
XL-320 NXC

The inverse kinematics
user defined a desired task space location
,ଵߠ) ଶߠ
approach is to define a set of points for that line and use IK to compute the joint angles. One will
observe tha

Preliminary:

Suppose
has form

If one wants

Example: Suppose just want 2 equally spaced segments between
visually one sees that this is 1 point should be

Here,
point on the

Figure A:
define set of points (called waypoints) that characterize a straight line parallel to the Y

320 NXC Programming: Trajectory Planning

XL

The inverse kinematics
user defined a desired task space location

ଶ) to move the end
approach is to define a set of points for that line and use IK to compute the joint angles. One will
observe that there are some pros and cons to this approach.

Preliminary: Parametric Equation of Line and Waypoints

Suppose and are the start and end points of line. Then, the
has form (ݐ) = +

If one wants ݊ equally spaced segments

Example: Suppose just want 2 equally spaced segments between
visually one sees that this is 1 point should be

Here, ݊ = 2 equally spaced segments so
point on the ݕ-axis. The point on the

Figure A: There are 9 yellow colored 1
define set of points (called waypoints) that characterize a straight line parallel to the Y

Programming: Trajectory Planning

XL-320 NXC Programming

The inverse kinematics (IK) of a 2
user defined a desired task space location

to move the end-effector to that location. To move the end
approach is to define a set of points for that line and use IK to compute the joint angles. One will

t there are some pros and cons to this approach.

Parametric Equation of Line and Waypoints

are the start and end points of line. Then, the
+ If say that . ࢜ݐ

equally spaced segments

Example: Suppose just want 2 equally spaced segments between
visually one sees that this is 1 point should be

equally spaced segments so
axis. The point on the

There are 9 yellow colored 1
define set of points (called waypoints) that characterize a straight line parallel to the Y

(ݐ) =

ݐ

Programming: Trajectory Planning

Hands

NXC Programming

of a 2-link planar manipulator was derived previously. In that lab the
user defined a desired task space location (

effector to that location. To move the end
approach is to define a set of points for that line and use IK to compute the joint angles. One will

t there are some pros and cons to this approach.

Parametric Equation of Line and Waypoints

are the start and end points of line. Then, the
y that ࢜ = −

equally spaced segments between

Example: Suppose just want 2 equally spaced segments between
visually one sees that this is 1 point should be

equally spaced segments so ݐ
axis. The point on the ݔ-axis will still be 6.

There are 9 yellow colored 1-stud bricks on the LEGO base plate. These bricks
define set of points (called waypoints) that characterize a straight line parallel to the Y

 + ࢜ݐ = + ݐ

=
݅
݊

 where

Programming: Trajectory Planning

Hands-on Lab

NXC Programming – Trajectory Planning

nar manipulator was derived previously. In that lab the
,ݔ) IK would compute the necessary joint angles .(ݕ

effector to that location. To move the end
approach is to define a set of points for that line and use IK to compute the joint angles. One will

t there are some pros and cons to this approach.

Parametric Equation of Line and Waypoints

are the start and end points of line. Then, the
then one has

between and

Example: Suppose just want 2 equally spaced segments between
visually one sees that this is 1 point should be (0,0):

= ଵ
ଶ

= 0.5 and
axis will still be 6.

stud bricks on the LEGO base plate. These bricks
define set of points (called waypoints) that characterize a straight line parallel to the Y

)ݐ − (= 1)

 i = 0, 1, … ݊

on Lab

Trajectory Planning

nar manipulator was derived previously. In that lab the
. IK would compute the necessary joint angles

effector to that location. To move the end
approach is to define a set of points for that line and use IK to compute the joint angles. One will

t there are some pros and cons to this approach.

Parametric Equation of Line and Waypoints

are the start and end points of line. Then, the parametric equation of line
one has

 then define

Example: Suppose just want 2 equally spaced segments between =

and ݈ ቀଵ
ଶ
ቁ = 8 ×

stud bricks on the LEGO base plate. These bricks
define set of points (called waypoints) that characterize a straight line parallel to the Y

(1 − (ݐ + ݐ

݊ − 1

© Copyright Paul Oh

Trajectory Planning

nar manipulator was derived previously. In that lab the
. IK would compute the necessary joint angles

effector to that location. To move the end-effector along a line, one
approach is to define a set of points for that line and use IK to compute the joint angles. One will

parametric equation of line

then define ݊ values of ݐ

(6,8) and ݍ =

ቀ1 − ଵ
ଶ
ቁ + ଵ

ଶ
(−

stud bricks on the LEGO base plate. These bricks
define set of points (called waypoints) that characterize a straight line parallel to the Y

© Copyright Paul Oh

nar manipulator was derived previously. In that lab the
. IK would compute the necessary joint angles

effector along a line, one
approach is to define a set of points for that line and use IK to compute the joint angles. One will

parametric equation of line (ݐ)

∈ [0,1] as

= (6, −8). One

(−8) = 0 for the

stud bricks on the LEGO base plate. These bricks
define set of points (called waypoints) that characterize a straight line parallel to the Y-axis.

(1)

© Copyright Paul Oh

nar manipulator was derived previously. In that lab the
. IK would compute the necessary joint angles

effector along a line, one
approach is to define a set of points for that line and use IK to compute the joint angles. One will

. One

for the

(1)

(2)

XL-320 NXC Programming: Trajectory Planning

© Copyright Paul Oh

Concept 1: Implement Parametric Equation of a Line

// FILE: xl320-twoLinkFunctions1_0a.h
// DATE: 01/21/20 12:09
// AUTH: P.Oh
// DESC: XL-320 based 2-DOF planar manipulator related functions
// VERS: 1.0a: rotateMotorAbsolutely(); goHome(); twoLinkInverseKinematics()
// REFS: H-files xl320-defines1_0a.h and xl320-functions1_0d.h
// NOTE: This example uses an XL-320 configured with ID# 3 and ID# 7

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X03 // Assumes Motor 1 configured with ID = 3
#define ID_MOTOR02 0X07 // Assumes Motor 2 configured with ID = 7
#define mmPerStud 8 // 8 millimeters per LEGO stud

struct theta { // angles in [rad]
float theta1, theta2;
};
struct thetaInDegrees { // angles in [deg]
 float theta1InDegrees, theta2InDegrees;
};

typedef theta THETA;
typedef thetaInDegrees THETA_IN_DEGREES;

void rotateMotorAbsolutely(float angle01, float angle02) { //------------------
 // Rotates the two Dynamixel XL-320 motors to their desired angles
 // Assumes motor count of 512 denotes 0 degrees and right-hand rule for
 // rotational direction

 float desiredAngle01InDegrees; // Angle Motor 1 to move to [deg]
 float desiredAngle02InDegrees; // Angle Motor 2 to move to [deg]
 float degreesPerCount; // Conversion 0.29 [degrees/count]
 float calculatedCount; // Count equivalent of desired angle [count]
 int motor01Offset; // Motor 1's offset [count]
 float theta01InDegrees; // Motor 1 angle [counts]
 int theta01InCounts; // Motor 1 angle [deg]
 int motor02Offset; // Motor 2's offset [count]
 float theta02InDegrees; // Motor 2 angle [counts]
 int theta02InCounts; // Motor 2 angle [deg]
 string msg01, msg02; // dummy strings to print values to screen

 motor01Offset = 512; // Dynamixel Wizard fixes Link 1 at zero deg (i.e. 512 counts)
 motor02Offset = 512; // Dynamixel Wizard fixes Link 2 at zero deg (i.e. 512 counts)

 // Note 1: Looking into horn from Top, count > 512 is CCW (i.e. +Z axis)
 // and count < 512 is CW (i.e. -Z axis)
 degreesPerCount = 0.29; // [deg/count] found from XL-320 data sheet

 // ClearScreen();
 desiredAngle01InDegrees = angle01;
 theta01InCounts = motor01Offset + desiredAngle01InDegrees/degreesPerCount;
 desiredAngle02InDegrees = angle02;
 theta02InCounts = motor02Offset + desiredAngle02InDegrees/degreesPerCount;

 TextOut(0, LCD_LINE4, "Going to");
 sprintf(msg01, "(%2.1f," ,desiredAngle01InDegrees);
 sprintf(msg02, "%2.1f) deg" , desiredAngle02InDegrees);
 TextOut(0, LCD_LINE5, strcat(msg01, msg02));

 XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
 // Wait(1500); // Uncomment and change value e.g. 1500 ms if troubleshooting
 XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
 Wait(1000); // Uncomment to see impact on communications
 PlayTone(TONE_B3,50);

}; // end rotateMotorAbsolutely function ---------------------------------

Figure 1A: Listing of xl320-twoLinkFunctions1_0a.h

XL-320 NXC

To make code more readable,
and-paste code to form the file

The H
the joint angles. Commanding the XL
often needed. Hence the function
Additionally, moving the home position (where joint
goHome

Lastly, the inverse kinematics equations were cut
calculate the joint angles. In the C programming language, functions can only return one
variable. One approach is to use a structure variable. Thus the function
twoLinkInverseKinematics

The program
functions. To demonstrate this program, 7 way points will be used as shown in
(1) and (2) should calculate the locations of these way points as given in

void
 // Assumes motor count of 512 denotes 0 degrees.
 // Assumes

 rotateMotorAbsolutely(0.0, 0.0);

}; // end goHome function

THETA_IN_DEGREES

 //
 // based on inputs: link lengths (s1, s2) and task space position (u, v)
 //

 float C, k1, k2, num, den; // IK related variables for calculations
 THETA_IN_DEGREES phiInDegrees; // stru
 THETA phi; // structure defined at start of this program

 C = (pow(u,2)+pow(v,2)
 // Choose +'ve root or comment out
 num = sqrt(1
 // num
 phi.theta2 = atan2(num, C); // [rad]
 phiInDegrees.theta2InDegrees = phi.theta2 * 180/PI; // [deg]
 k1 = s1 + s2*cos(phi.theta2);
 k2 = s2*sin(phi.theta2);
 phi.theta1 = atan2(v, u)
 phiInDegrees.theta

 return phiInDegrees;

}; // end twoLinkInverseKinematics function

Figure 1C:

320 NXC Programming: Trajectory Planning

To make code more readable,
paste code to form the file

The H-file begins defining structures (yellow
the joint angles. Commanding the XL
often needed. Hence the function
Additionally, moving the home position (where joint
goHome was added.

Lastly, the inverse kinematics equations were cut
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function
twoLinkInverseKinematics

The program xl320
functions. To demonstrate this program, 7 way points will be used as shown in
(1) and (2) should calculate the locations of these way points as given in

void goHome() { //
// Assumes motor count of 512 denotes 0 degrees.
// Assumes Home position has Joints 1 and 2 at 0 degrees

rotateMotorAbsolutely(0.0, 0.0);

}; // end goHome function

THETA_IN_DEGREES

// Returns struct that contains the joint angles in [deg]
// based on inputs: link lengths (s1, s2) and task space position (u, v)
//

float C, k1, k2, num, den; // IK related variables for calculations
THETA_IN_DEGREES phiInDegrees; // stru
THETA phi; // structure defined at start of this program

C = (pow(u,2)+pow(v,2)
// Choose +'ve root or comment out
num = sqrt(1-pow(C,2));
// num = -sqrt(1
phi.theta2 = atan2(num, C); // [rad]
phiInDegrees.theta2InDegrees = phi.theta2 * 180/PI; // [deg]
k1 = s1 + s2*cos(phi.theta2);
k2 = s2*sin(phi.theta2);
phi.theta1 = atan2(v, u)
phiInDegrees.theta

return phiInDegrees;

}; // end twoLinkInverseKinematics function

Figure 1A

Figure 1C: 7 way points to characterize the line between start (6,8) stud

Programming: Trajectory Planning

To make code more readable, xl320
paste code to form the file xl320

file begins defining structures (yellow
the joint angles. Commanding the XL
often needed. Hence the function
Additionally, moving the home position (where joint

was added.

Lastly, the inverse kinematics equations were cut
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function
twoLinkInverseKinematics

xl320-line1_0.nxc
functions. To demonstrate this program, 7 way points will be used as shown in
(1) and (2) should calculate the locations of these way points as given in

{ //--
// Assumes motor count of 512 denotes 0 degrees.

Home position has Joints 1 and 2 at 0 degrees

rotateMotorAbsolutely(0.0, 0.0);

}; // end goHome function ---

THETA_IN_DEGREES twoLinkInverseKinematics

Returns struct that contains the joint angles in [deg]
// based on inputs: link lengths (s1, s2) and task space position (u, v)

float C, k1, k2, num, den; // IK related variables for calculations
THETA_IN_DEGREES phiInDegrees; // stru
THETA phi; // structure defined at start of this program

C = (pow(u,2)+pow(v,2) -
// Choose +'ve root or comment out

pow(C,2));
sqrt(1-pow(C,2));

phi.theta2 = atan2(num, C); // [rad]
phiInDegrees.theta2InDegrees = phi.theta2 * 180/PI; // [deg]
k1 = s1 + s2*cos(phi.theta2);
k2 = s2*sin(phi.theta2);
phi.theta1 = atan2(v, u) -
phiInDegrees.theta1InDegrees = (phi.theta1 * 180/PI); // [deg]

return phiInDegrees;

}; // end twoLinkInverseKinematics function

Figure 1A continued

7 way points to characterize the line between start (6,8) stud

Programming: Trajectory Planning

xl320-ik-1_0.nxc
xl320-twoLinkFunctions1_0a.h

file begins defining structures (yellow-
the joint angles. Commanding the XL-320 to absolute angles (based on the 512 offset value) is
often needed. Hence the function rotateMotorAbsolutely
Additionally, moving the home position (where joint

Lastly, the inverse kinematics equations were cut
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function
twoLinkInverseKinematics was created.

line1_0.nxc shown in
functions. To demonstrate this program, 7 way points will be used as shown in
(1) and (2) should calculate the locations of these way points as given in

--
// Assumes motor count of 512 denotes 0 degrees.

Home position has Joints 1 and 2 at 0 degrees

rotateMotorAbsolutely(0.0, 0.0);

twoLinkInverseKinematics

Returns struct that contains the joint angles in [deg]
// based on inputs: link lengths (s1, s2) and task space position (u, v)

float C, k1, k2, num, den; // IK related variables for calculations
THETA_IN_DEGREES phiInDegrees; // stru
THETA phi; // structure defined at start of this program

 pow(s1,2)-pow(s2,2)) / (2*s1*s2);
// Choose +'ve root or comment out

pow(C,2));
phi.theta2 = atan2(num, C); // [rad]
phiInDegrees.theta2InDegrees = phi.theta2 * 180/PI; // [deg]
k1 = s1 + s2*cos(phi.theta2);

- atan2(k2, k1); // [rad]
1InDegrees = (phi.theta1 * 180/PI); // [deg]

}; // end twoLinkInverseKinematics function

continued: Listing for

7 way points to characterize the line between start (6,8) stud

Programming: Trajectory Planning

1_0.nxc can be stripped out to create functions. Cut
twoLinkFunctions1_0a.h

-highlight) theta
320 to absolute angles (based on the 512 offset value) is
rotateMotorAbsolutely

Additionally, moving the home position (where joints angles are both at zero degrees) the function

Lastly, the inverse kinematics equations were cut-and-pasted into this H
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function

was created.

shown in Figure 1B
functions. To demonstrate this program, 7 way points will be used as shown in
(1) and (2) should calculate the locations of these way points as given in

--
// Assumes motor count of 512 denotes 0 degrees.

Home position has Joints 1 and 2 at 0 degrees

twoLinkInverseKinematics(float s1, float

Returns struct that contains the joint angles in [deg]
// based on inputs: link lengths (s1, s2) and task space position (u, v)

float C, k1, k2, num, den; // IK related variables for calculations
THETA_IN_DEGREES phiInDegrees; // structure defined at start of this program
THETA phi; // structure defined at start of this program

pow(s2,2)) / (2*s1*s2);

phiInDegrees.theta2InDegrees = phi.theta2 * 180/PI; // [deg]

atan2(k2, k1); // [rad]
1InDegrees = (phi.theta1 * 180/PI); // [deg]

}; // end twoLinkInverseKinematics function

Listing for xl320-twoLinkFunctions1_0a.h

7 way points to characterize the line between start (6,8) stud

can be stripped out to create functions. Cut
twoLinkFunctions1_0a.h as shown in

theta and thetaInDegrees
320 to absolute angles (based on the 512 offset value) is
rotateMotorAbsolutely was moved to this H

s angles are both at zero degrees) the function

pasted into this H
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function

Figure 1B contains
functions. To demonstrate this program, 7 way points will be used as shown in
(1) and (2) should calculate the locations of these way points as given in

--

Home position has Joints 1 and 2 at 0 degrees

(float s1, float s2, float u, float v) { //

Returns struct that contains the joint angles in [deg]
// based on inputs: link lengths (s1, s2) and task space position (u, v)

float C, k1, k2, num, den; // IK related variables for calculations
cture defined at start of this program

THETA phi; // structure defined at start of this program

pow(s2,2)) / (2*s1*s2);

phiInDegrees.theta2InDegrees = phi.theta2 * 180/PI; // [deg]

atan2(k2, k1); // [rad]
1InDegrees = (phi.theta1 * 180/PI); // [deg]

twoLinkFunctions1_0a.h

7 way points to characterize the line between start (6,8) stud

© Copyright Paul Oh

can be stripped out to create functions. Cut
as shown in Figure 1A

thetaInDegrees
320 to absolute angles (based on the 512 offset value) is

was moved to this H
s angles are both at zero degrees) the function

pasted into this H-file. These equations
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function

contains main and calls these
functions. To demonstrate this program, 7 way points will be used as shown in Figure 1C
(1) and (2) should calculate the locations of these way points as given in Figure 1C

--

s2, float u, float v) { //

// based on inputs: link lengths (s1, s2) and task space position (u, v)

float C, k1, k2, num, den; // IK related variables for calculations
cture defined at start of this program

THETA phi; // structure defined at start of this program

1InDegrees = (phi.theta1 * 180/PI); // [deg]

twoLinkFunctions1_0a.h

7 way points to characterize the line between start (6,8) studs and (6,-

© Copyright Paul Oh

can be stripped out to create functions. Cut
Figure 1A.

thetaInDegrees to contain
320 to absolute angles (based on the 512 offset value) is

was moved to this H-file.
s angles are both at zero degrees) the function

file. These equations
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function

and calls these
Figure 1C (left).

Figure 1C (right)

s2, float u, float v) { // ---

float C, k1, k2, num, den; // IK related variables for calculations
cture defined at start of this program

THETA phi; // structure defined at start of this program

twoLinkFunctions1_0a.h

-8) studs

© Copyright Paul Oh

can be stripped out to create functions. Cut

to contain
320 to absolute angles (based on the 512 offset value) is

file.
s angles are both at zero degrees) the function

file. These equations
calculate the joint angles. In the C programming language, functions can only return one
ariable. One approach is to use a structure variable. Thus the function

and calls these
(left).

XL-320 NXC Programming: Trajectory Planning

© Copyright Paul Oh

// FILE: xl320-line1_0.nxc
// DATE: 01/22/20 17:12
// AUTH: P.Oh
// DESC: XL-320 based 2-DOF planar manipulator. Trajectory planned based on
// a parametric line. User prescribes the desired number of equally
// spaced points given start and end points of that line
// VERS: 1.0a: xl320-twoLinkFunctions1_0a.h contains functions
// rotateMotorAbsolutely(); goHome(); twoLinkInverseKinematics()
// REFS: H-files xl320-defines1_0a.h and xl320-functions1_0d.h
// NOTE: If factory default XL-320 used, then ID is 0x01
// ID of 0xFE commands any and all XL-320 motors
// This example uses an XL-320 configured with ID# 3

#include "xl320-defines1_0a.h"
#include "xl320-functions1_0d.h"
#include "xl320-twoLinkFunctions1_0a.h"

// Global variables
bool orangeButtonPushed; // Detect Brick Center button state
bool rightArrowButtonPushed; // Detect Brick right arrow button state

task main() {

 // planar manipulator variables
 float l1, l2; // length of link 1 and link 2 [mm]

 float xDesired[], yDesired[]; // desired line's (x,y) way points
 int numberOfWayPoints; // # of points between start and end points
 int numberOfSpaces; // # of equally spaced segments
 int maxVectorSize; // # array elements = numberOfWayPoints + 2
 float xP, yP; // EE absolute position wrt x0y0 frame [mm]
 int i, j; // dummy index variables
 string str01, str02; // dummy string variables to display text
 float t; // variable for parametric equation of line

 THETA_IN_DEGREES anglesInDegrees; // struct defined in
 THETA angles; // xl320-twoLinkFunctions1_0a.h

 // Initializations
 l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long
 l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

 // Define and initialize arrays that will hold waypoints
 numberOfWayPoints = 7; // start stud + (7 studs) + end stud
 numberOfSpaces = numberOfWayPoints + 1; // i.e. hence 8 equally spaced segments
 maxVectorSize = numberOfWayPoints + 2; // include both start and end points
 ArrayInit(xDesired, 0, maxVectorSize); // initialize waypoint x vector to 0
 ArrayInit(yDesired, 0, maxVectorSize); // initialize waypoint x vector to 0
 // Initialize start and end points of line
 xDesired[0] = 6*mmPerStud; // [mm] starting point
 yDesired[0] = 8*mmPerStud; // [mm] starting point
 xDesired[numberOfWayPoints+1] = 6*mmPerStud; // [mm] ending point
 yDesired[numberOfWayPoints+1] = -8*mmPerStud; // [mm] ending point

 // Parametric equation of line to calculate equally spaced points
 i = 1;
 while (i <= (numberOfWayPoints)) {
 t = i/(numberOfWayPoints+1);
 xDesired[i] = 6*mmPerStud; // [mm]
 yDesired[i] = (yDesired[0]*(1.0-t)) + (t*yDesired[numberOfWayPoints+1]);
 i++;
 } // end of while
 sprintf(str01, "t=%3.3f " , 1.0/(numberOfWayPoints+1));
 sprintf(str02, " N=%d" , numberOfWayPoints);
 TextOut(0, LCD_LINE1, strcat(str01, str02));
 TextOut(0, LCD_LINE2, FormatNum("yD[0] = %3.2f mm" , yDesired[0]));
 sprintf(str01, "yD[%d]" , numberOfWayPoints + 1);
 sprintf(str02, "%3.2f mm" , yDesired[numberOfWayPoints + 1]);
 TextOut(0, LCD_LINE3, strcat(str01, str02));
 TextOut(0, LCD_LINE5, "Cont'd ORG");

Figure 1B: Listing for xl320-line1_0.nxc

XL-320 NXC Programming: Trajectory Planning

© Copyright Paul Oh

 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 UseRS485();
 RS485Enable();
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //57600 baud, 8bit, 1stop, no parity

 // Prompt user to begin
 ClearScreen();
 TextOut(0, LCD_LINE1, "Start: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);
 ClearScreen();

 // (1) go to home position
 TextOut(0, LCD_LINE1, "Homing...");
 Wait(2000);
 goHome();
 Wait(2000);
 TextOut(0, LCD_LINE7, "Homed");
 PlayTone(TONE_E4, 500);
 TextOut(0, LCD_LINE8, "Cont'd ORG");
 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 // (2) move to start of line
 ClearScreen();
 TextOut(0, LCD_LINE1, "Going (xP0,yP0):");
 Wait(2000);
 xP = xDesired[0];
 yP = yDesired[0];
 sprintf(str01, "(%3.2f," , xP/mmPerStud);
 sprintf(str02, "%3.2f) stud" , yP/mmPerStud);
 TextOut(0, LCD_LINE2, strcat(str01, str02));
 anglesInDegrees = twoLinkInverseKinematics(l1, l2, xP, yP);
 rotateMotorAbsolutely(anglesInDegrees.theta1InDegrees, anglesInDegrees.theta2InDegrees);
 TextOut(0, LCD_LINE7, "Now @ line start");
 TextOut(0, LCD_LINE8, "Start: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);

 // (3) Iterate thru waypoints, calculate IK, and command motor angles
 for(i=1; i <= numberOfWayPoints+1; i++) {
 xP = xDesired[i];
 yP = yDesired[i];
 anglesInDegrees = twoLinkInverseKinematics(l1, l2, xP, yP);
 sprintf(str01, "(%3.2f," , xP/mmPerStud);
 sprintf(str02, "%3.2f) stud" , yP/mmPerStud);
 TextOut(0, LCD_LINE2, strcat(str01, str02));
 // Actuate the XL-320 motors
 rotateMotorAbsolutely(anglesInDegrees.theta1InDegrees, anglesInDegrees.theta2InDegrees);
 }; // end for-loop

 // (4) Lastly, since trajectory done, go home
 Wait(3000);
 TextOut(0, LCD_LINE7, "Line done");
 TextOut(0, LCD_LINE8, "Go Home: Hit ORG");
 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);
 ClearScreen();
 goHome();
 TextOut(0, LCD_LINE4, "Homed. Exiting");
 Wait(3000);
 PlaySound(SOUND_DOUBLE_BEEP);
} // end main

Figure 1B continued: Listing for xl320-line1_0.nxc

XL-320 NXC

Recall that this LEGO
links 1 and 2 respectively. However, their mounting points on the XL
lengths of links 1 and 2 to be 7 and 5 studs long

Also rec
The first one (start point)
point) was affixed at stud location (6,
remaining 7 bricks should be mounted 2 studs apart.

320 NXC Programming: Trajectory Planning

Recall that this LEGO
links 1 and 2 respectively. However, their mounting points on the XL
lengths of links 1 and 2 to be 7 and 5 studs long

l1 = 7 * mmPerStud; // [mm] link 1 is 7 s
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

Also recall (see Figure 1
The first one (start point)
point) was affixed at stud location (6,
remaining 7 bricks should be mounted 2 studs apart.

Figure 1D:
5 studs respectively. In LEGO, studs are 8 millimeters apart.

Figure 1E:

Programming: Trajectory Planning

Recall that this LEGO-based 2
links 1 and 2 respectively. However, their mounting points on the XL
lengths of links 1 and 2 to be 7 and 5 studs long

l1 = 7 * mmPerStud; // [mm] link 1 is 7 s
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

Figure 1E), 9 yellow 1
The first one (start point) was mounted on base
point) was affixed at stud location (6,
remaining 7 bricks should be mounted 2 studs apart.

Figure 1D: One can visually count that the lengths of links 1 and 2 are 7 and
5 studs respectively. In LEGO, studs are 8 millimeters apart.

Figure 1E: There are 9 yellow 1

Programming: Trajectory Planning

based 2-link planar manipulator employs Beam 9
links 1 and 2 respectively. However, their mounting points on the XL
lengths of links 1 and 2 to be 7 and 5 studs long

l1 = 7 * mmPerStud; // [mm] link 1 is 7 s
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

), 9 yellow 1-stud bricks were placed on the 32 x 32 LEGO baseplate.
was mounted on base

point) was affixed at stud location (6, -8). One observes t
remaining 7 bricks should be mounted 2 studs apart.

One can visually count that the lengths of links 1 and 2 are 7 and
5 studs respectively. In LEGO, studs are 8 millimeters apart.

There are 9 yellow 1-

Programming: Trajectory Planning

link planar manipulator employs Beam 9
links 1 and 2 respectively. However, their mounting points on the XL
lengths of links 1 and 2 to be 7 and 5 studs long (see Figure 1D

l1 = 7 * mmPerStud; // [mm] link 1 is 7 s
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

stud bricks were placed on the 32 x 32 LEGO baseplate.
was mounted on baseplate stud location (6, 8). The ninth one (end

8). One observes t
remaining 7 bricks should be mounted 2 studs apart.

One can visually count that the lengths of links 1 and 2 are 7 and
5 studs respectively. In LEGO, studs are 8 millimeters apart.

-studs: 1 start point + 1 end point + 7 way points

link planar manipulator employs Beam 9
links 1 and 2 respectively. However, their mounting points on the XL

Figure 1D). This was defined as:

l1 = 7 * mmPerStud; // [mm] link 1 is 7 s
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

stud bricks were placed on the 32 x 32 LEGO baseplate.
plate stud location (6, 8). The ninth one (end

8). One observes that to be equally spaced apart, the

One can visually count that the lengths of links 1 and 2 are 7 and
5 studs respectively. In LEGO, studs are 8 millimeters apart.

studs: 1 start point + 1 end point + 7 way points

© Copyright Paul Oh

link planar manipulator employs Beam 9 and Beam 7 parts for
links 1 and 2 respectively. However, their mounting points on the XL-320 servos define the

. This was defined as:

l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

stud bricks were placed on the 32 x 32 LEGO baseplate.
plate stud location (6, 8). The ninth one (end

hat to be equally spaced apart, the

One can visually count that the lengths of links 1 and 2 are 7 and
5 studs respectively. In LEGO, studs are 8 millimeters apart.

studs: 1 start point + 1 end point + 7 way points

© Copyright Paul Oh

and Beam 7 parts for
320 servos define the

. This was defined as:

tuds long
l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

stud bricks were placed on the 32 x 32 LEGO baseplate.
plate stud location (6, 8). The ninth one (end

hat to be equally spaced apart, the

One can visually count that the lengths of links 1 and 2 are 7 and

studs: 1 start point + 1 end point + 7 way points

© Copyright Paul Oh

and Beam 7 parts for
320 servos define the

stud bricks were placed on the 32 x 32 LEGO baseplate.
plate stud location (6, 8). The ninth one (end

hat to be equally spaced apart, the

XL-320 NXC Programming: Trajectory Planning

© Copyright Paul Oh

Referencing the yellow-highlighted lines, this program begins with setting the desired the number
of waypoints (e.g. numberOfWayPoints = 7) and then using ArrayInit to properly size the
vectors that will hold these way point values and initialize them to zero.

The desired line trajectory will be parallel to the Y-axis. Thus the way point vector for ݔ values
will remain constant. Equations (1) and (2) is thus implemented on the ݕ values and stored in the
vector yDesired[i].

After the way point vectors have been calculated, The Brick’s Port 4 is set for 57,600 baud 8N1.
The first step is to home the manipulator by calling the goHome()function. The second step is to
move the end-effector to the line’s starting position. The values of this position are stored in
xDesired[0] and yDesired[0]. These values are passed to the function
twoLinkInverseKinematics which returns the corresponding joint angles in the structure
anglesInDegrees. These angles are then fed into rotateMotorAbsolutely to command
the two XL-320 to those angles. This process is of calling twoLinkInverseKinematics and
rotateMotorAbsolutely is used for the third step – which iterates thru the remaining way
points, including the end of the line. The fourth and final step is to home the manipulator once the
line trajectory is completed.

Compiling requires that the H-files are in the same directory as xl320-line1_0.nxc. These
H-Files are: xl320-twoLinkFunctions1_0a.h, xl320-defines1_0a.h and xl320-
functions1_0d.h. Execute the file and observe how the end-effector moves along the line.

Exercises

1.1 In xl320-line1_0.nxc change the value of numberOfWayPoints using the table below.

Compile, execute and fill your observations

numberOfWayPoints ݐ when
݅ = 1

 (ୀଵ|ݐ)݈
[stud]
value

What path does the end-effector make? How
well does it “stay” on the desired line?

1 0.5 0

2

3

5

15

31

Congratulations! You parameterized a line with equally spaced way points to
move the manipulator’s end-effector in a line.

XL-320 NXC Programming: Trajectory Planning

© Copyright Paul Oh

Concept 2: Velocities versus Positions – Reducing Delays

One key observation from Exercise 1.1 is that the end-effector’s motion is not smooth. Rather it’s
a go-stop-go motion. The core reason stems from position, rather than velocity, commands. The
program xl320-line1_0.nxc forces the end-effector to visit each way point. This leads to the
discrete, instead of a continuous, motion profile. Close examination of the
rotateMotorAbsolutely function in xl320-twoLinkFunctions1_0a.h shows:

The Wait(1000)statement creates a 1 second delay. At 57,600 baud, bits are transmitted to
through to a XL-320 servo at 17.36 microseconds (or 0.139 milliseconds per byte). There
function doesn’t perform error checking or confirms successful transmission of the byte packet.
Thus the Wait statement gives some time margin for the XL-320 servos to receive, process, and
execute the commanded motion. This time margin can be changed to reduce the go-stop-go
phenomena.

XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
// Wait(1500); // Uncomment and change value e.g. 1500 ms if troubleshooting
XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
Wait(1000); // Uncomment to see impact on communications
PlayTone(TONE_B3,50);

Exercises

2.1 Set numberOfWayPoints in xl320-line1_0.nxc and the Wait statement in xl320-

twoLinkFunctions1_0a.h using the table below.. Compile, execute, and fill your
observations

numberOfWayPoints Wait What path does the end-effector make? How well
does it “stay” on the desired line?

15 50

7 50

5 50

1 50

15 200

7 200

5 200

1 200

XL-320 NXC Programming: Trajectory Planning

© Copyright Paul Oh

Concept 3: Velocities versus Positions – On-the-Fly Velocity Commands

Many smart servos have the ability to change velocities “on-the-fly”. This means that the servo’s
velocity changes, regardless if it reached the commanded position or not, as soon as it receives a
command. One may have observed that in Exercise 2.1. For example, if the Wait time is short
(e.g. 50 milliseconds) and the number of way points was small (e.g. 5), the end-effector did not
visit all the way points. Rather, the 2-link manipulator traced a curvilinear path. This is because
the servos processed the motion command quickly and before it could reach that way point,
received the command to the next way point.

Again, close examination of the rotateMotorAbsolutely function in xl320-
twoLinkFunctions1_0a.h shows:

The yellow highlight commands each XL-320 at 200 counts/minute. The XL-320 e-manual says
that 0.111 RPM per counts/minute. Hence 200 counts/minute is 22.2 RPM. So, in addition to
adjusting the Wait statement, one can assign different velocity values in XL320_servo.

XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
// Wait(1500); // Uncomment and change value e.g. 1500 ms if troubleshooting
XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
Wait(1000); // Uncomment to see impact on communications
PlayTone(TONE_B3,50);

Exercises

3.1 Set numberOfWayPoints to 7 in xl320-line1_0.nxc and the Wait statement and

velocities in xl320-twoLinkFunctions1_0a.h using the table below.. Compile,
execute, and fill your observations

numberOfWayPoints Wait Velocity
[counts/min]

What path does the end-effector
make? How well does it “stay” on

the desired line?

15 50 200

15 50 400

15 100 200

15 100 400

5 50 200

5 50 400

5 100 200

5 100 400

XL-320 NXC Programming: Trajectory Planning

© Copyright Paul Oh

Summary Conclusions:

1. Using way points to characterize points on a line is a simply and intuitive way to move an
end-effector on a path

2. While intuitive, the way point approach is naïve; it’s a position-control approach which
yields a go-stop-go motion

3. Velocity-controlled approaches leverage a motor’s “on-the-fly” motion profile. This can
yield a smooth motion rather than a go-stop-go one.

There are many methods to implement the last point. The most popular ones define motor
velocities based on a polynomial. Examples include cubic and quintic polynomials and B-splines.
These methods still use way points, but adjust the velocities as the end-effector passes over
them.

