
XL-320 NXC Programming: Read Position

Encoders in the XL
that were previously written

Preliminary:

Recall that
that microprocessors often employ TTL (transistor
and 5V to represent HI and LO states respectively. As such, companies
(e.g. MAX485) to convert RS
high that 3

The XL
means that communication is half
(like the MAX485) provides dedicated lines; one for reading and the other for writing. This would
enable full
XL-320 and MAX485 respectively.

Figure A right
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the
MAX485’s inputs. This transistor
reading and writing.

Concept 1 Command XL

Step 1:

Section 2.2
Present
from 0 to 1023 Decimal. Viewing
(Figure 1A

Figure A:
implements a transistor

320 NXC Programming: Read Position

Encoders in the XL
that were previously written

Preliminary: Dealing with Half

Recall that RS-485 employs voltage differences to represent binary HI and LO states. Also recall
that microprocessors often employ TTL (transistor
and 5V to represent HI and LO states respectively. As such, companies
(e.g. MAX485) to convert RS
high that 3rd party companies offer

he XL-320 is that it is
means that communication is half
like the MAX485) provides dedicated lines; one for reading and the other for writing. This would

enable full-duplex. Thus, one must reconcile this half
320 and MAX485 respectively.

Figure A right performs th
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the
MAX485’s inputs. This transistor
reading and writing.

Concept 1 Command XL

Step 1: Open previous

Section 2.2 (Control Table) of the Robotis XL
Present Position
from 0 to 1023 Decimal. Viewing
Figure 1A) verifies

Figure A: The mezzanine board wire
implements a transistor

320 NXC Programming: Read Position

XL-320 NXC Programming

Encoders in the XL-320 allow one to read angular position. This lab builds on the header files
that were previously written to read the

Dealing with Half

485 employs voltage differences to represent binary HI and LO states. Also recall
that microprocessors often employ TTL (transistor
and 5V to represent HI and LO states respectively. As such, companies
(e.g. MAX485) to convert RS-485 to TTL voltage levels. The demand for such converters is so

party companies offer

320 is that it is a 3-wire device (GND, VCC, and DATA). Having only one line for DATA
means that communication is half
like the MAX485) provides dedicated lines; one for reading and the other for writing. This would

duplex. Thus, one must reconcile this half
320 and MAX485 respectively.

performs this reconciliation. The XL
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the
MAX485’s inputs. This transistor
reading and writing.

Concept 1 Command XL-

Open previous xl320-

(Control Table) of the Robotis XL
Position has the address 3

from 0 to 1023 Decimal. Viewing
verifies this (yellow highlight).

The mezzanine board wire
implements a transistor-based UART (right) to implement half

320 NXC Programming: Read Position

Hands

NXC Programming

320 allow one to read angular position. This lab builds on the header files
read the XL-320

Dealing with Half-Duplex

485 employs voltage differences to represent binary HI and LO states. Also recall
that microprocessors often employ TTL (transistor
and 5V to represent HI and LO states respectively. As such, companies

485 to TTL voltage levels. The demand for such converters is so
party companies offer MAX485 modules

wire device (GND, VCC, and DATA). Having only one line for DATA
means that communication is half-duplex; one reads or writes on the DATA line. A 4
like the MAX485) provides dedicated lines; one for reading and the other for writing. This would

duplex. Thus, one must reconcile this half
320 and MAX485 respectively.

is reconciliation. The XL
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the
MAX485’s inputs. This transistor-based circuit monitors the DATA line state to switch be

-320 to Read Position

-defines1_0

(Control Table) of the Robotis XL
has the address 37 Decimal (or 0x

from 0 to 1023 Decimal. Viewing the RAM constants defined in
this (yellow highlight).

The mezzanine board wire-wraps the widely available MAX485 module (left) and
based UART (right) to implement half

Hands-on Lab

NXC Programming –

320 allow one to read angular position. This lab builds on the header files
320’s angles.

485 employs voltage differences to represent binary HI and LO states. Also recall
that microprocessors often employ TTL (transistor-to-transistor logic) voltage levels, typically 0V
and 5V to represent HI and LO states respectively. As such, companies

485 to TTL voltage levels. The demand for such converters is so
MAX485 modules (about $2 USD as seen in

wire device (GND, VCC, and DATA). Having only one line for DATA
duplex; one reads or writes on the DATA line. A 4

like the MAX485) provides dedicated lines; one for reading and the other for writing. This would
duplex. Thus, one must reconcile this half- versus full

is reconciliation. The XL-320’s DATA line attaches to the TX/RX input
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the

based circuit monitors the DATA line state to switch be

Read Position

1_0a.h file

(Control Table) of the Robotis XL-320 E-Manual
Decimal (or 0x

the RAM constants defined in

wraps the widely available MAX485 module (left) and
based UART (right) to implement half

on Lab

– Read Position

320 allow one to read angular position. This lab builds on the header files

485 employs voltage differences to represent binary HI and LO states. Also recall
transistor logic) voltage levels, typically 0V

and 5V to represent HI and LO states respectively. As such, companies
485 to TTL voltage levels. The demand for such converters is so

(about $2 USD as seen in

wire device (GND, VCC, and DATA). Having only one line for DATA
duplex; one reads or writes on the DATA line. A 4

like the MAX485) provides dedicated lines; one for reading and the other for writing. This would
versus full-duplex difference between the

320’s DATA line attaches to the TX/RX input
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the

based circuit monitors the DATA line state to switch be

Read Position xl320-helloServoRead0_1b.nxc

Manual (shown again below as
Decimal (or 0x25), sized at 2

the RAM constants defined in

wraps the widely available MAX485 module (left) and
based UART (right) to implement half-duplex communications.

© Copyright Paul Oh

Read Position

320 allow one to read angular position. This lab builds on the header files

485 employs voltage differences to represent binary HI and LO states. Also recall
transistor logic) voltage levels, typically 0V

and 5V to represent HI and LO states respectively. As such, companies like Maxim offer a chip
485 to TTL voltage levels. The demand for such converters is so

(about $2 USD as seen in Figure A left

wire device (GND, VCC, and DATA). Having only one line for DATA
duplex; one reads or writes on the DATA line. A 4

like the MAX485) provides dedicated lines; one for reading and the other for writing. This would
duplex difference between the

320’s DATA line attaches to the TX/RX input
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the

based circuit monitors the DATA line state to switch be

helloServoRead0_1b.nxc

(shown again below as
), sized at 2-bytes, and has values

the RAM constants defined in xl320-defines1_0a.h

wraps the widely available MAX485 module (left) and
duplex communications.

© Copyright Paul Oh

320 allow one to read angular position. This lab builds on the header files

485 employs voltage differences to represent binary HI and LO states. Also recall
transistor logic) voltage levels, typically 0V

like Maxim offer a chip
485 to TTL voltage levels. The demand for such converters is so

Figure A left).

wire device (GND, VCC, and DATA). Having only one line for DATA
duplex; one reads or writes on the DATA line. A 4-wire device

like the MAX485) provides dedicated lines; one for reading and the other for writing. This would
duplex difference between the

320’s DATA line attaches to the TX/RX input
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the

based circuit monitors the DATA line state to switch between

helloServoRead0_1b.nxc

(shown again below as Figure 1B
bytes, and has values

defines1_0a.h

wraps the widely available MAX485 module (left) and
duplex communications.

© Copyright Paul Oh

320 allow one to read angular position. This lab builds on the header files

485 employs voltage differences to represent binary HI and LO states. Also recall
transistor logic) voltage levels, typically 0V

like Maxim offer a chip
485 to TTL voltage levels. The demand for such converters is so

wire device (GND, VCC, and DATA). Having only one line for DATA
wire device

like the MAX485) provides dedicated lines; one for reading and the other for writing. This would
duplex difference between the

320’s DATA line attaches to the TX/RX input
of the diode. The transmit (i.e. writing) TX and receive (i.e. reading) RX lines attach to the

tween

B).
bytes, and has values

defines1_0a.h

XL-320 NXC Programming: Read Position

// RAM Address related Defines
// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED
#define RAM_D_GAIN
#define RAM_I_GAIN
#define RAM_P_GAIN
#defi

#define RAM_MOVING_SPEED
#define RAM_TORQUE_LIMIT
#define RAM_PRESENT_POSITION

#define RAM_PRESENT_SPEED

#define RAM_PRESENT_LOAD

#define
#define RAM_PRESENT_TEMPERATURE

#define RAM_REGISTERED

#define RAM_MOVING

#define RAM_HARDWARE_ERROR_STATUS
#define RAM_PUNCH

320 NXC Programming: Read Position

// RAM Address related Defines
// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED
#define RAM_D_GAIN
#define RAM_I_GAIN
#define RAM_P_GAIN
#define RAM_GOAL_POSITION

#define RAM_MOVING_SPEED
#define RAM_TORQUE_LIMIT
#define RAM_PRESENT_POSITION

#define RAM_PRESENT_SPEED

#define RAM_PRESENT_LOAD

#define RAM_PRESENT_VOLTAGE
#define RAM_PRESENT_TEMPERATURE

#define RAM_REGISTERED

#define RAM_MOVING

#define RAM_HARDWARE_ERROR_STATUS
#define RAM_PUNCH

Figure 1B:

320 NXC Programming: Read Position

// RAM Address related Defines
// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED
#define RAM_D_GAIN
#define RAM_I_GAIN
#define RAM_P_GAIN

ne RAM_GOAL_POSITION

#define RAM_MOVING_SPEED
#define RAM_TORQUE_LIMIT
#define RAM_PRESENT_POSITION

#define RAM_PRESENT_SPEED

#define RAM_PRESENT_LOAD

RAM_PRESENT_VOLTAGE
#define RAM_PRESENT_TEMPERATURE

#define RAM_REGISTERED

#define RAM_MOVING

#define RAM_HARDWARE_ERROR_STATUS
#define RAM_PUNCH

Figure 1A: RAM constants in

 Robotis XL-320 E

320 NXC Programming: Read Position

// RAM Address related Defines
// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
 0x19 // 1 byte; changes motor's LED color
 0x1B // 1 byte; motor's derivative gain
 0x1C // 1 byte; motor's integral gain
 0x1D // 1 byte; motor's proportional gain

 0x1E // 2 bytes; destination position value

 0x20 // 2 bytes; Wheel
 0x23 // 2 bytes; maximum torque limit value

#define RAM_PRESENT_POSITION 0x25 // 2 bytes; motor's present position

 0x27 // 2 bytes; Wheel or Joint mode

 0x29 // 2 bytes; currently applied load

 0x2D // 1 byte; present supply voltage
#define RAM_PRESENT_TEMPERATURE 0x2E // 1 byte; motor's internal temperature

 0x2F // 1 byte; REG_WRITE ins

 0x31 // 1 byte; Goal Position completed

#define RAM_HARDWARE_ERROR_STATUS 0x32 // 1 byte; present hardwa

 0x33 // 2 bytes; minimum current to

RAM constants in

320 E-manual

// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
0x19 // 1 byte; changes motor's LED color
0x1B // 1 byte; motor's derivative gain
0x1C // 1 byte; motor's integral gain
0x1D // 1 byte; motor's proportional gain
0x1E // 2 bytes; destination position value

 // from [0, 1023] with 0 most CW and
 // 1023 most CCW

0x20 // 2 bytes; Wheel
0x23 // 2 bytes; maximum torque limit value
0x25 // 2 bytes; motor's present position

 // value [0-
0x27 // 2 bytes; Wheel or Joint mode

 // dependent [0
0x29 // 2 bytes; currently applied load

 // value is [0
0x2D // 1 byte; present supply voltage
0x2E // 1 byte; motor's internal temperature

 // in Celsius
0x2F // 1 byte; REG_WRITE ins

 // received or not
0x31 // 1 byte; Goal Position completed

 // or in-progress
0x32 // 1 byte; present hardwa
0x33 // 2 bytes; minimum current to

RAM constants in xl320-

manual Section 2.3 shows Present Position (red circle)

// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
0x19 // 1 byte; changes motor's LED color
0x1B // 1 byte; motor's derivative gain
0x1C // 1 byte; motor's integral gain
0x1D // 1 byte; motor's proportional gain
0x1E // 2 bytes; destination position value

// from [0, 1023] with 0 most CW and
// 1023 most CCW

0x20 // 2 bytes; Wheel or Joint dependent
0x23 // 2 bytes; maximum torque limit value
0x25 // 2 bytes; motor's present position

// value [0-1023]
0x27 // 2 bytes; Wheel or Joint mode

// dependent [0-2047]
0x29 // 2 bytes; currently applied load

// value is [0-2047]
0x2D // 1 byte; present supply voltage
0x2E // 1 byte; motor's internal temperature

// in Celsius
0x2F // 1 byte; REG_WRITE ins

// received or not
0x31 // 1 byte; Goal Position completed

progress
0x32 // 1 byte; present hardwa
0x33 // 2 bytes; minimum current to

-defines1_0a.h

 shows Present Position (red circle)

© Copyright Paul Oh

// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
0x19 // 1 byte; changes motor's LED color
0x1B // 1 byte; motor's derivative gain
0x1C // 1 byte; motor's integral gain
0x1D // 1 byte; motor's proportional gain
0x1E // 2 bytes; destination position value

// from [0, 1023] with 0 most CW and

or Joint dependent
0x23 // 2 bytes; maximum torque limit value
0x25 // 2 bytes; motor's present position

0x27 // 2 bytes; Wheel or Joint mode

0x29 // 2 bytes; currently applied load

0x2D // 1 byte; present supply voltage
0x2E // 1 byte; motor's internal temperature

0x2F // 1 byte; REG_WRITE instruction

0x31 // 1 byte; Goal Position completed

0x32 // 1 byte; present hardware error status
0x33 // 2 bytes; minimum current to//

defines1_0a.h file

shows Present Position (red circle)

© Copyright Paul Oh

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
0x19 // 1 byte; changes motor's LED color

0x1D // 1 byte; motor's proportional gain
0x1E // 2 bytes; destination position value

// from [0, 1023] with 0 most CW and

or Joint dependent
0x23 // 2 bytes; maximum torque limit value
0x25 // 2 bytes; motor's present position

0x2E // 1 byte; motor's internal temperature

re error status

shows Present Position (red circle)

© Copyright Paul Oh

XL-320 NXC Programming: Read Position

Step 2:

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the
RAM_PresentPosition
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is
7. Figure 1

The resulting
packet length.

// ---
// Servo Function: read XL
void

 // Variables to set Length 1 and Length 2
 // unsigned char XL320_setServoLength_L;
 // unsigned char XL320_setServoLength_H;
 byte XL320_setServoReadLength_L;
 byte XL320_setServoReadLength_H;

 // V
 unsigned char XL320_position_L, XL320_position_H;
 unsigned char XL320_speed_L, XL320_speed_H;
 // byte XL320_position_L, XL320_position_H;
 // byte XL320_speed_L, XL320_speed_H;

 // Variables to set up packet array
 unsigned char tempPacket[]; // temporary packet
 unsigned char finalPacket[]; // final packet to transmit

 // Variables for checksum CRC
 unsigned short setServoRead_CRC;
 byte CRC_L, CRC_H;

 // 1. Calculate lengths
 // Recall that Length 1 and
 // Reading servo requires only 4 parameters: RAM_PresentPosition, 0x00,
 // Number of bytes (which is 2), and 0x00
 // Hence number of paramters + 3 is 4 + 3 = 7 Dec = 0x07

 XL320_setServoReadLength_L = 0x07; //
 XL320_setServoReadLength_H = 0x00;

 // 2. Construct first part of packet
 ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,

320 NXC Programming: Read Position

Step 2: Open xl320

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the
RAM_PresentPosition
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

Figure 1C pictorially shows this packet.

The resulting XL320_servo
packet length.

Figure 1

// Servo Function: read XL
void XL320_servoRead(unsigned char XL320_motorId) {

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;
byte XL320_setServoReadLength_L;
byte XL320_setServoReadLength_H;

// Variables for position and speed
unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;
// byte XL320_speed_L, XL320_speed_H;

// Variables to set up packet array
unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

// Variables for checksum CRC
unsigned short setServoRead_CRC;
byte CRC_L, CRC_H;

// 1. Calculate lengths
// Recall that Length 1 and
// Reading servo requires only 4 parameters: RAM_PresentPosition, 0x00,
// Number of bytes (which is 2), and 0x00
// Hence number of paramters + 3 is 4 + 3 = 7 Dec = 0x07

XL320_setServoReadLength_L = 0x07; //
XL320_setServoReadLength_H = 0x00;

// 2. Construct first part of packet
ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,

 XL320_setServoReadLength_L, XL320_setServoReadLength_H, INSTRUCTION_READ,
 RAM_PRESENT_POSITION, 0x00, 0x02, 0x00);

Figure 1

320 NXC Programming: Read Position

xl320-functions1_0c.h

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the
RAM_PresentPosition, 0x00, and number of bytes (which is 2 or 0x02), and posit
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

pictorially shows this packet.

XL320_servoRead

Figure 1C: Packet to command XL

// Servo Function: read XL-320 position

XL320_servoRead(unsigned char XL320_motorId) {

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;
byte XL320_setServoReadLength_L;
byte XL320_setServoReadLength_H;

ariables for position and speed
unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;
// byte XL320_speed_L, XL320_speed_H;

// Variables to set up packet array
unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

// Variables for checksum CRC
unsigned short setServoRead_CRC;
byte CRC_L, CRC_H;

// 1. Calculate lengths
// Recall that Length 1 and
// Reading servo requires only 4 parameters: RAM_PresentPosition, 0x00,
// Number of bytes (which is 2), and 0x00
// Hence number of paramters + 3 is 4 + 3 = 7 Dec = 0x07

XL320_setServoReadLength_L = 0x07; //
XL320_setServoReadLength_H = 0x00;

// 2. Construct first part of packet
ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,

XL320_setServoReadLength_L, XL320_setServoReadLength_H, INSTRUCTION_READ,
RAM_PRESENT_POSITION, 0x00, 0x02, 0x00);

Figure 1D: XL320_servo

320 NXC Programming: Read Position

functions1_0c.h and

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the

, 0x00, and number of bytes (which is 2 or 0x02), and posit
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

pictorially shows this packet.

Read function is given in

Packet to command XL

320 position

XL320_servoRead(unsigned char XL320_motorId) {

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;
byte XL320_setServoReadLength_L;
byte XL320_setServoReadLength_H;

ariables for position and speed
unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;
// byte XL320_speed_L, XL320_speed_H;

// Variables to set up packet array
unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

// Variables for checksum CRC
unsigned short setServoRead_CRC;

// Recall that Length 1 and Length 2 = number of parameters + 3
// Reading servo requires only 4 parameters: RAM_PresentPosition, 0x00,
// Number of bytes (which is 2), and 0x00
// Hence number of paramters + 3 is 4 + 3 = 7 Dec = 0x07

XL320_setServoReadLength_L = 0x07; //
XL320_setServoReadLength_H = 0x00;

// 2. Construct first part of packet
ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,

XL320_setServoReadLength_L, XL320_setServoReadLength_H, INSTRUCTION_READ,
RAM_PRESENT_POSITION, 0x00, 0x02, 0x00);

XL320_servoRead

and confirm XL320_servoRead

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the

, 0x00, and number of bytes (which is 2 or 0x02), and posit
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

function is given in Figure 1

Packet to command XL-320 to

XL320_servoRead(unsigned char XL320_motorId) {

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;

unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;

unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

Length 2 = number of parameters + 3
// Reading servo requires only 4 parameters: RAM_PresentPosition, 0x00,
// Number of bytes (which is 2), and 0x00
// Hence number of paramters + 3 is 4 + 3 = 7 Dec = 0x07

XL320_setServoReadLength_L = 0x07; // Read Instruction

ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,
XL320_setServoReadLength_L, XL320_setServoReadLength_H, INSTRUCTION_READ,
RAM_PRESENT_POSITION, 0x00, 0x02, 0x00);

Read function in

XL320_servoRead

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the

, 0x00, and number of bytes (which is 2 or 0x02), and posit
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

Figure 1D. Note: Yellow

320 to read angle position

unsigned char finalPacket[]; // final packet to transmit

Length 2 = number of parameters + 3
// Reading servo requires only 4 parameters: RAM_PresentPosition, 0x00,

// Hence number of paramters + 3 is 4 + 3 = 7 Dec = 0x07

Read Instruction

ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,
XL320_setServoReadLength_L, XL320_setServoReadLength_H, INSTRUCTION_READ,

function in xl320-functions1_0c.h

© Copyright Paul Oh

XL320_servoRead function

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the

, 0x00, and number of bytes (which is 2 or 0x02), and posit
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

Note: Yellow-highlight shows

read angle position

Length 2 = number of parameters + 3
// Reading servo requires only 4 parameters: RAM_PresentPosition, 0x00,

ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,
XL320_setServoReadLength_L, XL320_setServoReadLength_H, INSTRUCTION_READ,

functions1_0c.h

© Copyright Paul Oh

function

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the

, 0x00, and number of bytes (which is 2 or 0x02), and position. Recall
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

highlight shows

ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,
XL320_setServoReadLength_L, XL320_setServoReadLength_H, INSTRUCTION_READ,

functions1_0c.h

© Copyright Paul Oh

Recall that the first step to create a packet is determining the packet length (i.e. number of
parameters). To read the XL320’s encoders, one needs 4 parameters: the

ion. Recall
that packet length is the number of parameters (4 in this case) plus 3. Thus, the packet length is

highlight shows

XL-320 NXC Programming: Read Position

The packet is completed by adding the CRC checksum values, returned from the call to
update_crc

Make sure the above code is s
XL320_servo can be called when needed.

Step 3:

NB: This example may require using Dynamixel Wizard to manually set the XL

Figure 1
begins by including the H
functions (

In main
enabled and configured for 57,600 baud, at 8N1 (8
XL320_setTorqueEnable

The do
available, the NXC function
Status Packet
stored in the

Section 3

 // 3. Perform checksum, see Section 1.2
 // of http://emanual.robotis.com/docs/en/dxl/crc/
 unsigned int packetLength = (XL320_s

 // See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
 // http://emanual.robotis.com/docs/en/dxl/crc/
 setServoRead_CRC = update_crc(0, tempPacket, 5 + packetLength);
 CRC_L = (setServoRead_CRC & 0x00FF);
 CRC_H = (setServoRead_CRC >> 8) & 0x00FF;

 // 4. Concatenate into final packet and sent thru NXT R
 ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);
 RS485Write(finalPacket);

 // 5. Call inline function
 waitForMessageToBeSent();

}; // end XL320_servoRead

320 NXC Programming: Read Position

The packet is completed by adding the CRC checksum values, returned from the call to
update_crc.

Make sure the above code is s
XL320_servo can be called when needed.

Step 3: Write NXC Program

This example may require using Dynamixel Wizard to manually set the XL

Figure 1F lists the NXC program that commands the XL
begins by including the H
functions (xl320-

main, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
enabled and configured for 57,600 baud, at 8N1 (8
XL320_setTorqueEnable

do-while loop first calls
available, the NXC function

tus Packet
stored in the char

Section 3 of the Dynamixel Protocol 2.0 sho

// 3. Perform checksum, see Section 1.2
// of http://emanual.robotis.com/docs/en/dxl/crc/
unsigned int packetLength = (XL320_s

// See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
// http://emanual.robotis.com/docs/en/dxl/crc/
setServoRead_CRC = update_crc(0, tempPacket, 5 + packetLength);
CRC_L = (setServoRead_CRC & 0x00FF);
CRC_H = (setServoRead_CRC >> 8) & 0x00FF;

// 4. Concatenate into final packet and sent thru NXT R
ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);
RS485Write(finalPacket);

// 5. Call inline function
waitForMessageToBeSent();

}; // end XL320_servoRead

320 NXC Programming: Read Position

The packet is completed by adding the CRC checksum values, returned from the call to

Make sure the above code is s
XL320_servo can be called when needed.

Write NXC Program xl320

This example may require using Dynamixel Wizard to manually set the XL

lists the NXC program that commands the XL
begins by including the H-files containing

-functions1_0c.h

, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
enabled and configured for 57,600 baud, at 8N1 (8
XL320_setTorqueEnable is made to turn off torque enable.

loop first calls
available, the NXC function RS485Read

 containing information, including the angle position. This status packet is
char array named

of the Dynamixel Protocol 2.0 sho

// 3. Perform checksum, see Section 1.2
// of http://emanual.robotis.com/docs/en/dxl/crc/
unsigned int packetLength = (XL320_s

// See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
// http://emanual.robotis.com/docs/en/dxl/crc/
setServoRead_CRC = update_crc(0, tempPacket, 5 + packetLength);
CRC_L = (setServoRead_CRC & 0x00FF);
CRC_H = (setServoRead_CRC >> 8) & 0x00FF;

// 4. Concatenate into final packet and sent thru NXT R
ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);
RS485Write(finalPacket);

// 5. Call inline function
waitForMessageToBeSent();

}; // end XL320_servoRead

Figure 1E:

320 NXC Programming: Read Position

The packet is completed by adding the CRC checksum values, returned from the call to

Make sure the above code is saved into
XL320_servo can be called when needed.

xl320-helloServoRead0_1b.nxc

This example may require using Dynamixel Wizard to manually set the XL

lists the NXC program that commands the XL
files containing

functions1_0c.h).

, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
enabled and configured for 57,600 baud, at 8N1 (8

is made to turn off torque enable.

loop first calls XL320_servo
RS485Read is called to read from the XL

containing information, including the angle position. This status packet is
array named data.

of the Dynamixel Protocol 2.0 shows the Status Packet’s form (

// 3. Perform checksum, see Section 1.2
// of http://emanual.robotis.com/docs/en/dxl/crc/
unsigned int packetLength = (XL320_setServoReadLength_H >> 8) +

// See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
// http://emanual.robotis.com/docs/en/dxl/crc/
setServoRead_CRC = update_crc(0, tempPacket, 5 + packetLength);
CRC_L = (setServoRead_CRC & 0x00FF);
CRC_H = (setServoRead_CRC >> 8) & 0x00FF;

// 4. Concatenate into final packet and sent thru NXT R
ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);

// 5. Call inline function

Figure 1

Figure 1E: Protocol 2.0 Status Packet format

The packet is completed by adding the CRC checksum values, returned from the call to

aved into xl320-functions1_0c.h

helloServoRead0_1b.nxc

This example may require using Dynamixel Wizard to manually set the XL

lists the NXC program that commands the XL
files containing XL-320 constants (

, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
enabled and configured for 57,600 baud, at 8N1 (8-bits, no parity, 1 stop bit)

is made to turn off torque enable.

XL320_servoRead and waits for data to be available. Once
is called to read from the XL

containing information, including the angle position. This status packet is

ws the Status Packet’s form (

// 3. Perform checksum, see Section 1.2
// of http://emanual.robotis.com/docs/en/dxl/crc/

etServoReadLength_H >> 8) +

// See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
// http://emanual.robotis.com/docs/en/dxl/crc/
setServoRead_CRC = update_crc(0, tempPacket, 5 + packetLength);

CRC_H = (setServoRead_CRC >> 8) & 0x00FF;

// 4. Concatenate into final packet and sent thru NXT R
ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);

Figure 1D: Continued

Protocol 2.0 Status Packet format

The packet is completed by adding the CRC checksum values, returned from the call to

functions1_0c.h

helloServoRead0_1b.nxc

This example may require using Dynamixel Wizard to manually set the XL

lists the NXC program that commands the XL-320 to read angles.
320 constants (xl320

, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
bits, no parity, 1 stop bit)

is made to turn off torque enable.

and waits for data to be available. Once
is called to read from the XL

containing information, including the angle position. This status packet is

ws the Status Packet’s form (

etServoReadLength_H >> 8) +

// See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"

setServoRead_CRC = update_crc(0, tempPacket, 5 + packetLength);

// 4. Concatenate into final packet and sent thru NXT RS485
ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);

: Continued

Protocol 2.0 Status Packet format

© Copyright Paul Oh

The packet is completed by adding the CRC checksum values, returned from the call to

functions1_0c.h. This will ensure

This example may require using Dynamixel Wizard to manually set the XL-320 to Joint Mode

read angles.
xl320-defines1_0a.h

, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
bits, no parity, 1 stop bit)

and waits for data to be available. Once
is called to read from the XL-320. The XL

containing information, including the angle position. This status packet is

ws the Status Packet’s form (Figure 1E

etServoReadLength_H >> 8) + XL320_setServoReadLength_L;

// See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"

setServoRead_CRC = update_crc(0, tempPacket, 5 + packetLength);

Protocol 2.0 Status Packet format

© Copyright Paul Oh

The packet is completed by adding the CRC checksum values, returned from the call to

. This will ensure

320 to Joint Mode

read angles. The program
defines1_0a.h) and

, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
bits, no parity, 1 stop bit). A call to

and waits for data to be available. Once
320. The XL-320 sends a

containing information, including the angle position. This status packet is

Figure 1E).

XL320_setServoReadLength_L;

© Copyright Paul Oh

The packet is completed by adding the CRC checksum values, returned from the call to

. This will ensure

320 to Joint Mode

The program
) and

, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
A call to

and waits for data to be available. Once
320 sends a

containing information, including the angle position. This status packet is

XL320_setServoReadLength_L;

XL-320 NXC Programming: Read Position

© Copyright Paul Oh

// FILE: xl320-helloServoRead0_1b.nxc - Works!
// DATE: 12/10/19 08:41
// AUTH: P.Oh
// DESC: Command servo to rotate back-and-forth by fixed amount
// VERS: 0.1a: based on P.Oh's xl320-defines1_0b.h and xl320-funtions1_0b.h
// xl320-helloServo1_0a.nxc
// 0.1b: troubleshotting 0.1a
// REFS: xl320-functions1_0b.h; xl320-defines1_0a.h, xl320-helloLed1_0a.nxc
// 09/10/19 ppt-paulOhDynamixelXl320HeaderFile-1.0a.pptx
// NOTE: If factory default XL-320 used, then ID is 0x01
// ID of 0xFE commands any and all XL-320 motors

#include "xl320-defines1_0a.h" // XL-320 defines from Control Table
#include "xl320-functions1_0c.h" // P.Oh functions written for XL-320
 // 1.0b.h contains XL320_servoRead
 // 1.0c.h updated the XL320_servoRead

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X01 // Assumes Motor 1 configured with ID = 1

task main() {

 bool orangeButtonPushed; // Detect Brick Center button state
 bool rightArrowButtonPushed; // Detect Brick right arrow button state
 bool leftArrowButtonPushed; // Detect Brick left arrow button state
 bool greyButtonPushed; // Detect Brick Grey/Abort button state
 unsigned char data[13]; // 13-byte status packet from RS485
 int Position;

 UseRS485();
 RS485Enable();
 // Note: First, use Dynamixel Wizard to set XL-320 to desired baud rate
 // Then, use RS485Uart to match this baud rate e.g. 57600
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); // 57600 baud, 8bit, 1stop, no parity
 Wait(100);

 // Turn off Torque enable so that one can freely turn XL320 axle by hand
 XL320_setTorqueEnable(ID_MOTOR01, 0); // 0 = turn OFF torque enable
 Wait(100);

 ClearScreen();
 // Prompt user to begin
 TextOut(0, LCD_LINE1, "Stop: Press GRAY");
 while(true) {
 XL320_servoRead(ID_MOTOR01);
 Wait(20);
 until(RS485DataAvailable());
 RS485Read(data);
 // data[9] = LO and data[10] HI byte contain XL-320 position
 // Thus formulate the position and display as integer
 Position = data[9] + (data[10] << 8);
 ClearScreen();
 TextOut(10, LCD_LINE3, FormatNum("Pos = %5.5d" , Position));

 if(ButtonPressed(BTNRIGHT, FALSE)) {
 while(ButtonPressed(BTNRIGHT, FALSE)) {
 // Do nothing, but this check flushes any key presses
 };
 XL320_servo(ID_MOTOR01, 700, 200); // rotate to motor position 700, speed 200
 Wait(200);
 }
 else if(ButtonPressed(BTNLEFT, FALSE)) {
 while(ButtonPressed(BTNLEFT, FALSE)) {
 // Do nothing, but this check flushes any key presses
 };
 XL320_servo(ID_MOTOR01, 200, 200); // counter-rotate to 200 at speed 200;
 Wait(200);
 }; // end if

 }; // end while;

} // end main

Figure 1F: Listing for xl320-helloServoRead0_1b.nxc

XL-320 NXC Programming: Read Position

When the Status Packet is used to read angle position,
1G.

The angle position is stored in
data[9] = 0xE8
because angle values can range from 0 to 1023.
byte is 8

Thus, the angle position needs to be recons
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In
xl320

Figure 1H
named
row) and is the LO byte and
row of Figure 1H shows the result of a left bit
rows results in the 4
Figure 1G

The program displays the resulting
buttons on the NXT Brick will rotate the XL

Figure 1H:

320 NXC Programming: Read Position

When the Status Packet is used to read angle position,

The angle position is stored in
data[9] = 0xE8
because angle values can range from 0 to 1023.
byte is 8-bits, and thus can only hold values from 0 to 255.

Thus, the angle position needs to be recons
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In
xl320-helloServoRead0_1b.nxc

Figure 1H shows this example pictorially.
named Position
row) and is the LO byte and
row of Figure 1H shows the result of a left bit
rows results in the 4
Figure 1G shows a Status P

The program displays the resulting
buttons on the NXT Brick will rotate the XL

Congratulations! You can command the XL

Figure 1G:

Figure 1H: Pictorial representation of

320 NXC Programming: Read Position

When the Status Packet is used to read angle position,

The angle position is stored in
data[9] = 0xE8 and data[10] = 0x03
because angle values can range from 0 to 1023.

bits, and thus can only hold values from 0 to 255.

Thus, the angle position needs to be recons
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In

helloServoRead0_1b.nxc

Position = data[9] + (data[10

shows this example pictorially.
Position. In the example (

row) and is the LO byte and data[10] = 0x03 = 0000 0011
row of Figure 1H shows the result of a left bit
rows results in the 4th row: 0000 0011 1110 1000 binary which is 0x03E8 or 1000 Decimal. Thus,

shows a Status Packet that reports the XL

The program displays the resulting
buttons on the NXT Brick will rotate the XL

Congratulations! You can command the XL

Figure 1G: Example Status Packet send from the XL

Pictorial representation of

320 NXC Programming: Read Position

When the Status Packet is used to read angle position,

The angle position is stored in data[9] and
data[10] = 0x03

because angle values can range from 0 to 1023.
bits, and thus can only hold values from 0 to 255.

Thus, the angle position needs to be recons
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In

helloServoRead0_1b.nxc one sees (Yellow Highlight) the bit

Position = data[9] + (data[10

shows this example pictorially.
. In the example (Figure 1G

data[10] = 0x03 = 0000 0011
row of Figure 1H shows the result of a left bit

row: 0000 0011 1110 1000 binary which is 0x03E8 or 1000 Decimal. Thus,
acket that reports the XL

The program displays the resulting Position
buttons on the NXT Brick will rotate the XL-320 to Position 700 or 200 respectively, at speed 200.

Congratulations! You can command the XL

Example Status Packet send from the XL

Pictorial representation of Little Endian bit

When the Status Packet is used to read angle position,

and data[10]
data[10] = 0x03. It takes 2-bytes to store the XL

because angle values can range from 0 to 1023. Recall that packets are composed of bytes. A
bits, and thus can only hold values from 0 to 255.

Thus, the angle position needs to be reconstructed from the 2
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In

one sees (Yellow Highlight) the bit

Position = data[9] + (data[10

 The columns 0 to 15 represent the 16
Figure 1G) data[9] = 0xE8 = 1110 1000

data[10] = 0x03 = 0000 0011
row of Figure 1H shows the result of a left bit-wise shift of 8 positions. Adding the 2

row: 0000 0011 1110 1000 binary which is 0x03E8 or 1000 Decimal. Thus,
acket that reports the XL-320 being at angle position 1000.

Position using TextOut
320 to Position 700 or 200 respectively, at speed 200.

Congratulations! You can command the XL

Example Status Packet send from the XL

Little Endian bit-wise operation to reconstruct angle position

When the Status Packet is used to read angle position, Figure 1E will take the form of

data[10]. In the example shown in
-bytes to store the XL

Recall that packets are composed of bytes. A
bits, and thus can only hold values from 0 to 255.

tructed from the 2-bytes. Robotis Protocol 2.0 says
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In

one sees (Yellow Highlight) the bit

Position = data[9] + (data[10] << 8);

The columns 0 to 15 represent the 16
data[9] = 0xE8 = 1110 1000

data[10] = 0x03 = 0000 0011 (binary) is the HI byte. The 3
wise shift of 8 positions. Adding the 2

row: 0000 0011 1110 1000 binary which is 0x03E8 or 1000 Decimal. Thus,
320 being at angle position 1000.

TextOut. Pushing
320 to Position 700 or 200 respectively, at speed 200.

Congratulations! You can command the XL-320 to read

Example Status Packet send from the XL-320 when reading angle position

wise operation to reconstruct angle position

© Copyright Paul Oh

will take the form of

. In the example shown in
bytes to store the XL-320 angle position

Recall that packets are composed of bytes. A

bytes. Robotis Protocol 2.0 says
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In

one sees (Yellow Highlight) the bit-wise line:

] << 8);

The columns 0 to 15 represent the 16
data[9] = 0xE8 = 1110 1000

(binary) is the HI byte. The 3
wise shift of 8 positions. Adding the 2

row: 0000 0011 1110 1000 binary which is 0x03E8 or 1000 Decimal. Thus,
320 being at angle position 1000.

. Pushing the right or left arrow
320 to Position 700 or 200 respectively, at speed 200.

read angle positions

320 when reading angle position

wise operation to reconstruct angle position

© Copyright Paul Oh

will take the form of Figure

. In the example shown in Figure 1G
320 angle position

Recall that packets are composed of bytes. A

bytes. Robotis Protocol 2.0 says
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In

The columns 0 to 15 represent the 16-bit variable
data[9] = 0xE8 = 1110 1000 binary (2

(binary) is the HI byte. The 3
wise shift of 8 positions. Adding the 2nd and 3

row: 0000 0011 1110 1000 binary which is 0x03E8 or 1000 Decimal. Thus,
320 being at angle position 1000.

the right or left arrow
320 to Position 700 or 200 respectively, at speed 200.

positions

320 when reading angle position

wise operation to reconstruct angle position

© Copyright Paul Oh

Figure

Figure 1G,
320 angle position

Recall that packets are composed of bytes. A

bytes. Robotis Protocol 2.0 says
that packets apply Little Endian. Thus, data[9] is the LO byte and data[10] is the HI byte. In

bit variable
binary (2nd

(binary) is the HI byte. The 3rd
and 3rd

row: 0000 0011 1110 1000 binary which is 0x03E8 or 1000 Decimal. Thus,

the right or left arrow
320 to Position 700 or 200 respectively, at speed 200.

wise operation to reconstruct angle position

XL-320 NXC Programming: Read Position

© Copyright Paul Oh

Exercises

1.1 Write an NXC program that slowly rotates the XL-320 from 0 to 1000. Every time the angle

reaches a multiple of 100 units (recall that XL-320 resolution is 0.29 degrees/unit), stop the XL-
320, play a tone, and then continue moving to position 1000.

1.2 Write a function for reading the XL-320’s angular velocity called XL320_servoReadVelocity.
Test your function, with an NXC program that rotates the XL-320 (e.g. Wheel Mode) at a known
velocity.

1.3 Test your XL320_servoReadVelocity function by writing an NXC program that begins
rotating in Wheel Mode, at speed 200. Increment or decrement the velocity by 100 each time the
right or left arrow buttons are pushed respectively. Keep the minimum and maximum speed
values at 200 and 700 respectively.

