
lecture-imageProcessing-rowColumVector-030420a.pptx © Copyright Paul Oh 2020

Digital Images: Row-Column Format

A digital image consists of pixels. Each pixel is a numeric value that characterizes the color
content at that point. The point is the physical location of where light which passed thru a
lens, fell on the image sensor.

The physical location is often referenced by the row and column on the image sensor. One
intuitive (but naïve) way is to characterize the digital image as an array of pixels.

0 1 2 3

0 A B C D

1 E F G H

2 I J K L

Example

Suppose we have an image sensor that yielded a 3x4 digital image ݃݉ܫ. One
sees that pixel location ݃݉ܫሺ1,3ሻ has the value ܪ.

Recall that one starts count with “0” and that arrays are denoted by (row, col).

For small digital images, array data structures are fine. But for larger ones, the
row-column format data structure with a pointer makes computations quicker.

0 1 2 3 4 5 6 7 8 9 10 11

A B C D E F G H I J K L

*(Img.Data + (R * Img.Cols) + C)

Img.Data: pixel values (e.g. A thru L)
R: pixel’s row (e.g. 1)
C: pixel’s column (e.g. 3)
Img.Cols: number of columns in the image (e.g. 4)

*(Img.Data + (1 * 4) + 3) = *(Img.Data + 7)In this example, we see ݃݉ܫሺ1,3ሻ would be
Since the pointer points to the start of the row-column vector, the value is “H”

lecture-imageProcessing-rowColumVector-030420a.pptx © Copyright Paul Oh 2020

Often in image processing, one sees the row-column format in a nested for-loop

void Img_threshold(struct Image *In, struct Image *Out) {

long i, j;
int val, thresholdValue;
unsigned char *tmp;

thresholdValue = 50;

for(i=0; i<In->Rows; ++i) {
for(j=0; j<In->Cols; ++j) {

val = *(In->Data + i*In->Rows + j);
if(val < thresholdValue) {

val = 0;
}
else {

val = 255;
}
tmp = Out->Data + i*Out->Rows + j;
*tmp = (unsigned char)val;

};
};
} // end Img_threshold

In this sample code, the image’s pixel
value is stored in a variable called
val. One sees the value is
compared to a threshold value. This
function generated a thresholded
image.

One also sees that a (pointer to a)
struct variable is used. This is also
common in image processing. The
structure often contains information
about the image like the number of
rows, columns, and the pixel data
itself

struct Image {
int Rows; // image's number of rows
int Cols; // image's number of columns
unsigned char *Data; // pointer to image data

}; // end of struct Image

lecture-imageProcessing-rowColumVector-030420a.pptx © Copyright Paul Oh 2020

Digital image files come in many versions e.g. RAW, BMP, PGM, JPG, and GIF. The former
three are uncompressed and hence are large file sizes. The latter two are compressed to
save memory space.

RAW files are the “purest” ones and popular with photographers; the light and color
characteristics falling onto the image sensor are unaltered. The photographer can then
customize the image and the relative values of adjacent pixels as they see fit.

For grey-scale RAW images, each pixel is one byte (value of 0 to 255). Thus a 256x256
greyscale image is 65536 bytes.

For color RAW images, each pixel is represented by 3 bytes (RGB: red, green and blue).
Thus a 256x256 greyscale image is 65536*3 = 196608 bytes.

