
Image Processing

© Copyright Paul Oh

Hands-on Lab

Image Processing

A digital image is a collection of pixel data. A pixel has a location and value. The location is the
row and column in the image whereas the value represents the color at that location. This lab
introduces the reading, processing, and writing of digital image using ANSI C (GCC) and RAW
image file standard. By using ANSI C, the underlying algorithms should be platform independent.
RAW images are standard uncompressed binary files. The net effect is a brief but focused
introduction to image processing which is the pre-cursor to robotic computer vision.

Preliminary: Code Blocks, IrfanView, and Pixel Former

Before doing this lab, tutorials on Code Blocks, IrfanView and Pixelformer should be completed:
These software allows one to: write C programs for image processing (Code Blocks); create
bitmap images (Pixelformer); and create RAW files and view results (IrfanView).

Concept 1: Thresholding images (Read and Write RAW files) threshold1_0a.c

Thresholding reads an image and writes a black-and-white output image. This is important
because working with a binary image (i.e. a pixel is either black or white) often simplifies image
understanding (e.g. detecting edges, calculating area and centroids, and object counting).
Thresholding is thus a “Hello World” example for image processing. Figure 1A lists main for
threshold1_0a.c threshold a 256-by-256 grayscale image.

Unlike JPEG, PNG and other image files, RAW files are uncompressed and have no headers.
One simply reads the binary file one byte at a time using a loop.

The .h files are standard include files. The structure Image lying outside main is a global
variable. Image holds the sizes of the rows (Rows) and columns (Cols) and pixel data (*Data)

// FILE: threshold1_0a.c - Works!
// DATE: 02/21/20 08:34
// AUTH: P.Oh
// DESC: Output is threshold of Input image

#include<stdlib.h>
#include<stdio.h>
#include<memory.h>

struct Image {
 int Rows, Cols; // image's number of rows and columns
 unsigned char *Data; // pointer to image data
}; // end of struct Image

int main() {

 FILE *ofile;
 struct Image In, Out; // Declare input and output images

 // Assumes RAW image is 256-by-256 bytes and allocate memory for images
 In.Rows = Out.Rows = In.Cols = Out.Cols = 256;
 In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
 Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);

 Img_in(&In);
 Img_threshold(&In, &Out);
 Img_out(&Out);

} // end of main

Figure 1A: main for threshold1_0a.c

Image Processing

© Copyright Paul Oh

In main, the yellow-highlight shows that data being allocated. It’s assumed that the RAW image
will have 256 rows and 256 columns of 1-byte pixels. Next, main calls 3 functions to respectively
read an input image, process it, and write the output image.

Step 1: Reading a RAW image

The function Img_in is used to read a RAW file (Figure 1B). As input, it takes a pointer to an
Image structure. This function begins with fopen to open the desired input RAW image file
(cameraMan.raw in this case). The row-column format is used to store pixel data as a vector.
This is implemented by a single for loop an moves the pointer through the image file. The
function ends by closing the file. Recall the structure variable Image is a global one, so other
functions will be able to access this variable.

Step 2: Processing the RAW image

void Img_in(struct Image *Img) {
 FILE *ifile;
 int i;

 // NB: Assumes RAW image file 256 x 256 size
 // Open file for binary reading
 // Assumes RAW file in same directory as this C-program
 ifile = fopen("cameraMan.raw", "rb"); // read binary file

 // Read directly into the image array
 for(i=0; i < Img->Rows; ++i)
 fread(Img->Data + i*Img->Cols, Img->Cols, 1, ifile);

 fclose(ifile);

} // end Img_in

Figure 1B: Img_in function

void Img_threshold(struct Image *In, struct Image *Out) {

 long i, j;
 int val, thresholdValue;
 unsigned char *tmp;

 thresholdValue = 50;

 for(i=0; i<In->Rows; ++i) {
 for(j=0; j<In->Cols; ++j) {
 val = *(In->Data + i*In->Rows + j);
 if(val < thresholdValue) {
 val = 0;
 }
 else {
 val = 255;
 }
 tmp = Out->Data + i*Out->Rows + j;
 *tmp = (unsigned char)val;
 };
 };
} // end Img_threshold

Figure 1C: Img_threshold function

Image Processing

The function
function takes pointers to the

The threshold value is set (50 in this case) in the variable
loops
val and compared to

Recall that 8
thresholdValue
are set white. The value of resulting threshold is then set to the pointer
data in the global structure variable

Step 3:

The function
(thresholdOutput.raw
data to the file. The function ends by closing the file.

Step 4:

Combine
input image file (
execute to generate the output file. View

void Img_out(struct Image *Out) {

} // end Img_out

Figure 1E:
thresholdValue

Image Processing

The function Img_threshold
function takes pointers to the

The threshold value is set (50 in this case) in the variable
loops then reads each pixel of the input image data and stores the pixel value in the variable

and compared to

Recall that 8-bit pixel data ranges in values from 0 (black) to 255 (white). Setting
sholdValue

are set white. The value of resulting threshold is then set to the pointer
data in the global structure variable

Step 3: Write the RAW i

The function Img_out
thresholdOutput.raw

data to the file. The function ends by closing the file.

Step 4: Threshold a RAW image file

Combine Figures 1A
input image file (cameraMan.raw
execute to generate the output file. View

void Img_out(struct Image *Out) {
 FILE *ofile;
 int i;

 // Open (or create) binary file for writing
 ofile = fopen("thresholdOutput.raw", "wb");
 // Output the image by rows
 for(i=0; i < Out
 fwrite(Out

 fclose(ofile);
} // end Img_out

Figure 1E: Original
thresholdValue

Img_threshold
function takes pointers to the Image

The threshold value is set (50 in this case) in the variable
then reads each pixel of the input image data and stores the pixel value in the variable

and compared to thresholdValue

bit pixel data ranges in values from 0 (black) to 255 (white). Setting
sholdValue closer to 0 means that

are set white. The value of resulting threshold is then set to the pointer
data in the global structure variable

Write the RAW image

Img_out takes an Image structure (
thresholdOutput.raw in this case) and proceeds with a

data to the file. The function ends by closing the file.

Threshold a RAW image file

Figures 1A thru 1D into a single file named
cameraMan.raw

execute to generate the output file. View

void Img_out(struct Image *Out) {
FILE *ofile;

// Open (or create) binary file for writing
ofile = fopen("thresholdOutput.raw", "wb");
// Output the image by rows
for(i=0; i < Out->Rows; ++i)

fwrite(Out->Data + i*Out

fclose(ofile);
} // end Img_out

Original cameraMan.raw
thresholdValue set to 50. Note that for that value, only the darkest pixels remain black.

 is used to implement
Image structures

The threshold value is set (50 in this case) in the variable
then reads each pixel of the input image data and stores the pixel value in the variable

thresholdValue.

bit pixel data ranges in values from 0 (black) to 255 (white). Setting
closer to 0 means that the

are set white. The value of resulting threshold is then set to the pointer
data in the global structure variable Out.

takes an Image structure (
in this case) and proceeds with a

data to the file. The function ends by closing the file.

Threshold a RAW image file

into a single file named
cameraMan.raw) is in the same folder as

execute to generate the output file. View thresholdOutput.raw

void Img_out(struct Image *Out) {

// Open (or create) binary file for writing
ofile = fopen("thresholdOutput.raw", "wb");
// Output the image by rows

>Rows; ++i)
Data + i*Out->Cols, Out

Figure 1D

cameraMan.raw file (left) processed
set to 50. Note that for that value, only the darkest pixels remain black.

is used to implement thresholding
structures (input and output

The threshold value is set (50 in this case) in the variable
then reads each pixel of the input image data and stores the pixel value in the variable

bit pixel data ranges in values from 0 (black) to 255 (white). Setting
the darkest pixels are set black, while all other pixels

are set white. The value of resulting threshold is then set to the pointer

takes an Image structure (
in this case) and proceeds with a

data to the file. The function ends by closing the file.

into a single file named threshold1_0a.c
) is in the same folder as

thresholdOutput.raw

// Open (or create) binary file for writing
ofile = fopen("thresholdOutput.raw", "wb");

>Cols, Out->Cols, 1, ofile);

D: Img_out function

file (left) processed
set to 50. Note that for that value, only the darkest pixels remain black.

hresholding (Figure 1C
and output Image

The threshold value is set (50 in this case) in the variable thresholdValue
then reads each pixel of the input image data and stores the pixel value in the variable

bit pixel data ranges in values from 0 (black) to 255 (white). Setting
pixels are set black, while all other pixels

are set white. The value of resulting threshold is then set to the pointer

takes an Image structure (Figure 1D
in this case) and proceeds with a for-loop

threshold1_0a.c
) is in the same folder as threshold1_0a.c

thresholdOutput.raw with IrfanView (

>Cols, 1, ofile);

function

file (left) processed with threshold1_0a.c
set to 50. Note that for that value, only the darkest pixels remain black.

© Copyright Paul Oh

Figure 1C). As inputs, this
Image structures.

thresholdValue. The nested
then reads each pixel of the input image data and stores the pixel value in the variable

bit pixel data ranges in values from 0 (black) to 255 (white). Setting
pixels are set black, while all other pixels

are set white. The value of resulting threshold is then set to the pointer tmp which stores the

Figure 1D). It opens a file
loop and fwrite

threshold1_0a.c. Make sure that the
threshold1_0a.c. Compile and

with IrfanView (

threshold1_0a.c
set to 50. Note that for that value, only the darkest pixels remain black.

© Copyright Paul Oh

. As inputs, this
.

. The nested for
then reads each pixel of the input image data and stores the pixel value in the variable

bit pixel data ranges in values from 0 (black) to 255 (white). Setting
pixels are set black, while all other pixels

which stores the

). It opens a file
fwrite to write the

. Make sure that the
. Compile and

with IrfanView (Figure 1E).

threshold1_0a.c with
set to 50. Note that for that value, only the darkest pixels remain black.

© Copyright Paul Oh

. As inputs, this

for-
then reads each pixel of the input image data and stores the pixel value in the variable

bit pixel data ranges in values from 0 (black) to 255 (white). Setting
pixels are set black, while all other pixels

which stores the

). It opens a file
to write the

. Make sure that the
. Compile and

Image Processing

Concept

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
centroid of an image is calculated as
centroid coordinates,

Step 1:

Figure 2A

Exercises

1.1

1.2

Figure 2A:
and black
image should be 24.

float

} // end function area

Image Processing

Concept 2: Areas and Centroids

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
centroid of an image is calculated as
centroid coordinates,

Step 1: Write the function to calculate the image’s area

Figure 2A is a 16x16 RAW

Exercises

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the
whitest pixels

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.
a negative).

Figure 2A: Pixelformer
and black (value = 0)
image should be 24.

float area(struct Image *In, int x1, int y1,

 // returns calculated area of a RAW image
 long i, j;
 float areaValue = 0.0; // although this is an int, will use for float division

 for(i=x1; i
 for(j=y1; j <= y2; ++j) {
 if(pix(In, i, j)
 areaValue = areaValue + 1.0;
 }
 return(areaValue);

} // end function area

Areas and Centroids

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
centroid of an image is calculated as
centroid coordinates, ܺ and ܻ are the

Write the function to calculate the image’s area

16x16 RAW test

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the
whitest pixels remain white.

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.

Pixelformer was used to create a 16x16 image with white (value = 255) background
(value = 0) pixels to create the ball. Counting the number of black pixels, the area of this

image should be 24.

area(struct Image *In, int x1, int y1,
 int x2, int y2, unsigned char ObjVal) {

// returns calculated area of a RAW image

areaValue = 0.0; // although this is an int, will use for float division

for(i=x1; i <= x2; ++i)
for(j=y1; j <= y2; ++j) {

pix(In, i, j)
areaValue = areaValue + 1.0;

return(areaValue);

} // end function area

Figure 2B:

Areas and Centroids - areaCentroid1_0.c

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
centroid of an image is calculated as ܺ =

are the ݅th pixel’s

Write the function to calculate the image’s area

test image (16x16

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the
remain white.

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.

used to create a 16x16 image with white (value = 255) background
to create the ball. Counting the number of black pixels, the area of this

area(struct Image *In, int x1, int y1,
int x2, int y2, unsigned char ObjVal) {

// returns calculated area of a RAW image

areaValue = 0.0; // although this is an int, will use for float division

<= x2; ++i)
for(j=y1; j <= y2; ++j) {

pix(In, i, j)==ObjVal)
areaValue = areaValue + 1.0;

Figure 2B: Function to calculate the image’s area

areaCentroid1_0.c

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
= ଵ

∑ ܺே
ୀଵ and

th pixel’s coordinates, and

Write the function to calculate the image’s area

16x16-ballRaw.raw

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.

used to create a 16x16 image with white (value = 255) background
to create the ball. Counting the number of black pixels, the area of this

area(struct Image *In, int x1, int y1,
int x2, int y2, unsigned char ObjVal) {

// returns calculated area of a RAW image

areaValue = 0.0; // although this is an int, will use for float division

areaValue = areaValue + 1.0;

Function to calculate the image’s area

areaCentroid1_0.c

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
and ܻ =

ଵ

∑ ܻே
ୀଵ

coordinates, and ܣ is the area of the object.

ballRaw.raw).

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.

used to create a 16x16 image with white (value = 255) background
to create the ball. Counting the number of black pixels, the area of this

int x2, int y2, unsigned char ObjVal) {

areaValue = 0.0; // although this is an int, will use for float division

Function to calculate the image’s area

© Copyright Paul Oh

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
ܻ where ܺ and

is the area of the object.

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.

used to create a 16x16 image with white (value = 255) background
to create the ball. Counting the number of black pixels, the area of this

areaValue = 0.0; // although this is an int, will use for float division

Function to calculate the image’s area

© Copyright Paul Oh

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
and ܻ are the

is the area of the object.

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.

used to create a 16x16 image with white (value = 255) background
to create the ball. Counting the number of black pixels, the area of this

areaValue = 0.0; // although this is an int, will use for float division

© Copyright Paul Oh

From lecture, the area is defined as the number of pixels (of a specific value) in the image. The
are the

Write a program to threshold a RAW grayscale image (e.g. cameraMan.raw) so that only the

Write a program to reads a RAW mage file (e.g. cameraMan.raw) and outputs the inverse (i.e.

used to create a 16x16 image with white (value = 255) background
to create the ball. Counting the number of black pixels, the area of this

Image Processing

© Copyright Paul Oh

The listing in Figure 2B takes an Image structure, the starting row and column of the image, the
ending row and column of the image, and the desired pixel value (ObjVal). The nested for-loop
compares the Image’s pixel value to ObjVal. If it matches, then areaValue is incremented.
Technically, areaValue is an integer (i.e. whole number of pixels). However, for calculating the
centroid later, is areaValue declared as a float.

To increase the code’s readability, pix(In, i, j)is used to denote the (i,j) pixel of the input
Image. This variable is #defined as a global variable.

Step 2: Write the function to calculate the image’s centroid

The centroid function (Figure 2C) takes on the same parameters as the area function. It
returns a structure coord which is declared as a global variable. This structure will contain the x
and y location of the calculated centroid.

The nested for-loop compares the image’s pixel to the desired pixel value (ObjVal). When
equal, the column and row values of that pixel are accumulated in xSum and ySum respectively.
The centroid is then calculated by dividing those accumulated sums by the image’s area
(calculatedArea) and returned.

Step 3: Write main program to call area and centroid functions and print results

Figure 2D shows the full listing of areaCentroid1_0.c. The yellow highlights show the
#defined variable pix(In, i, j) and global structure variable coord. Much like Concept
1’s threshold1_0a.c, the functions Img_in (Figure 1B) and struct Image are used.

struct coord centroid(struct Image *In, int x1,
 int y1, int x2, int y2,
 unsigned char ObjVal) {
 // returns calculated centroid (as struct) of RAW image
 long i, j;
 float calculatedArea;
 int xSum, ySum;
 struct coord calculatedCentroid;

 calculatedArea = area(In, x1, y1, x2, y2, ObjVal);

 if(calculatedArea == 0) {
 calculatedCentroid.x = -1; calculatedCentroid.y = -1;
 return(calculatedCentroid);
 };

 xSum = ySum = 0;

 for(i=x1; i<=x2; ++i)
 for(j=y1; j<=y2; ++j) {
 if(pix(In, i, j) == ObjVal) {
 xSum += j;
 ySum += i;
 }
 }

 calculatedCentroid.x = xSum/calculatedArea;
 calculatedCentroid.y = ySum/calculatedArea;

 return(calculatedCentroid);
} // end function centroid

Figure 2C: Listing for function centroid

Image Processing

© Copyright Paul Oh

// FILE: areaCentroid1_0.c - Works!
// DATE: 02/26/20 09:44
// AUTH: P.Oh
// DESC: Report area and centroid of RAW image
// REFS: areaCentroid0_1b.c

#include<stdlib.h>
#include<stdio.h>
#include<memory.h>
#include<math.h>

#define pix(Im, x, y) *(Im->Data + (x)*Im->Cols + (y))
#define WHITE 255
#define BLACK 0

struct Image {
 int Rows, Cols; // image's number of rows and columns
 unsigned char *Data; // pointer to image data
}; // end of struct Image

struct coord {
 float x, y; // result's row and column coordinates
};

void Img_in(struct Image *Img) {
 FILE *ifile;
 int i;

 // NB: Assumes RAW image file 256 x 256 size
 // Open file for binary reading
 // Assumes RAW file in same directory as this C-program
 ifile = fopen("16x16-ballRaw.raw", "rb"); // read binary file

 // Read directly into the image array
 for(i=0; i < Img->Rows; ++i)
 fread(Img->Data + i*Img->Cols, Img->Cols, 1, ifile);

 fclose(ifile);

} // end Img_in

void Img_out(struct Image *Out) {
 FILE *ofile;
 int i;

 // Open (or create) binary file for writing
 ofile = fopen("thresholdOutput.raw", "wb");
 // Output the image by rows
 for(i=0; i < Out->Rows; ++i)
 fwrite(Out->Data + i*Out->Cols, Out->Cols, 1, ofile);

 fclose(ofile);
} // end Img_out

float area(struct Image *In, int x1, int y1,
 int x2, int y2, unsigned char ObjVal) {
 // returns calculated area of a RAW image
 long i, j;
 float areaValue = 0.0; // although this is an int, will use for float division

 for(i=x1; i <= x2; ++i)
 for(j=y1; j <= y2; ++j) {
 if(pix(In, i, j)==ObjVal)
 areaValue = areaValue + 1.0;
 }
 return(areaValue);

} // end function area

Figure 2D: Full listing of areaCentroid1_0.c

Image Processing

© Copyright Paul Oh

struct coord centroid(struct Image *In, int x1,
 int y1, int x2, int y2,
 unsigned char ObjVal) {
 // returns calculated centroid (as struct) of RAW image
 long i, j;
 float calculatedArea;
 int xSum, ySum;
 struct coord calculatedCentroid;

 calculatedArea = area(In, x1, y1, x2, y2, ObjVal);

 if(calculatedArea == 0) {
 calculatedCentroid.x = -1; calculatedCentroid.y = -1;
 return(calculatedCentroid);
 };

 xSum = ySum = 0;

 for(i=x1; i<=x2; ++i)
 for(j=y1; j<=y2; ++j) {
 if(pix(In, i, j) == ObjVal) {
 xSum += j;
 ySum += i;
 }
 }

 calculatedCentroid.x = xSum/calculatedArea;
 calculatedCentroid.y = ySum/calculatedArea;

 return(calculatedCentroid);
} // end function centroid

int main() {

 struct Image In; // Declare input and output images
 struct coord centroidCoordinates;

 int areaImage;

 // Assumes RAW image is 16-by-16 bytes and allocate memory
 In.Rows = 16;
 In.Cols = 16;
 In.Data = (unsigned char *)calloc(In.Rows, In.Cols);

 Img_in(&In);
 areaImage = area(&In, 0, 0, (In.Rows-1), (In.Cols-1), BLACK);
 printf("Area of 16x16 image is: %d\n", areaImage);

 centroidCoordinates = centroid(&In, 0, 0, (In.Rows-1), (In.Cols-1), BLACK);
 printf("Centroid is (x,y) = (%3.3f, %3.3f)\n", centroidCoordinates.x,
centroidCoordinates.y);

} // end of main

Figure 2D continued: Full listing of areaCentroid1_0.c

Image Processing

Concept

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture

Exercises

2.1

2.2

2.3

Image Processing

Concept 3: Drawing white box

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture

Exercises

Modify areaCentroid1_0.c
the values of the area and centroid?

Use Pixelformer to create a 16x16 image of a white ball on black background and use
IrfanView to create an equivalent RAW image.
a C program to report the area and centroid. Compare with your hand

Modify areaCentroid1_0.c
the values of the area and centroid?

16x16

Figure 3A:

Drawing white box

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture

areaCentroid1_0.c
the values of the area and centroid?

Use Pixelformer to create a 16x16 image of a white ball on black background and use
IrfanView to create an equivalent RAW image.
a C program to report the area and centroid. Compare with your hand

areaCentroid1_0.c
the values of the area and centroid?

16x16-x-Raw.raw

 From lecture, the rectangle’s width and height and center yield equations

Drawing white box - whiteBox1_0.c

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture

areaCentroid1_0.c to read a 16x16 RAW image
the values of the area and centroid?

Use Pixelformer to create a 16x16 image of a white ball on black background and use
IrfanView to create an equivalent RAW image.
a C program to report the area and centroid. Compare with your hand

areaCentroid1_0.c to read a 10x10 RAW image
the values of the area and centroid?

Raw.raw (left) and

From lecture, the rectangle’s width and height and center yield equations

whiteBox1_0.c

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture

to read a 16x16 RAW image

Use Pixelformer to create a 16x16 image of a white ball on black background and use
IrfanView to create an equivalent RAW image. Hand
a C program to report the area and centroid. Compare with your hand

to read a 10x10 RAW image

(left) and 10x10

From lecture, the rectangle’s width and height and center yield equations

whiteBox1_0.c

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture

to read a 16x16 RAW image 16x16

Use Pixelformer to create a 16x16 image of a white ball on black background and use
and-calculate the area and centroid.

a C program to report the area and centroid. Compare with your hand

to read a 10x10 RAW image 10x10

10x10-ballRaw.raw

From lecture, the rectangle’s width and height and center yield equations

© Copyright Paul Oh

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture

16x16-x-Raw.raw

Use Pixelformer to create a 16x16 image of a white ball on black background and use
calculate the area and centroid.

a C program to report the area and centroid. Compare with your hand-calculations.

10x10-ballRaw.raw

ballRaw.raw (right)

From lecture, the rectangle’s width and height and center yield equations

© Copyright Paul Oh

A white pixel has a value of 255. This concept creates an output image that draws a white
rectangle, at a desired location of the input image. Calculations were given in lecture Figure 3A

Raw.raw. What are

Use Pixelformer to create a 16x16 image of a white ball on black background and use
calculate the area and centroid. Write

calculations.

ballRaw.raw. What are

(right)

From lecture, the rectangle’s width and height and center yield equations

© Copyright Paul Oh

A white pixel has a value of 255. This concept creates an output image that draws a white
Figure 3A.

What are

Use Pixelformer to create a 16x16 image of a white ball on black background and use
Write

. What are

Image Processing

© Copyright Paul Oh

Step 1: Write a function Img_DrawBox that takes an input and output image

The function begins by assigning values for the desired rectangle. The resulting corners are then
calculated. The nested for-loop contains if-statements. These check for pixel location of
the rectangle’s corners. When the row and column counters (i and j respectively) match the

void Img_DrawBox(struct Image *In, struct Image *Out) {

 long i, j;
 int val;
 unsigned char *tmp;

 // original example: 29, 11, 10, 25
 int boxColWidth = 29; // [pix] hence 14 pixels to the left and right of center
 int boxRowHeight = 11; // [pix] hence 5 pixels upwards and downwards from center
 int boxRowCenter = 10; // [pix]
 int boxColCenter = 25; // [pix]
 int boxTopLeftRowCorner, boxTopLeftColCorner;
 int boxTopRightRowCorner, boxTopRightColCorner;
 int boxBottomLeftRowCorner, boxBottomLeftColCorner;
 int boxBottomRightRowCorner, boxBottomRightColCorner;

 boxTopLeftRowCorner = boxRowCenter - ((boxRowHeight-1)/2); // 10 - (11-1)/2 = 5 NB: minus
one because don't count center pixel
 boxTopLeftColCorner = boxColCenter - ((boxColWidth-1)/2);
 printf("Box Top Left corner is (%d, %d)\n", boxTopLeftRowCorner, boxTopLeftColCorner);

 boxTopRightRowCorner = boxRowCenter - ((boxRowHeight-1)/2);
 boxTopRightColCorner = boxColCenter + ((boxColWidth-1)/2);
 printf("Box Top Right corner is (%d, %d)\n", boxTopRightRowCorner, boxTopRightColCorner);
 boxBottomLeftRowCorner = boxRowCenter + ((boxRowHeight-1)/2);
 boxBottomLeftColCorner = boxColCenter - ((boxColWidth-1)/2);
 printf("Box Bottom Left corner is (%d, %d)\n", boxBottomLeftRowCorner,
boxBottomLeftColCorner);
 boxBottomRightRowCorner = boxRowCenter + ((boxRowHeight-1)/2);
 boxBottomRightColCorner = boxColCenter + ((boxColWidth-1)/2);
 printf("Box Bottom Right corner is (%d, %d)\n", boxBottomRightRowCorner,
boxBottomRightColCorner);

 for(i=0; i<In->Rows; ++i) {
 for(j=0; j<In->Cols; ++j) {
 val = *(In->Data + i*In->Rows + j);
 if((i==boxTopLeftRowCorner || i==boxBottomLeftRowCorner)) {
 // OK, we're on box's top or bottom row
 if((j>=boxTopLeftColCorner && j<=boxTopRightColCorner) ||
(j>=boxBottomLeftColCorner && j<=boxBottomRightColCorner)){
 // Draw top OR bottom line
 val = 255; // make row white between left and right side
 }; // otherwise just keep the original value of val
 }; // end if that checks for box's top or bottom row

 if(j==boxTopLeftColCorner || j==boxTopRightColCorner) {
 // OK, we're on left or right side
 if((i>=boxTopLeftRowCorner && i<=boxBottomLeftRowCorner) ||
(i>=boxTopRightRowCorner && i<=boxBottomRightRowCorner)) {
 // Draw left OR right line
 val = 255; // make column white between top and bottom row
 };
 }; // end if that checks for box's left or right side
 tmp = Out->Data + i*Out->Rows + j;
 *tmp = (unsigned char)val;
 };
 };
} /

Figure 3B: Listing for Img_DrawBox

Image Processing

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right
vertical lines.

Step 2:
Img_in

Step 3:
(cameraManWithWhiteBox.raw

int main() {

 FILE *ofile;
 struct Image In, Out; // Declare input and output images

 // Initialize image parameters a
 In.Rows = Out.Rows = 256;
 In.Cols = Out.Cols = 256;
 In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
 Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);
 ofile = fopen("

 Img_in(&In);
 Img_DrawBox(&In, &Out);
 Img_out(&Out);

} // end of main

Figure 3D:
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

Image Processing

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right
vertical lines.

Step 2: Add your function to
Img_in to create a program called

Step 3: Run your program with input image
cameraManWithWhiteBox.raw

int main() {

FILE *ofile;
struct Image In, Out; // Declare input and output images

// Initialize image parameters a
In.Rows = Out.Rows = 256;
In.Cols = Out.Cols = 256;
In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);
ofile = fopen("

Img_in(&In);
Img_DrawBox(&In, &Out);
Img_out(&Out);

} // end of main

Figure 3D: Output image
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right

your function to main
to create a program called

Run your program with input image
cameraManWithWhiteBox.raw

struct Image In, Out; // Declare input and output images

// Initialize image parameters a
In.Rows = Out.Rows = 256;
In.Cols = Out.Cols = 256;
In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);
ofile = fopen("cameraManWithWhiteBox.raw

Img_DrawBox(&In, &Out);
Img_out(&Out);

} // end of main

Figure 3C: Program

Output image cameraManWithWhiteBox.raw
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right

main (see Figure 3C
to create a program called whiteBox1_0.c

Run your program with input image
cameraManWithWhiteBox.raw (Figure 3D

struct Image In, Out; // Declare input and output images

// Initialize image parameters and allocate memory

In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);

cameraManWithWhiteBox.raw

Figure 3C: Program whiteBox1_0.c main

cameraManWithWhiteBox.raw
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right

Figure 3C) which also contains functions
whiteBox1_0.c.

Run your program with input image (cameraMan.raw)
Figure 3D left).

struct Image In, Out; // Declare input and output images

nd allocate memory

In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);

cameraManWithWhiteBox.raw", "wb");

whiteBox1_0.c main

cameraManWithWhiteBox.raw
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right

) which also contains functions

cameraMan.raw)

struct Image In, Out; // Declare input and output images

nd allocate memory

In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);

whiteBox1_0.c main function

cameraManWithWhiteBox.raw with rectangle centered at (10,
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

© Copyright Paul Oh

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right

) which also contains functions

 to generate output image

function

ectangle centered at (10,
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

© Copyright Paul Oh

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right

) which also contains functions Img_out and

to generate output image

ectangle centered at (10,
25), 29 pixels wide and 11 pixels tall (left). Rectangle centered in the image (right).

© Copyright Paul Oh

corner, then white pixels are assigned for the top and bottoms horizontal lines and left and right

and

to generate output image

Image Processing

© Copyright Paul Oh

Exercises

3.1 Create an output image with a white rectangle centered in the image (like shown in Figure

3D right), defined by your desired rectangle height and width.

3.2 Create an output image with a white box (rectangle height and width are the same),
centered in the image.

3.3 Modify your program in 3.2 to also have diagonal lines spanning from the top-left corner to

the bottom-right corner, and from the top-right corner to the bottom-left corner.

Congratulations! You can read input images, perform calculations, and draw
output images – the basics of Image Processing and Computer Vision!

