Image Processing

Hands-on Lab

Image Processing

A digital image is a collection of pixel data. A pixel has a location and value. The location is the row and column in the image whereas the value represents the color at that location. This lab introduces the reading, processing, and writing of digital image using ANSI C (GCC) and RAW image file standard. By using ANSI C, the underlying algorithms should be platform independent. RAW images are standard uncompressed binary files. The net effect is a brief but focused introduction to image processing which is the pre-cursor to robotic computer vision.

Preliminary: Code Blocks, IrfanView, and Pixel Former

Before doing this lab, tutorials on Code Blocks, IrfanView and Pixelformer should be completed: These software allows one to: write C programs for image processing (Code Blocks); create bitmap images (Pixelformer); and create RAW files and view results (IrfanView).

Blah: Lecture notes on row-column vector

Concept 1: Thresholding images (Read and Write RAW files) threshold1_0a.c

Thresholding reads an image and writes a black-and-white output image. This is important because working with a binary image (i.e. a pixel is either black or white) often simplifies image understanding (e.g. detecting edges, calculating area and centroids, and object counting). Thresholding is thus a “Hello World” example for image processing. Figure 1A lists main for threshold1_0a.c threshold a 256-by-256 grayscale image.

Unlike JPEG, PNG and other image files, RAW files are uncompressed and have no headers. One simply reads the binary file one byte at a time using a loop.

int main() {

 FILE *ofile;
 struct Image In, Out; // Declare input and output images

 // Assumes RAW image is 256-by-256 bytes
 In.Rows = Out.Rows = 256;
 In.Cols = Out.Cols = 256;
 // Allocate memory for images
 In.Data = (unsigned char *)calloc(In.Rows, In.Cols);
 Out.Data = (unsigned char *)calloc(Out.Rows, Out.Cols);

 Img_in(&In);
 Img_threshold(&In, &Out);
 Img_out(&Out);

} // end of main

Figure 1A: main for threshold1_0a.c

[bookmark: _GoBack]In main, the yellow-highlight shows that data being allocated. It’s assumed that the RAW image will have 256 rows and 256 columns of 1-byte pixels. Next, main calls 3 functions to respectively read an input image, process it, and write the output image.

// FILE: xl320-twoLinkFunctions1_0a.h
// DATE: 01/21/20 12:09
// AUTH: P.Oh
// DESC: XL-320 based 2-DOF planar manipulator related functions
// VERS: 1.0a: rotateMotorAbsolutely(); goHome(); twoLinkInverseKinematics()
// REFS: H-files xl320-defines1_0a.h and xl320-functions1_0d.h
// NOTE: This example uses an XL-320 configured with ID# 3 and ID# 7

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X03 // Assumes Motor 1 configured with ID = 3
#define ID_MOTOR02 0X07 // Assumes Motor 2 configured with ID = 7
#define mmPerStud 8 // 8 millimeters per LEGO stud

struct theta { // angles in [rad]
float theta1, theta2;
};
struct thetaInDegrees { // angles in [deg]
 float theta1InDegrees, theta2InDegrees;
};

typedef theta THETA;
typedef thetaInDegrees THETA_IN_DEGREES;

void rotateMotorAbsolutely(float angle01, float angle02) { //------------------
 // Rotates the two Dynamixel XL-320 motors to their desired angles
 // Assumes motor count of 512 denotes 0 degrees and right-hand rule for
 // rotational direction

 float desiredAngle01InDegrees; // Angle Motor 1 to move to [deg]
 float desiredAngle02InDegrees; // Angle Motor 2 to move to [deg]
 float degreesPerCount; // Conversion 0.29 [degrees/count]
 float calculatedCount; // Count equivalent of desired angle [count]
 int motor01Offset; // Motor 1's offset [count]
 float theta01InDegrees; // Motor 1 angle [counts]
 int theta01InCounts; // Motor 1 angle [deg]
 int motor02Offset; // Motor 2's offset [count]
 float theta02InDegrees; // Motor 2 angle [counts]
 int theta02InCounts; // Motor 2 angle [deg]
 string msg01, msg02; // dummy strings to print values to screen

 motor01Offset = 512; // Dynamixel Wizard fixes Link 1 at zero deg (i.e. 512 counts)
 motor02Offset = 512; // Dynamixel Wizard fixes Link 2 at zero deg (i.e. 512 counts)

 // Note 1: Looking into horn from Top, count > 512 is CCW (i.e. +Z axis)
 // and count < 512 is CW (i.e. -Z axis)
 degreesPerCount = 0.29; // [deg/count] found from XL-320 data sheet

 // ClearScreen();
 desiredAngle01InDegrees = angle01;
 theta01InCounts = motor01Offset + desiredAngle01InDegrees/degreesPerCount;
 desiredAngle02InDegrees = angle02;
 theta02InCounts = motor02Offset + desiredAngle02InDegrees/degreesPerCount;

 TextOut(0, LCD_LINE4, "Going to");
 sprintf(msg01, "(%2.1f," ,desiredAngle01InDegrees);
 sprintf(msg02, "%2.1f) deg" , desiredAngle02InDegrees);
 TextOut(0, LCD_LINE5, strcat(msg01, msg02));

 XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
 // Wait(1500); // Uncomment and change value e.g. 1500 ms if troubleshooting
 XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
 Wait(1000); // Uncomment to see impact on communications
 PlayTone(TONE_B3,50);

}; // end rotateMotorAbsolutely function ---------------------------------

Figure 1A: Listing of xl320-twoLinkFunctions1_0a.h

void goHome() { //--
 // Assumes motor count of 512 denotes 0 degrees.
 // Assumes Home position has Joints 1 and 2 at 0 degrees

 rotateMotorAbsolutely(0.0, 0.0);

}; // end goHome function ---

THETA_IN_DEGREES twoLinkInverseKinematics(float s1, float s2, float u, float v) { // ---

 // Returns struct that contains the joint angles in [deg]
 // based on inputs: link lengths (s1, s2) and task space position (u, v)
 //

 float C, k1, k2, num, den; // IK related variables for calculations
 THETA_IN_DEGREES phiInDegrees; // structure defined at start of this program
 THETA phi; // structure defined at start of this program

 C = (pow(u,2)+pow(v,2) - pow(s1,2)-pow(s2,2)) / (2*s1*s2);
 // Choose +'ve root or comment out
 num = sqrt(1-pow(C,2));
 // num = -sqrt(1-pow(C,2));
 phi.theta2 = atan2(num, C); // [rad]
 phiInDegrees.theta2InDegrees = phi.theta2 * 180/PI; // [deg]
 k1 = s1 + s2*cos(phi.theta2);
 k2 = s2*sin(phi.theta2);
 phi.theta1 = atan2(v, u) - atan2(k2, k1); // [rad]
 phiInDegrees.theta1InDegrees = (phi.theta1 * 180/PI); // [deg]

 return phiInDegrees;

}; // end twoLinkInverseKinematics function

Figure 1A continued: Listing for xl320-twoLinkFunctions1_0a.h

To make code more readable, xl320-ik-1_0.nxc can be stripped out to create functions. Cut and-paste code to form the file xl320-twoLinkFunctions1_0a.h as shown in Figure 1A.

The H-file begins defining structures (yellow-highlight) theta and thetaInDegrees to contain the joint angles. Commanding the XL-320 to absolute angles (based on the 512 offset value) is often needed. Hence the function rotateMotorAbsolutely was moved to this H-file. Additionally, moving the home position (where joints angles are both at zero degrees) the function goHome was added.

Lastly, the inverse kinematics equations were cut-and-pasted into this H-file. These equations calculate the joint angles. In the C programming language, functions can only return one variable. One approach is to use a structure variable. Thus the function twoLinkInverseKinematics was created.

The program xl320-line1_0.nxc shown in Figure 1B contains main and calls these functions. To demonstrate this program, 7 way points will be used as shown in Figure 1C (left). (1) and (2) should calculate the locations of these way points as given in Figure 1C (right)
[image:]

Figure 1C: 7 way points to characterize the line between start (6,8) studs and (6,-8) studs
[image:]

// FILE: xl320-line1_0.nxc
// DATE: 01/22/20 17:12
// AUTH: P.Oh
// DESC: XL-320 based 2-DOF planar manipulator. Trajectory planned based on
// a parametric line. User prescribes the desired number of equally
// spaced points given start and end points of that line
// VERS: 1.0a: xl320-twoLinkFunctions1_0a.h contains functions
// rotateMotorAbsolutely(); goHome(); twoLinkInverseKinematics()
// REFS: H-files xl320-defines1_0a.h and xl320-functions1_0d.h
// NOTE: If factory default XL-320 used, then ID is 0x01
// ID of 0xFE commands any and all XL-320 motors
// This example uses an XL-320 configured with ID# 3

#include "xl320-defines1_0a.h"
#include "xl320-functions1_0d.h"
#include "xl320-twoLinkFunctions1_0a.h"

// Global variables
bool orangeButtonPushed; // Detect Brick Center button state
bool rightArrowButtonPushed; // Detect Brick right arrow button state

task main() {

 // planar manipulator variables
 float l1, l2; // length of link 1 and link 2 [mm]

 float xDesired[], yDesired[]; // desired line's (x,y) way points
 int numberOfWayPoints; // # of points between start and end points
 int numberOfSpaces; // # of equally spaced segments
 int maxVectorSize; // # array elements = numberOfWayPoints + 2
 float xP, yP; // EE absolute position wrt x0y0 frame [mm]
 int i, j; // dummy index variables
 string str01, str02; // dummy string variables to display text
 float t; // variable for parametric equation of line

 THETA_IN_DEGREES anglesInDegrees; // struct defined in
 THETA angles; // xl320-twoLinkFunctions1_0a.h

 // Initializations
 l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long
 l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

 // Define and initialize arrays that will hold waypoints
 numberOfWayPoints = 7; // start stud + (7 studs) + end stud
 numberOfSpaces = numberOfWayPoints + 1; // i.e. hence 8 equally spaced segments
 maxVectorSize = numberOfWayPoints + 2; // include both start and end points
 ArrayInit(xDesired, 0, maxVectorSize); // initialize waypoint x vector to 0
 ArrayInit(yDesired, 0, maxVectorSize); // initialize waypoint x vector to 0
 // Initialize start and end points of line
 xDesired[0] = 6*mmPerStud; // [mm] starting point
 yDesired[0] = 8*mmPerStud; // [mm] starting point
 xDesired[numberOfWayPoints+1] = 6*mmPerStud; // [mm] ending point
 yDesired[numberOfWayPoints+1] = -8*mmPerStud; // [mm] ending point

 // Parametric equation of line to calculate equally spaced points
 i = 1;
 while (i <= (numberOfWayPoints)) {
 t = i/(numberOfWayPoints+1);
 xDesired[i] = 6*mmPerStud; // [mm]
 yDesired[i] = (yDesired[0]*(1.0-t)) + (t*yDesired[numberOfWayPoints+1]);
 i++;
 } // end of while
 sprintf(str01, "t=%3.3f " , 1.0/(numberOfWayPoints+1));
 sprintf(str02, " N=%d" , numberOfWayPoints);
 TextOut(0, LCD_LINE1, strcat(str01, str02));
 TextOut(0, LCD_LINE2, FormatNum("yD[0] = %3.2f mm" , yDesired[0]));
 sprintf(str01, "yD[%d]" , numberOfWayPoints + 1);
 sprintf(str02, "%3.2f mm" , yDesired[numberOfWayPoints + 1]);
 TextOut(0, LCD_LINE3, strcat(str01, str02));
 TextOut(0, LCD_LINE5, "Cont'd ORG");

Figure 1B: Listing for xl320-line1_0.nxc

 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 UseRS485();
 RS485Enable();
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //57600 baud, 8bit, 1stop, no parity

 // Prompt user to begin
 ClearScreen();
 TextOut(0, LCD_LINE1, "Start: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);
 ClearScreen();

 // (1) go to home position
 TextOut(0, LCD_LINE1, "Homing...");
 Wait(2000);
 goHome();
 Wait(2000);
 TextOut(0, LCD_LINE7, "Homed");
 PlayTone(TONE_E4, 500);
 TextOut(0, LCD_LINE8, "Cont'd ORG");
 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 // (2) move to start of line
 ClearScreen();
 TextOut(0, LCD_LINE1, "Going (xP0,yP0):");
 Wait(2000);
 xP = xDesired[0];
 yP = yDesired[0];
 sprintf(str01, "(%3.2f," , xP/mmPerStud);
 sprintf(str02, "%3.2f) stud" , yP/mmPerStud);
 TextOut(0, LCD_LINE2, strcat(str01, str02));
 anglesInDegrees = twoLinkInverseKinematics(l1, l2, xP, yP);
 rotateMotorAbsolutely(anglesInDegrees.theta1InDegrees, anglesInDegrees.theta2InDegrees);
 TextOut(0, LCD_LINE7, "Now @ line start");
 TextOut(0, LCD_LINE8, "Start: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);

 // (3) Iterate thru waypoints, calculate IK, and command motor angles
 for(i=1; i <= numberOfWayPoints+1; i++) {
 xP = xDesired[i];
 yP = yDesired[i];
 anglesInDegrees = twoLinkInverseKinematics(l1, l2, xP, yP);
 sprintf(str01, "(%3.2f," , xP/mmPerStud);
 sprintf(str02, "%3.2f) stud" , yP/mmPerStud);
 TextOut(0, LCD_LINE2, strcat(str01, str02));
 // Actuate the XL-320 motors
 rotateMotorAbsolutely(anglesInDegrees.theta1InDegrees, anglesInDegrees.theta2InDegrees);
 }; // end for-loop

 // (4) Lastly, since trajectory done, go home
 Wait(3000);
 TextOut(0, LCD_LINE7, "Line done");
 TextOut(0, LCD_LINE8, "Go Home: Hit ORG");
 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);
 ClearScreen();
 goHome();
 TextOut(0, LCD_LINE4, "Homed. Exiting");
 Wait(3000);
 PlaySound(SOUND_DOUBLE_BEEP);
} // end main

Figure 1B continued: Listing for xl320-line1_0.nxc

Recall that this LEGO-based 2-link planar manipulator employs Beam 9 and Beam 7 parts for links 1 and 2 respectively. However, their mounting points on the XL-320 servos define the lengths of links 1 and 2 to be 7 and 5 studs long (see Figure 1D). This was defined as:

l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

Figure 1D: One can visually count that the lengths of links 1 and 2 are 7 and 5 studs respectively. In LEGO, studs are 8 millimeters apart.
[image:]

Also recall (see Figure 1E), 9 yellow 1-stud bricks were placed on the 32 x 32 LEGO baseplate. The first one (start point) was mounted on baseplate stud location (6, 8). The ninth one (end point) was affixed at stud location (6, -8). One observes that to be equally spaced apart, the remaining 7 bricks should be mounted 2 studs apart.
[image:]

Figure 1E: There are 9 yellow 1-studs: 1 start point + 1 end point + 7 way points

Referencing the yellow-highlighted lines, this program begins with setting the desired the number of waypoints (e.g. numberOfWayPoints = 7) and then using ArrayInit to properly size the vectors that will hold these way point values and initialize them to zero.

The desired line trajectory will be parallel to the Y-axis. Thus the way point vector for values will remain constant. Equations (1) and (2) is thus implemented on the values and stored in the vector yDesired[i].

After the way point vectors have been calculated, The Brick’s Port 4 is set for 57,600 baud 8N1. The first step is to home the manipulator by calling the goHome()function. The second step is to move the end-effector to the line’s starting position. The values of this position are stored in xDesired[0] and yDesired[0]. These values are passed to the function twoLinkInverseKinematics which returns the corresponding joint angles in the structure anglesInDegrees. These angles are then fed into rotateMotorAbsolutely to command the two XL-320 to those angles. This process is of calling twoLinkInverseKinematics and rotateMotorAbsolutely is used for the third step – which iterates thru the remaining way points, including the end of the line. The fourth and final step is to home the manipulator once the line trajectory is completed.

Compiling requires that the H-files are in the same directory as xl320-line1_0.nxc. These H-Files are: xl320-twoLinkFunctions1_0a.h, xl320-defines1_0a.h and xl320-functions1_0d.h. Execute the file and observe how the end-effector moves along the line.

Congratulations! You parameterized a line with equally spaced way points to move the manipulator’s end-effector in a line.

Exercises

1.1 In xl320-line1_0.nxc change the value of numberOfWayPoints using the table below. Compile, execute and fill your observations

numberOfWayPoints
 when

[stud] value
What path does the end-effector make? How well does it “stay” on the desired line?
1
0.5
0

2

3

5

15

31

1.2 to use the negative square roots of (1). Calculate by hand, what the resulting xCalibrate and yCalibrate points should be, Affix green-colored 1-stud bricks at these points. Confirm your program indeed commands the 2-link planar manipulator’s end-effector to hover over those points.

1.1 Unscrew and reverse the beams such that Link 1 is a Beam 7 and Link 2 is a Beam 9 and appropriately change in xl320-ik-1_0.nxc. Affix green-colored 1-stud bricks at these points. Confirm your program indeed commands the 2-link planar manipulator’s end-effector to hover over those points.

Concept 2: Velocities versus Positions – Reducing Delays

One key observation from Exercise 1.1 is that the end-effector’s motion is not smooth. Rather it’s a go-stop-go motion. The core reason stems from position, rather than velocity, commands. The program xl320-line1_0.nxc forces the end-effector to visit each way point. This leads to the discrete, instead of a continuous, motion profile. Close examination of the rotateMotorAbsolutely function in xl320-twoLinkFunctions1_0a.h shows:
XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
// Wait(1500); // Uncomment and change value e.g. 1500 ms if troubleshooting
XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
Wait(1000); // Uncomment to see impact on communications
PlayTone(TONE_B3,50);

The Wait(1000)statement creates a 1 second delay. At 57,600 baud, bits are transmitted to through to a XL-320 servo at 17.36 microseconds (or 0.139 milliseconds per byte). There function doesn’t perform error checking or confirms successful transmission of the byte packet. Thus the Wait statement gives some time margin for the XL-320 servos to receive, process, and execute the commanded motion. This time margin can be changed to reduce the go-stop-go phenomena.

Exercises

2.1 Set numberOfWayPoints in xl320-line1_0.nxc and the Wait statement in xl320-twoLinkFunctions1_0a.h using the table below.. Compile, execute, and fill your observations

numberOfWayPoints
Wait
What path does the end-effector make? How well does it “stay” on the desired line?
15
50

7
50

5
50

1
50

15
200

7
200

5
200

1
200

1.3 to use the negative square roots of (1). Calculate by hand, what the resulting xCalibrate and yCalibrate points should be, Affix green-colored 1-stud bricks at these points. Confirm your program indeed commands the 2-link planar manipulator’s end-effector to hover over those points.

1.2 Unscrew and reverse the beams such that Link 1 is a Beam 7 and Link 2 is a Beam 9 and appropriately change in xl320-ik-1_0.nxc. Affix green-colored 1-stud bricks at these points. Confirm your program indeed commands the 2-link planar manipulator’s end-effector to hover over those points.

Concept 3: Velocities versus Positions – On-the-Fly Velocity Commands

Many smart servos have the ability to change velocities “on-the-fly”. This means that the servo’s velocity changes, regardless if it reached the commanded position or not, as soon as it receives a command. One may have observed that in Exercise 2.1. For example, if the Wait time is short (e.g. 50 milliseconds) and the number of way points was small (e.g. 5), the end-effector did not visit all the way points. Rather, the 2-link manipulator traced a curvilinear path. This is because the servos processed the motion command quickly and before it could reach that way point, received the command to the next way point.

Again, close examination of the rotateMotorAbsolutely function in xl320-twoLinkFunctions1_0a.h shows:

XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
// Wait(1500); // Uncomment and change value e.g. 1500 ms if troubleshooting
XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
Wait(1000); // Uncomment to see impact on communications
PlayTone(TONE_B3,50);

The yellow highlight commands each XL-320 at 200 counts/minute. The XL-320 e-manual says that 0.111 RPM per counts/minute. Hence 200 counts/minute is 22.2 RPM. So, in addition to adjusting the Wait statement, one can assign different velocity values in XL320_servo.

Exercises

3.1 Set numberOfWayPoints to 7 in xl320-line1_0.nxc and the Wait statement and velocities in xl320-twoLinkFunctions1_0a.h using the table below.. Compile, execute, and fill your observations

numberOfWayPoints
Wait
Velocity
[counts/min]
What path does the end-effector make? How well does it “stay” on the desired line?
15
50
200

15
50
400

15
100
200

15
100
400

5
50
200

5
50
400

5
100
200

5
100
400

1.4 to use the negative square roots of (1). Calculate by hand, what the resulting xCalibrate and yCalibrate points should be, Affix green-colored 1-stud bricks at these points. Confirm your program indeed commands the 2-link planar manipulator’s end-effector to hover over those points.

1.3 Unscrew and reverse the beams such that Link 1 is a Beam 7 and Link 2 is a Beam 9 and appropriately change in xl320-ik-1_0.nxc. Affix green-colored 1-stud bricks at these points. Confirm your program indeed commands the 2-link planar manipulator’s end-effector to hover over those points.

Summary Conclusions:

1. Using way points to characterize points on a line is a simply and intuitive way to move an end-effector on a path
2. While intuitive, the way point approach is naïve; it’s a position-control approach which yields a go-stop-go motion
3. Velocity-controlled approaches leverage a motor’s “on-the-fly” motion profile. This can yield a smooth motion rather than a go-stop-go one.

There are many methods to implement the last point. The most popular ones define motor velocities based on a polynomial. Examples include cubic and quintic polynomials and B-splines. These methods still use way points, but adjust the velocities as the end-effector passes over them.

© Copyright Paul Oh
image30.png
i t 1
0 0 B
1 0.125 6
2 025 a
3 0375 2
2 05 0
5 0625 2
6 075)
7 0875 6
B 1 8

image2.png
+x

Yo ® L 4 ® ®
p=(68) 6 4

N
o

q =(6,—8)

image40.png
+x

Yo ® L 4 ® ®
p=(68) 6 4

N
o

q =(6,—8)

image3.png
Lok mourtng ocaton
iz mouning caton

El; -

- y.
3 SRR Link 2 = 5 studs

= ; ES Velow Beam 7

N E Link 1= 7 studs a
. (] Gray Beam]

e

image50.png
Lok mourtng ocaton
iz mouning caton

El; -

- y.
3 SRR Link 2 = 5 studs

= ; ES Velow Beam 7

N E Link 1= 7 studs a
. (] Gray Beam]

e

image4.png

image60.png

image1.png
i t 1
0 0 B
1 0.125 6
2 025 a
3 0375 2
2 05 0
5 0625 2
6 075)
7 0875 6
B 1 8

