
XL-320 NXC Programming:

NXC programs are introduced to have
because it enable
Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks
relieves computatio

Preliminary:

A YouTube search yields many videos on establish
example is
– Diagnostics

Concept 1:

Step 1:

Figure 1A
protocol0_2a.h
This H
these use NXC’s Bluetooth functions like
H-file has error checking and wait
btwaitfor
the Master to the Slave. So, an in

The program begins by a call to
design, the H
mailbox for Bluetooth messages is set to 0.

320 NXC Programming:

NXC programs are introduced to have
because it enables
Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks
relieves computatio

Preliminary: Enable Bluetooth on the NXT Brick

A YouTube search yields many videos on establish
example is https://youtu.be/CN3iXGsK9YM
Diagnostics and in the pop

Concept 1: Master sending Bluetooth Messages to Slave

Step 1: Write, compile and download the

Figure 1A shows the full NXC program to be run on the Slave NXT. The header file
protocol0_2a.h
This H-file has functions to send or receive messages between the Master and the Slave NXTs;
hese use NXC’s Bluetooth functions like

file has error checking and wait
btwaitfor, and BluetoothStatus
the Master to the Slave. So, an in

The program begins by a call to
design, the H-file defines the Slave and Master channels are 1 a
mailbox for Bluetooth messages is set to 0.

Concept: Two NXT Bricks; left is Slave and right is Master

320 NXC Programming: Bluetooth

XL-320

NXC programs are introduced to have
s distributed computing.

Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks
relieves computational expense.

Enable Bluetooth on the NXT Brick

A YouTube search yields many videos on establish
https://youtu.be/CN3iXGsK9YM

and in the pop

Master sending Bluetooth Messages to Slave

Write, compile and download the

shows the full NXC program to be run on the Slave NXT. The header file
protocol0_2a.h was authored by Daniele Benedettelli, a famed Lego developer and author.

file has functions to send or receive messages between the Master and the Slave NXTs;
hese use NXC’s Bluetooth functions like

file has error checking and wait
BluetoothStatus

the Master to the Slave. So, an in

The program begins by a call to
file defines the Slave and Master channels are 1 a

mailbox for Bluetooth messages is set to 0.

Concept: Two NXT Bricks; left is Slave and right is Master

Bluetooth

Hands

320 NXC Programming

NXC programs are introduced to have two NXT
distributed computing. For example, a motor could be attached to a Slave

Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks

nal expense.

Enable Bluetooth on the NXT Brick

A YouTube search yields many videos on establish
https://youtu.be/CN3iXGsK9YM.

and in the pop-up box, edits

Master sending Bluetooth Messages to Slave

Write, compile and download the Slave

shows the full NXC program to be run on the Slave NXT. The header file
was authored by Daniele Benedettelli, a famed Lego developer and author.

file has functions to send or receive messages between the Master and the Slave NXTs;
hese use NXC’s Bluetooth functions like BluetoothWrite

file has error checking and wait-states and employs NXC’s functions like
BluetoothStatus. The goal of this concept is simply to pass mess

the Master to the Slave. So, an in-depth discussion of the H

The program begins by a call to slavecheck()
file defines the Slave and Master channels are 1 a

mailbox for Bluetooth messages is set to 0.

Concept: Two NXT Bricks; left is Slave and right is Master
https://youtu.be/s9aWIpGIYZk

Hands-on Lab

NXC Programming

NXT Bricks communicate via Bluetooth. This is useful
For example, a motor could be attached to a Slave

Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks

Enable Bluetooth on the NXT Brick

A YouTube search yields many videos on establishing
. To customize

up box, edits the Name field.

Master sending Bluetooth Messages to Slave

Slave NXC program

shows the full NXC program to be run on the Slave NXT. The header file
was authored by Daniele Benedettelli, a famed Lego developer and author.

file has functions to send or receive messages between the Master and the Slave NXTs;
BluetoothWrite

states and employs NXC’s functions like
. The goal of this concept is simply to pass mess

depth discussion of the H

slavecheck() to check on the Bluetooth connection. By
file defines the Slave and Master channels are 1 a

Concept: Two NXT Bricks; left is Slave and right is Master
https://youtu.be/s9aWIpGIYZk

on Lab

NXC Programming – Bluetooth

Bricks communicate via Bluetooth. This is useful
For example, a motor could be attached to a Slave

Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks

 NXT Brick Bluetooth connections
ustomize the Brick’s

field.

Master sending Bluetooth Messages to Slave

NXC program btSlave0_2a.nxc

shows the full NXC program to be run on the Slave NXT. The header file
was authored by Daniele Benedettelli, a famed Lego developer and author.

file has functions to send or receive messages between the Master and the Slave NXTs;
BluetoothWrite and ReceiveMessage

states and employs NXC’s functions like
. The goal of this concept is simply to pass mess

depth discussion of the H-file will not be explored here.

to check on the Bluetooth connection. By
file defines the Slave and Master channels are 1 a

Concept: Two NXT Bricks; left is Slave and right is Master. YouTube demonstration:
https://youtu.be/s9aWIpGIYZk

© Copyright Paul Oh

Bluetooth

Bricks communicate via Bluetooth. This is useful
For example, a motor could be attached to a Slave

Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks

Bluetooth connections
the Brick’s name, use BrixCC’s

btSlave0_2a.nxc

shows the full NXC program to be run on the Slave NXT. The header file
was authored by Daniele Benedettelli, a famed Lego developer and author.

file has functions to send or receive messages between the Master and the Slave NXTs;
ReceiveMessage

states and employs NXC’s functions like btchannelcheck
. The goal of this concept is simply to pass mess

file will not be explored here.

to check on the Bluetooth connection. By
file defines the Slave and Master channels are 1 and 0 respectively and the

. YouTube demonstration:

© Copyright Paul Oh

Bricks communicate via Bluetooth. This is useful
For example, a motor could be attached to a Slave

Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks

Bluetooth connections. One
use BrixCC’s Tools

shows the full NXC program to be run on the Slave NXT. The header file
was authored by Daniele Benedettelli, a famed Lego developer and author.

file has functions to send or receive messages between the Master and the Slave NXTs;
ReceiveMessage. Also, the

btchannelcheck
. The goal of this concept is simply to pass messages from

file will not be explored here.

to check on the Bluetooth connection. By
nd 0 respectively and the

. YouTube demonstration:

© Copyright Paul Oh

Bricks communicate via Bluetooth. This is useful
For example, a motor could be attached to a Slave

Brick that would receive messages. A sensor might be attached to a Master Brick that would
then send messages containing desired motor speeds. Distributing task amongst multiple Bricks

One
Tools

shows the full NXC program to be run on the Slave NXT. The header file
was authored by Daniele Benedettelli, a famed Lego developer and author.

file has functions to send or receive messages between the Master and the Slave NXTs;
. Also, the

btchannelcheck,
ages from

to check on the Bluetooth connection. By
nd 0 respectively and the

XL-320 NXC Programming: Bluetooth

© Copyright Paul Oh

Next an endless for loop is entered. Here, receivefrommaster is called. Any data in the
mailbox is then stored in the string variable stringFromMaster. The number of characters in
that string is also stored in variable j.

As will be shown in Step 2, the Master will send messages containing numerical characters. One
observes the line intR = StrToNum(stringFromMaster). The purpose is to convert the
received string to numerical values. The Slave Brick will display the product of the number and
10. Before looping back, the program calls the Wait function. The value of 500 milliseconds
helps to see what is displayed on the Brick before the next iteration.

Step 2: Write, compile and download the Master NXC program btMaster0_2a.nxc

Similar to the Slave program, Figure 1B shows the NXC code for the Master. After checking the
Bluetooth connection with a call to mastercheck, an endless for loop is entered.

for(;;) {
 stringFromSlave = receivefromslave(); // read message (if any) from slave
 i++; // i will be the number Master wishes to send
 strI = NumToStr(i); // must convert numbers into string

 NumOut(0, LCD_LINE2, i); // Row 2 displays actual number
 TextOut(0, LCD_LINE3, strI); // Row 3 displays string version of number
 sendtoslave(strI); // Master sends string to Slave

// FILE: btSlave0_2a.nxc - Works!
// DATE: 02/24/20 14:47
// AUTH: P.Oh
// DESC: Read message from Master and display it
// Message contains a number (as string). Perform math on that number
// REFS: Works with btMaster0_1a.nxc

#include "protocol0_2a.h"

task main() {

 string stringFromMaster; // store string from Master
 int j; // store length value of received string
 int intR, mathResult; // int form of string and math performed on that number

 slavecheck(); // initialize NXT running this program as the Slave
 TextOut(0, LCD_LINE1, "Slave");

 for(;;) {
 stringFromMaster = receivefrommaster();
 j = StrLen(stringFromMaster);

 // -- print to screen only if there is a message
 if(j!=0) {
 TextOut(0, LCD_LINE3, stringFromMaster);
 };

 intR = StrToNum(stringFromMaster); // Master's message contains a number, so convert it
 mathResult = 10*intR; // Perform simple math to prove it's a number
 // TextOut(0, LCD_LINE4, FormatNum("math = %5d" , mathResult));
 NumOut(0, LCD_LINE4, mathResult);

 Wait(500); // min is 10 msec, but 500 msec makes easier to see on Brick
 ResetSleepTimer(); // don't time out and shut off Brick
 } // end for
} // end main

Figure 1A: Listing of btSlave0_2a.nxc

XL-320 NXC Programming: Bluetooth

© Copyright Paul Oh

 Wait(500); // min is 10 msec. But wish to view the string on Brick
 ResetSleepTimer(); // keep Brick from sleeping and turning off Bluetooth connection

 } // end for

In this loop, a counter called i is incremented and then converted to a string. This string is
displayed on the Master Brick and then sendtoslave(strI) sends this string via Bluetooth, to
the Slave Brick.

// FILE: btMaster0_2a.nxc - Works!
// DATE: 02/24/20 14:01
// AUTH: P.Oh
// DESC: Master sends message to Slave; message displayed on Slave
// VERS: Clean up btMaster0_1a.nxc
// REFS: Works with btSlave0_2a.nxc

#include "protocol0_2a.h"
#define NAP 10 // milliseconds

task main() {

 string stringFromSlave; // any messages from slave
 int i; // index
 string strI; // string version of index

 TextOut(0, LCD_LINE1, "Master");
 mastercheck(); // check Master bluetooth connection

 for(;;) {
 stringFromSlave = receivefromslave(); // read message (if any) from slave
 i++; // i will be the number Master wishes to send
 strI = NumToStr(i); // must convert numbers into string

 NumOut(0, LCD_LINE2, i); // Row 2 displays actual number
 TextOut(0, LCD_LINE3, strI); // Row 3 displays string version of number
 sendtoslave(strI); // Master sends string to Slave

 Wait(500); // min is 10 msec. But wish to view the string on Brick
 ResetSleepTimer(); // keep Brick from sleeping and turning off Bluetooth connection

 } // end for
} // end main

Figure 1B continued: Listing for btMaster0_2a.nxc

Exercises

1-1. Write NXC programs to detect a Master’s button push states as follows. Pushing the

Master’s left or right arrow buttons sends via Bluetooth, a 1 or 2 respectively. The Slave
receives these numbers and displays on its LCD screen the messages “Left” or “Right”
respectively.

Congratulations! Your Master NXT Brick can send strings via Bluetooth to a
Slave NXC Brick.

XL-320 NXC Programming:

Concept 2

Preamble: Reference Serial Communications Lab

Recall, t
ran a terminal emulator. A USB
the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the
NXT would receive and display them.

In this Concept, s
messages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see
Figure 2A

Step 1:

Recall the Serial Communications
the USB
Set this port for 4800 baud. Verify that
Hercules are displayed on

Step 2:

Figure 2B
for Bluetooth functions, Bluetooth related var

Figure 2B
related variables are defined and the serial port is enabled at 4800 baud.

Figure 2A
wirelessly transmits them to the Slave NXT via Bluetooth.
https://youtu.be/P3qDNDvtpu4

320 NXC Programming:

Concept 2: Serial and Bluetooth Messages

Preamble: Reference Serial Communications Lab

Recall, the NXT Brick’s Port 4 is cable of RS
ran a terminal emulator. A USB
the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the
NXT would receive and display them.

In this Concept, s
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

Figure 2A).

Step 1: Serially connect Master NXT to PC

Recall the Serial Communications
the USB-to-RS485 module into the PC. Use Windows Device Manager to identify the COM port.
Set this port for 4800 baud. Verify that
Hercules are displayed on

Step 2: Master: Combine

Figure 2B runs on the Master NXT. It is similar to prior code (e.g.
for Bluetooth functions, Bluetooth related var

Figure 2B also shares code from
related variables are defined and the serial port is enabled at 4800 baud.

Figure 2A: Messages from PC are serially transmitted to the Master NXT. The Master NXT then
wirelessly transmits them to the Slave NXT via Bluetooth.
https://youtu.be/P3qDNDvtpu4

320 NXC Programming: Bluetooth

Serial and Bluetooth Messages

Preamble: Reference Serial Communications Lab

he NXT Brick’s Port 4 is cable of RS
ran a terminal emulator. A USB
the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the
NXT would receive and display them.

In this Concept, serial communications extends Concept 1: the Master NXT will receive serial
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

Serially connect Master NXT to PC

Recall the Serial Communications
RS485 module into the PC. Use Windows Device Manager to identify the COM port.

Set this port for 4800 baud. Verify that
Hercules are displayed on the NXT Brick’s LCD.

Combine Bluetooth and Serial Communication

runs on the Master NXT. It is similar to prior code (e.g.
for Bluetooth functions, Bluetooth related var

also shares code from
related variables are defined and the serial port is enabled at 4800 baud.

Messages from PC are serially transmitted to the Master NXT. The Master NXT then
wirelessly transmits them to the Slave NXT via Bluetooth.
https://youtu.be/P3qDNDvtpu4

Bluetooth

Serial and Bluetooth Messages

Preamble: Reference Serial Communications Lab

he NXT Brick’s Port 4 is cable of RS
ran a terminal emulator. A USB-to-RS485 module and modified N
the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the
NXT would receive and display them.

munications extends Concept 1: the Master NXT will receive serial
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

Serially connect Master NXT to PC

Recall the Serial Communications Lab where o
RS485 module into the PC. Use Windows Device Manager to identify the COM port.

Set this port for 4800 baud. Verify that nxtReadFromPC1_0b.nxc
the NXT Brick’s LCD.

Bluetooth and Serial Communication

runs on the Master NXT. It is similar to prior code (e.g.
for Bluetooth functions, Bluetooth related var

also shares code from nxtReadFromPC1_0b.nxc
related variables are defined and the serial port is enabled at 4800 baud.

Messages from PC are serially transmitted to the Master NXT. The Master NXT then
wirelessly transmits them to the Slave NXT via Bluetooth.
https://youtu.be/P3qDNDvtpu4

Serial and Bluetooth Messages

Preamble: Reference Serial Communications Lab

he NXT Brick’s Port 4 is cable of RS-485 serial communications. In a previous lab, a PC
RS485 module and modified N

the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the

munications extends Concept 1: the Master NXT will receive serial
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

where one wrote nxtReadFromPC1_0b.nxc
RS485 module into the PC. Use Windows Device Manager to identify the COM port.

nxtReadFromPC1_0b.nxc
the NXT Brick’s LCD.

Bluetooth and Serial Communication

runs on the Master NXT. It is similar to prior code (e.g.
for Bluetooth functions, Bluetooth related variables and sendtoslave

nxtReadFromPC1_0b.nxc
related variables are defined and the serial port is enabled at 4800 baud.

Messages from PC are serially transmitted to the Master NXT. The Master NXT then
wirelessly transmits them to the Slave NXT via Bluetooth.

485 serial communications. In a previous lab, a PC
RS485 module and modified NXT cable physically connected

the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the

munications extends Concept 1: the Master NXT will receive serial
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

nxtReadFromPC1_0b.nxc
RS485 module into the PC. Use Windows Device Manager to identify the COM port.

nxtReadFromPC1_0b.nxc

Bluetooth and Serial Communication btAndSerialMaster0_1b.nxc

runs on the Master NXT. It is similar to prior code (e.g. Figure 1B
sendtoslave

nxtReadFromPC1_0b.nxc. As yellow
related variables are defined and the serial port is enabled at 4800 baud.

Messages from PC are serially transmitted to the Master NXT. The Master NXT then
wirelessly transmits them to the Slave NXT via Bluetooth. Video demonst

© Copyright Paul Oh

485 serial communications. In a previous lab, a PC
XT cable physically connected

the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the

munications extends Concept 1: the Master NXT will receive serial
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

nxtReadFromPC1_0b.nxc
RS485 module into the PC. Use Windows Device Manager to identify the COM port.

nxtReadFromPC1_0b.nxc works; messages from

btAndSerialMaster0_1b.nxc

Figure 1B) with the header
sendtoslave function call.

. As yellow-highlighted, serial port
related variables are defined and the serial port is enabled at 4800 baud.

Messages from PC are serially transmitted to the Master NXT. The Master NXT then
demonstration

© Copyright Paul Oh

485 serial communications. In a previous lab, a PC
XT cable physically connected

the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the

munications extends Concept 1: the Master NXT will receive serial
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

nxtReadFromPC1_0b.nxc. Connect
RS485 module into the PC. Use Windows Device Manager to identify the COM port.

works; messages from

btAndSerialMaster0_1b.nxc

) with the header-file
function call.

highlighted, serial port

Messages from PC are serially transmitted to the Master NXT. The Master NXT then

© Copyright Paul Oh

485 serial communications. In a previous lab, a PC
XT cable physically connected

the PC’s USB port to the NXT’s Port 4. With that setup, the PC transmitted messages and the

munications extends Concept 1: the Master NXT will receive serial
essages from the PC and then wirelessly transmit them, via Bluetooth, to the Slave NXT (see

. Connect
RS485 module into the PC. Use Windows Device Manager to identify the COM port.

works; messages from

btAndSerialMaster0_1b.nxc

file

highlighted, serial port

Messages from PC are serially transmitted to the Master NXT. The Master NXT then

XL-320 NXC Programming: Bluetooth

© Copyright Paul Oh

The endless while-loop calls RS485DataAvailable to monitor the serial port for activity and
then reads any (ASCII) messages. These are stored in string variable charsRead and displayed
on the NXT LCD. Then, this string is send via Bluetooth with a call to sendtoslave.

// FILE: btAndSerialMaster0_1b.nxc - Works!
// DATE: 04/01/20 09:35
// AUTH: P.Oh
// DESC: Master receives serial message from PC. Master creates Bluetooth
// version of message and transmits to Slave
// VERS: 0_1a: prototyping
// 0_1b: Display string more nicely
// REFS: Works with btSlave0_2a.nxc. btMaster0_2a.nxc and nxtReadFromPC1_0b.nxc

#include "protocol0_2a.h"

task main() {

 // Serial port related variables
 byte readBuffer[]; // array to store bytes received from PC
 string charsRead; // string of ASCII characters read from PC

 // Bluetooth related variables
 string stringFromSlave; // any messages from slave
 int i; // index
 string strI; // string version of index

 // Set up Master NXT's Bluetooth
 TextOut(0, LCD_LINE1, "Master");
 mastercheck(); // check Master bluetooth connection

 // Set up Master NXT's serial port
 UseRS485(); // (1) Configure S4 for RS-485
 RS485Enable(); // (2) Activate RS-485
 RS485Uart(HS_BAUD_4800, HS_MODE_DEFAULT); // (3) Baud 112500 and default parity
 Wait(MS_1); // (4) Wait briefly for port settings to be ready

 readBuffer = 0;
 while(true) { // keep reading and displaying strings received from PC until abort
 while(!RS485DataAvailable()) {
 // if no ASCII chars available, then do nothing
 };
 // Bytes ready, so now display and used them
 RS485Read(readBuffer);
 // ClearScreen();
 TextOut(0, LCD_LINE3, "PC's string");
 TextOut(0, LCD_LINE4, ByteArrayToStr(readBuffer));
 charsRead = ByteArrayToStr(readBuffer);
 // Clear buffer
 readBuffer = 0;

 // Send via Bluetooth, the string to Slave
 TextOut(0, LCD_LINE6, "BT message:");
 TextOut(0, LCD_LINE7, charsRead);
 sendtoslave(charsRead);
 Wait(1000); // Wait 1 sec (same rate as PC)
 ClearLine(LCD_LINE4); // clear line displaying PC's message
 ClearLine(LCD_LINE7); // clear line displaying BT message
 ResetSleepTimer(); // keep Brick from sleeping and turning off Bluetooth connection
 }; // end while(true)

} // end main

Figure 2B: btAndSerialMaster0_1b.nxc is compiled and executed on the Master NXT

XL-320 NXC Programming: Bluetooth

© Copyright Paul Oh

Step 3: Slave NXT – btAndSerialSlave0_1b.nxc

Figure 2C runs on the Slave NXT. ClearLine adds code to Figure 1A to display messages
nicely on the Slave NXT Brick’s LCD. Recall, the Slave NXT simply waits for Bluetooth messages
from the Master.

It’s assumed that the alphanumeric (ASCII) message contains a number. This serves to
demonstrate that a StrToNum call can converted that string into numeric form. The variable
mathResult is used to demonstrate math can be performed on that number (e.g. multiply by
10).

Step 4: Hardware connections and software execution

Set up Master-Slave Bluetooth connections. Recall in Concept 1 that this set up assumes that
Mailbox 1 is used as the Bluetooth channel. Once connected, run
btAndSerialSlave0_1b.nxc on the Slave and btAndSerialMaster0_1b.nxc on the
Master.

// FILE: btAndSerialSlave0_1b.nxc - Works!
// DATE: 04/01/20 09:25
// AUTH: P.Oh
// DESC: Read Bluetooth message from Master and display it
// NB: Original message will be from PC, sent to Master via Serial port
// VERS: 0_1a: prototyping
// 0_1b: Display received strings more nicely
// REFS: Works with btAndSerialMaster0_1a.nxc; btSlave0_2a.nxc

#include "protocol0_2a.h"

task main() {

 string stringFromMaster; // store string from Master
 int j; // store length value of received string
 int intR, mathResult; // int form of string and math performed on that number

 slavecheck(); // initialize NXT running this program as the Slave
 TextOut(0, LCD_LINE1, "Slave");
 TextOut(0, LCD_LINE3, "Master's String");

 for(;;) {
 stringFromMaster = receivefrommaster();
 j = StrLen(stringFromMaster);

 // -- print to screen only if there is a message
 if(j!=0) {
 TextOut(0, LCD_LINE4, stringFromMaster);
 };

 intR = StrToNum(stringFromMaster); // Master's message contains a number, so convert
it
 mathResult = 10*intR; // Perform simple math to prove it's a number
 TextOut(0, LCD_LINE6, "Math Result");
 NumOut(0, LCD_LINE7, mathResult);
 Wait(1000); // 1 sec because same rate as Master which is same as PC
 ClearLine(LCD_LINE4); // clear line for string received from Master
 ClearLine(LCD_LINE7); // clear line for math result
 ResetSleepTimer(); // don't time out and shut off Brick
 } // end for
} // end main

Figure 2C: btAndSerialSlave0_1b.nxc runs on the Slave NXT

XL-320 NXC Programming: Bluetooth

© Copyright Paul Oh

Next, execute a terminal emulator (e.g. Hercules) on the PC. Ensure that the COM and serial
port settings (i.e. 4800 baud) are correctly set. Send a numeric character (e.g. 1) from the
emulator. This should display on the Master as well as the Slave.

Note, one might have to transmit the numeric character multiple times. This is because
btAndSerialSlave0_1b.nxc and btAndSerialMaster0_1b.nxc each contain 1 second
Wait statements. This is a rather long period for microprocessors to wait. This delay was used
to simply ensure the buffers are transmitted and do not overflow. A more proper way is to invoke
serial and Bluetooth function calls for message checking. This process involves: counting the
number of characters to be sent; verifying that the message received has these number of
characters; and letting the sender know when the receiver is ready to accept the next message.
For the purposes of this Concept, the long Wait statement avoids such message checking, albeit
with delays.

Exercises

Use Concept 2 to have the PC serially transmit a number to the Master NXT. The Master NXT
then sends this number via Bluetooth, to the Slave NXT.

2-1.Write NXC code for the Slave such that when the number received is a “1” then the Slave

NXT plays a tone. If the number is “0”, the tone stops.

2-2.Connect an XL-320 to the Slave NXT. Write NXC code for the Slave such that when the
number is “1” the XL-320 rotates back-and-forth from -90 to +90 degrees. If the number is
“0”, the XL-320 stops.

Congratulations! Your Master NXT Brick can receive strings from a PC serially
and send them to a Slave NXC Brick via Bluetooth.

