i++) {
 byteC = StrIndex(charsRead, i); // StrIndex returns ASCII value
 if(byteC == 44) { // 44 DEC is ASCII is comma
 commaPosition = i;
 };
 }; // end for loop checking for comma character
 // (2) Extract first number
 strValue01 = Copy(charsRead, atPosition+1, commaPosition);
 value01 = StrToNum(strValue01);
 // (3) Extract second number. NB: Format has 1 whitespace after comma
 strValue02 = Copy(charsRead, commaPosition+1, lenCharsRead);
 value02 = StrToNum(strValue02);
 TextOut(0, LCD_LINE3, FormatNum("deg01:%3.2f" , value01));
 TextOut(0, LCD_LINE4, FormatNum("deg02:%3.2f" , value02));
 Wait(200);
 // (4) Create proper string to send to Slave
 strMaster = StrCat(strValue01, strValue02);
 message = "M-->S:" ;
 strcat(message, strMaster);
 TextOut(0, LCD_LINE6, message);
 // (5) Send resulting string to Slave
 sendtoslave(strMaster);
 ResetSleepTimer(); // keep Brick awake for Bluetooth connection
 // (6) Wait until Slave says OK
 do {
 stringFromSlave = receivefromslave();
 // keep checking until slave acknowledges with "OK"
 Wait(500);
 } while(strcmp(stringFromSlave, ok) != 0);
 message = "S-->M:" ;
 strcat(message, ok);
 TextOut(0, LCD_LINE7, message);
 // (7) Tell PC ready to receive next message
 RS485Write(roger);
 message = "M->PC:" ;
 strcat(message, roger);
 TextOut(0, LCD_LINE8, message);
 }; // end if atPositionFound

Figure 1B continued: PC-M-S-1_0a.nxc implements serial and Bluetooth communications

Distributed Computing

© Copyright Paul Oh

The previous lab notes can be referenced to understand the underlying serial port and Bluetooth
communications. The key and new sections in Figure 1B are the checking of the @ and comma
characters (see yellow-highlight). Recall, the PC transmits a set of positions as a string with a
header. In Figure 1B, charsRead is the received string. A for-loop reads each character in that
string using the NXC function StrIndex. That character is compared to the ASCII value for the
@ character. Once the @ character is found, its position in the string charsRead is stored in the
variable atPosition and the Boolean variable atPositionFound is set to TRUE.

A for-loop then goes thru steps (1) to (4) to extract the numerical values of the alphanumeric
(ASCII) values in the string. Step (1) first finds the comma’s position in the string. Step (2) then
uses the NXC function Copy to extract the first alphanumeric characters (sandwiched between
the @ and comma) and uses StrToNum those characters into a numeric value. Likewise, Step
(3) extracts the second numeric value. Step (4) then creates a string called strMaster that in
Step (5) is transmitted to the Slave NXT via Bluetooth with sendtoslave(strMaster).

The do-while loop in Step (6) implements message checking. Here, the Master waits for the
Slave to reply via Bluetooth, with a string saying “OK”. This is important for synchronization; the
Master should not flood the Slave with another position setting message until the Slave is finished
using that message. Once the Master NXT receives this “OK” message, Step (7) sends a
“ROGER” message to the PC serially with RS485Write(roger).

Before receiving a new serial string, the Master NXT clears its serial buffer with a readBuffer
= 0 statement, waits 5 seconds (so user has some time to view LCD values) and then clears
messages from the LCD.

Step 3: Slave NXT NXC program for Bluetooth and Robot control btS-R-1_0a.nxc

Bluetooth on a Slave NXT was performed in a previous lab with the NXC program
btSlave0_2a.nxc. Also, NXC code that implemented forward kinematics with an XL-320
based 2-link planar manipulator was done in a previous lab with xl320-2dof-fk-1_0.nxc.
These are incorporated into code shown in Figure 1C.

 readBuffer = 0;
 Wait(5000); // so that user can read LCD
 ClearLine(LCD_LINE8); // clear M->PC roger from LCD
 ClearLine(LCD_LINE7); // clear S->M ok from LCD
 ClearLine(LCD_LINE6); // clear M->S string from LCD

 }; // end while(true)
} // end main

Figure 1B continued: PC-M-S-1_0a.nxc implements serial and Bluetooth communications

// FILE: btS-R-1_0a.nxc - Works!
// DATE: 04/15/20 11:49
// AUTH: P.Oh
// DESC: Slave receives Bluetooth string from Master (running PC-M-S-1_0a.nxc).
// Slave extracts numerical values from string. The values are angles
// which are fed into forward kinematics. The result is XL-320 joint
// commands. The Lego-based 2-DOF planar manipulator moves to those
// joint commands, briefly waits, and then goes back to HOME position.
// Slave then sends OK message via Bluetooth, back to Master, and
// waits for the next angle command from Master.
// VERS: 1_0a: based on btS0_2a.nxc
// REFS: Works with Master running PC-M-S-1_0a.nxc and PC running
// serialPc-M-1_0b.sce.
// extract0_1e.nxc: used to detect comma and extract numbers from string
// xl320-2dof-fk-1_0.nxc forward kinematics

Figure 1C: btS-R-1_0a.nxc for Slave NXT connected to XL-320 2-link planar manipulator

Distributed Computing

© Copyright Paul Oh

#include "protocol0_2a.h"
#include "xl320-defines1_0a.h" // XL-320 defines from Control Table
#include "xl320-functions1_0d.h" // P.Oh functions written for XL-320

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X03 // Assumes Motor 1 configured with ID = 3
#define ID_MOTOR02 0X07 // Assumes Motor 2 configured with ID = 7
#define mmPerStud 8 // 8 millimeters per LEGO stud

// Global variables
 bool orangeButtonPushed; // Detect Brick Center button state
 bool rightArrowButtonPushed; // Detect Brick right arrow button state
 bool leftArrowButtonPushed; // Detect Brick left arrow button state
 bool greyButtonPushed; // Detect Brick Grey/Abort button state

void rotateMotorAbsolutely(float angle01, float angle02) { //------------------
 // Rotates desired the two Dynamixel XL-320 motors to their desired angles
 // Assumes motor count of 512 denotes 0 degrees. Uses right-hand rule for
 // rotational direction

 float desiredAngle01InDegrees; // Angle Motor 1 to move to [deg]
 float desiredAngle02InDegrees; // Angle Motor 2 to move to [deg]
 float degreesPerCount; // Conversion 0.29 [degrees/count]
 float calculatedCount; // Count equivalent of desired angle [count]
 int motor01Offset; // Motor 1's offset [count]
 float theta01InDegrees; // Motor 1 angle [counts]
 int theta01InCounts; // Motor 1 angle [deg]
 int motor02Offset; // Motor 2's offset [count]
 float theta02InDegrees; // Motor 2 angle [counts]
 int theta02InCounts; // Motor 2 angle [deg]
 string msg01, msg02; // dummy strings to print values to screen

 motor01Offset = 512; // Set Link 1 at 0 deg (i.e. 512 counts)
 motor02Offset = 512; // Set Link 2 at 0 deg (i.e. 512 counts)

 // Note 1: Looking into horn from Top, count > 512 is CCW (i.e. +Z axis)
 // and count < 512 is CW (i.e. -Z axis)
 degreesPerCount = 0.29; // [deg/count] found from XL-320 data sheet

 ClearScreen();
 desiredAngle01InDegrees = angle01;
 theta01InCounts = motor01Offset + desiredAngle01InDegrees/degreesPerCount;
 desiredAngle02InDegrees = angle02;
 theta02InCounts = motor02Offset + desiredAngle02InDegrees/degreesPerCount;

 // Format string so displays nicely on Brick screen
 sprintf(msg01, "Goto [%3.1f, " ,desiredAngle01InDegrees);
 sprintf(msg02, "%3.1f]" , desiredAngle02InDegrees);
 TextOut(0, LCD_LINE2, strcat(msg01, msg02));

 XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
 Wait(2000); // wait about 2 seconds before issuing another command
 XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
 Wait(2000); // wait about 2 seconds before issuing another command
 PlayTone(TONE_B3,50);

}; // end rotateMotorAbsolutely function ---------------------------------

Figure 1C continued: btS-R-1_0a.nxc

Distributed Computing

© Copyright Paul Oh

task main() {

 // Bluetooth related variables
 string stringFromMaster; // store string from Master
 int lenStringFromMaster; // store length value of received string

 byte byteC; // ASCII value of character read in strData
 int i; // dummy counter variable
 int commaPosition; // Position in strData of comma
 string message; // dummy string to display message
 string strValue01, strValue02; // extracted numbers as strings
 float floatValue01, floatValue02; // floats of extracted string
 string strOkFromSlave = "OK" ; // OK from slave

 // planar manipulator variables
 float l1, l2; // length of link 1 and link 2 [mm]
 float theta1, theta2; // angle of joint 1 and joint 2 [rad]
 float theta1InDegrees, theta2InDegrees; // angle of joint 1 and 2 [deg]
 float xP0, yP0; // end-effector absolute position i.e. wrt x0y0 frame [mm]
 int xP0InStuds, yP0InStuds; // [studs]

 // calculation and dummy variables
 float C, k1, k2, num, den;

 // initializations
 l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long
 l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

 UseRS485();
 RS485Enable();
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //57600 baud, 8bit, 1stop, no parity

 ClearScreen();
 // Prompt user to begin
 TextOut(0, LCD_LINE1, "Start: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);
 ClearScreen();

 // First go to home position
 ClearScreen();
 TextOut(0, LCD_LINE2, "Homing...");
 Wait(2000);
 theta1InDegrees = theta2InDegrees = 0.0;
 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 Wait(2000);
 PlayTone(TONE_E4, 500);

 ClearScreen();
 slavecheck(); // initialize NXT running this program as the Slave
 TextOut(0, LCD_LINE1, "Slave");

Figure 1C continued: btS-R-1_0a.nxc

Distributed Computing

© Copyright Paul Oh

 for(;;) {
 do { // keep checking of Master sent a message
 stringFromMaster = receivefrommaster();
 lenStringFromMaster = StrLen(stringFromMaster);
 } while(lenStringFromMaster == 0);

 // Now Master's message received
 message = "Rec'd: " ;
 strcat(message, stringFromMaster);
 ClearLine(LCD_LINE2); // clear any old Master's string message from LCD
 TextOut(0, LCD_LINE2, message); // display newly received message

 // (1) Find position of comma
 for(i=0; i <= lenStringFromMaster; i++) {
 byteC = StrIndex(stringFromMaster, i); // StrIndex returns ASCII value in DEC
 if(byteC == 44) { // 44 ASCII is comma
 commaPosition = i;
 }; // end if
 }; // end (1)

 // (2) Extract first number
 strValue01 = Copy(stringFromMaster, 0, commaPosition);
 // ---- message = "str1: " ;
 // ---- strcat(message, strValue01);
 theta1InDegrees = StrToNum(strValue01);
 theta1 = theta1InDegrees * PI/180; // [rad]

 // (3) Extract second number. NB: Format has 1 whitespace after comma
 strValue02 = Copy(stringFromMaster, commaPosition+2, lenStringFromMaster);
 // --- message = "str2: " ;
 // --- strcat(message, strValue02);
 theta2InDegrees = StrToNum(strValue02);
 theta2 = theta2InDegrees * PI/180; // [rad]

 // Forward Kinematics equations yield end-effector position (xP0, yP0)
 xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
 yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2); // [mm]
 // End-effector position in LEGO studs
 xP0InStuds = ceil(xP0 / mmPerStud); // round up [stud]
 yP0InStuds = ceil(yP0 / mmPerStud); // round up [stud]

 TextOut(0, LCD_LINE3, "Will go to:");
 TextOut(0, LCD_LINE4, FormatNum("xP0 = %3d studs" , xP0InStuds));
 TextOut(0, LCD_LINE5, FormatNum("xP0 = %3.3f mm", xP0));
 TextOut(0, LCD_LINE6, FormatNum("yP0 = %3d studs" , yP0InStuds));
 TextOut(0, LCD_LINE7, FormatNum("yP0 = %3.3f mm", yP0));
 // Prompt user to begin motion
 TextOut(0, LCD_LINE8, "Yes: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);
 ClearScreen();

 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 Wait(2000);
 TextOut(0, LCD_LINE2, "Back to Home");
 theta1InDegrees = theta2InDegrees = 0.0;
 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 Wait(2000);
 PlaySound(SOUND_DOUBLE_BEEP);

 // (4) Tell master ready for new message
 sendtomaster(strOkFromSlave);
 ResetSleepTimer(); // don't time out and shut off Brick

 } // end for
} // end main

Figure 1C continued: btS-R-1_0a.nxc

Distributed Computing

The Slave NXT program
The function
1_0.nxc
displayed the stud positions on the Brick’s LCD.

The key section of code begins with the endless for
stringFromMaster
begins. Step (1) uses
(3) extract the alphanumeric characters and converts
StrToNum
theta2InDegrees
calculate the robot’s end
command t
angles, it waits for 2 seconds and then rotates to the HOME position.

Before looping back, Step (4) sends an “
call sendtomaster(strOkFromSlave)
send more Bluetooth strings until it receives this “

Step 4:

Scilab version 6.1.0 was a major update and not all build
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox
before attempting to exec
program and related binaries can be fo
Alternatively it can be downloaded from the course website.

Step 5:

A.

B.

Figure 1D:
Scilab console (right) shows that

Distributed Computing

The Slave NXT program
The function rotateMotorAbsolutely
1_0.nxc which implemented forward kinematics on the XL
displayed the stud positions on the Brick’s LCD.

The key section of code begins with the endless for
stringFromMaster
begins. Step (1) uses
(3) extract the alphanumeric characters and converts
StrToNum. These num
theta2InDegrees
calculate the robot’s end
command the XL-
angles, it waits for 2 seconds and then rotates to the HOME position.

Before looping back, Step (4) sends an “
sendtomaster(strOkFromSlave)

send more Bluetooth strings until it receives this “

Step 4: Run loader.sce

Scilab version 6.1.0 was a major update and not all build
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox
before attempting to exec
program and related binaries can be fo
Alternatively it can be downloaded from the course website.

Step 5: Execute the programs

A. First turn on Bluetooth on the Master and Slave. The programs
channel 1 is used.

B. Ensure the XL
Slave NXT.

Figure 1D: Updated Serial Communications toolbox loader.sce program (left) is executed. The
Scilab console (right) shows that

Distributed Computing

The Slave NXT program btS-
rotateMotorAbsolutely

which implemented forward kinematics on the XL
displayed the stud positions on the Brick’s LCD.

The key section of code begins with the endless for
stringFromMaster from the Master NXT v
begins. Step (1) uses StrIndex
(3) extract the alphanumeric characters and converts

. These numerical values are respectively assigned to
theta2InDegrees. These values are then applied to the forward kinematics equations to
calculate the robot’s end-effector

-320 smart servos.
angles, it waits for 2 seconds and then rotates to the HOME position.

Before looping back, Step (4) sends an “
sendtomaster(strOkFromSlave)

send more Bluetooth strings until it receives this “

loader.sce

Scilab version 6.1.0 was a major update and not all build
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox
before attempting to execute any Scilab serial functions (see
program and related binaries can be fo
Alternatively it can be downloaded from the course website.

Execute the programs. See demo video

First turn on Bluetooth on the Master and Slave. The programs
channel 1 is used.
Ensure the XL-320 motor controller board is powered and connected to Port 4 on the
Slave NXT.

Updated Serial Communications toolbox loader.sce program (left) is executed. The
Scilab console (right) shows that

-R-1_0a.nxc
rotateMotorAbsolutely is identical to the one used in

which implemented forward kinematics on the XL
displayed the stud positions on the Brick’s LCD.

The key section of code begins with the endless for
from the Master NXT v
StrIndex to search for the comma character in that string.

(3) extract the alphanumeric characters and converts
erical values are respectively assigned to

. These values are then applied to the forward kinematics equations to
effector (ݔ௣଴, ௣଴) position as well as toݕ

320 smart servos. After the 2
angles, it waits for 2 seconds and then rotates to the HOME position.

Before looping back, Step (4) sends an “OK” message to the Master NXT via Bluetooth using the
sendtomaster(strOkFromSlave). Recall for synchronization, the Master NXT will not

send more Bluetooth strings until it receives this “

Scilab version 6.1.0 was a major update and not all build
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox

ute any Scilab serial functions (see
program and related binaries can be found in Scilab’s site and downloaded from GitHub.
Alternatively it can be downloaded from the course website.

. See demo video

First turn on Bluetooth on the Master and Slave. The programs

320 motor controller board is powered and connected to Port 4 on the

Updated Serial Communications toolbox loader.sce program (left) is executed. The
Scilab console (right) shows that the updated toolbox has been loaded.

1_0a.nxc looks long. However it should also look familiar.
is identical to the one used in

which implemented forward kinematics on the XL
displayed the stud positions on the Brick’s LCD.

The key section of code begins with the endless for
from the Master NXT via Bluetooth, the process of extracting angles

to search for the comma character in that string.
(3) extract the alphanumeric characters and converts them to numerical values with calls to

erical values are respectively assigned to
. These values are then applied to the forward kinematics equations to

position as well as to
After the 2-link planar manipulator rotates to the desired

angles, it waits for 2 seconds and then rotates to the HOME position.

” message to the Master NXT via Bluetooth using the
. Recall for synchronization, the Master NXT will not

send more Bluetooth strings until it receives this “OK” from the Slave NXT.

Scilab version 6.1.0 was a major update and not all build
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox

ute any Scilab serial functions (see
und in Scilab’s site and downloaded from GitHub.

Alternatively it can be downloaded from the course website.

. See demo video https://youtu.be/BDz0

First turn on Bluetooth on the Master and Slave. The programs

320 motor controller board is powered and connected to Port 4 on the

Updated Serial Communications toolbox loader.sce program (left) is executed. The
the updated toolbox has been loaded.

looks long. However it should also look familiar.
is identical to the one used in

which implemented forward kinematics on the XL-320 2-link planar manipulator and

The key section of code begins with the endless for-loop. After receiving the string
ia Bluetooth, the process of extracting angles

to search for the comma character in that string.
them to numerical values with calls to

erical values are respectively assigned to
. These values are then applied to the forward kinematics equations to

position as well as to rotateMotorAbsolutely
link planar manipulator rotates to the desired

angles, it waits for 2 seconds and then rotates to the HOME position.

” message to the Master NXT via Bluetooth using the
. Recall for synchronization, the Master NXT will not

” from the Slave NXT.

Scilab version 6.1.0 was a major update and not all build-in ATOM modules have been updated.
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox

ute any Scilab serial functions (see Figure 1D
und in Scilab’s site and downloaded from GitHub.

Alternatively it can be downloaded from the course website.

https://youtu.be/BDz0

First turn on Bluetooth on the Master and Slave. The programs

320 motor controller board is powered and connected to Port 4 on the

Updated Serial Communications toolbox loader.sce program (left) is executed. The
the updated toolbox has been loaded.

© Copyright Paul Oh

looks long. However it should also look familiar.
is identical to the one used in xl320

link planar manipulator and

loop. After receiving the string
ia Bluetooth, the process of extracting angles

to search for the comma character in that string.
them to numerical values with calls to

erical values are respectively assigned to theta1InDegrees
. These values are then applied to the forward kinematics equations to

rotateMotorAbsolutely
link planar manipulator rotates to the desired

” message to the Master NXT via Bluetooth using the
. Recall for synchronization, the Master NXT will not

” from the Slave NXT.

modules have been updated.
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox

Figure 1D). A link to the loader.sce
und in Scilab’s site and downloaded from GitHub.

https://youtu.be/BDz0-FkbjOM

First turn on Bluetooth on the Master and Slave. The programs assume Bluetooth

320 motor controller board is powered and connected to Port 4 on the

Updated Serial Communications toolbox loader.sce program (left) is executed. The
the updated toolbox has been loaded.

© Copyright Paul Oh

looks long. However it should also look familiar.
xl320-2dof-fk

link planar manipulator and

loop. After receiving the string
ia Bluetooth, the process of extracting angles

to search for the comma character in that string. Steps (2) and
them to numerical values with calls to

theta1InDegrees and
. These values are then applied to the forward kinematics equations to

rotateMotorAbsolutely to
link planar manipulator rotates to the desired

” message to the Master NXT via Bluetooth using the
. Recall for synchronization, the Master NXT will not

modules have been updated.
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox

). A link to the loader.sce
und in Scilab’s site and downloaded from GitHub.

assume Bluetooth

320 motor controller board is powered and connected to Port 4 on the

Updated Serial Communications toolbox loader.sce program (left) is executed. The

© Copyright Paul Oh

looks long. However it should also look familiar.
fk-

link planar manipulator and

loop. After receiving the string
ia Bluetooth, the process of extracting angles

Steps (2) and
them to numerical values with calls to

and
. These values are then applied to the forward kinematics equations to

to
link planar manipulator rotates to the desired

” message to the Master NXT via Bluetooth using the
. Recall for synchronization, the Master NXT will not

modules have been updated.
The Serial Communications toolbox is one example. Thus, one must load the updated toolbox

). A link to the loader.sce
und in Scilab’s site and downloaded from GitHub.

assume Bluetooth

320 motor controller board is powered and connected to Port 4 on the

Updated Serial Communications toolbox loader.sce program (left) is executed. The

Distributed Computing

© Copyright Paul Oh

C. On the Slave NXT execute btS-R-1_0a.nxc. The program will move the 2-link planar
manipulator to the HOME position. Once done, the LCD will display “Slave” and is ready
to accept Bluetooth messages.

D. On the Master NXT execute PC-M-S-1_0a.nxc. The LCD will display “Master” and is
ready to accept serial messages.

E. On the PC execute serialPc-M-1_0b.sce. This will send four different strings. Each
string contains a pair of numbers that represent the desired angle settings.

F. After the robot moves to the four different angle settings, Scilab will exit. One can now
abort both the Master and Slave NXT programs.

Exercises

Recalling Concept 1, the PC sends a serial string with the form “ @number01, number02” without
quotes. An example is “ @90, 0”. There is a white space followed by the @ character which is
immediately followed by the first number. The first number is immediately followed by a comma
and another white space and then the second number.

1. Change the format such that the PC sends a serial string with the form “ >number01,

number02” to the Master NXT. Have the Master NXT confirm that this is a valid string by
checking for the “>” character. Hint: What is the ASCII value for the “>” character?

Recalling Concept 1, when the Master NXT receives a valid string from the PC, it replies
“ROGER”.

2. Change both the NXC and Scilab code accordingly so that “RECEIVED” is used rather than

“ROGER”.

Recalling Concept 2, when the Slave NXT receives a valid string from the Master, it replies with
“OK”

3. Change the NXC code in both the Master and Slave NXTs, so that “confirmed” is used

rather than “OK”

NOTE: Serial communications programming can be tricky. One can get Scilab error messages
related to Serial Communications when the port does not close properly. One option is to close
Scilab and re-open. Then, run the loader.sce program before another attempt at executing SCE
code that performs serial communications. Another option is to type closeserial(h) in the
Scilab console.

Congratulations! You have implemented distributed computing with a PC and a
pair of NXT Bricks using serial and Bluetooth communications!

