
XL-320 NXC Programming: Inverse Kinematics

Forward kinematics seeks to calculate end
however is the opposite
position. This lab uses the LEGO base plate to define desired end
kinematics is used to calculate the angles the 2
desired positions.

Preliminary:

Figure B
kinematics (IK) yielded the following equations.

In lecture, the end

Figure A:
servos serve as Joints 1 and 2 of a LEGO

Figure B:

 ݇ ଵ =

݇ଶ

320 NXC Programming: Inverse Kinematics

XL

Forward kinematics seeks to calculate end
however is the opposite
position. This lab uses the LEGO base plate to define desired end
kinematics is used to calculate the angles the 2
desired positions.

Preliminary: 2-link Planar Manip

Figure B shows a 2
kinematics (IK) yielded the following equations.

In lecture, the end-

Figure A: The green colored 1
servos serve as Joints 1 and 2 of a LEGO

ߠ

igure B: 2-link planar manipulator (left) and with reference frames and rotations

= ݈ଵ + ݈ଶ cos ߠ

= ݈ଶ sin ଶߠ

320 NXC Programming: Inverse Kinematics

XL-320 NXC Programming

Forward kinematics seeks to calculate end
however is the opposite – calculate the joint configurations to move the end
position. This lab uses the LEGO base plate to define desired end
kinematics is used to calculate the angles the 2

link Planar Manip

shows a 2-link planar manipulator with link lengths
kinematics (IK) yielded the following equations.

-effector (EE)

The green colored 1
servos serve as Joints 1 and 2 of a LEGO

ଶߠ = 2݊ܽݐܽ ቌ±

ଵߠ

link planar manipulator (left) and with reference frames and rotations

ݎ ଶߠ
ଶ = ݇ଵ

320 NXC Programming: Inverse Kinematics

Hands

NXC Programming

Forward kinematics seeks to calculate end-effector positions given joint positions. More common
calculate the joint configurations to move the end

position. This lab uses the LEGO base plate to define desired end
kinematics is used to calculate the angles the 2

link Planar Manipulator and

link planar manipulator with link lengths
kinematics (IK) yielded the following equations.

 has the position (

The green colored 1-stud bricks mark desired end
servos serve as Joints 1 and 2 of a LEGO-

± ൝1 − ቆ
ݔ

ଶ + ݕ

ଵ = ,ݕ2൫݊ܽݐܽ

link planar manipulator (left) and with reference frames and rotations

ଵ
ଶ + ݇ଶ

ଶ ߛ

320 NXC Programming: Inverse Kinematics

Hands-on Lab

NXC Programming – Inverse

effector positions given joint positions. More common
calculate the joint configurations to move the end

position. This lab uses the LEGO base plate to define desired end
kinematics is used to calculate the angles the 2-link planar manipulator must go to, to reach those

ulator and Inverse Kinematics

link planar manipulator with link lengths
kinematics (IK) yielded the following equations.

has the position ൫ݔ, ݕ

stud bricks mark desired end
-based 2-link planar manipulator.

ݕ
ଶ − ݈ଵ

ଶ − ݈ଶ
ଶ

2݈ଵ݈ଶ
ቇ

ଶ

, ൯ݔ −)2݊ܽݐܽ

link planar manipulator (left) and with reference frames and rotations

ߛ = tanିଵ ൬
݇ଶ

݇ଵ
൰

on Lab

Inverse Kinematics

effector positions given joint positions. More common
calculate the joint configurations to move the end

position. This lab uses the LEGO base plate to define desired end-
link planar manipulator must go to, to reach those

Kinematics

link planar manipulator with link lengths ݈ଵ and

൯ given by:

stud bricks mark desired end-effector positions. The XL
link planar manipulator.

ଶ

ൡ
ଵ/ଶ

,
ݔ

ଶ + ݕ

2

(݇ଶ, ݇ଵ)

link planar manipulator (left) and with reference frames and rotations

൰ ݇ଵ = ݎ

݇ଶ = ݎ
 © Copyright Paul Oh

Kinematics

effector positions given joint positions. More common
calculate the joint configurations to move the end-effector to a

-effector positions. Inverse
link planar manipulator must go to, to reach those

and ݈ଶ. Recall that the inverse

given by:

effector positions. The XL
link planar manipulator.

ݕ
ଶ − ݈ଵ

ଶ − ݈ଶ
ଶ

2݈ଵ݈ଶ
ቍ

link planar manipulator (left) and with reference frames and rotations

ݎ cos ߛ

ݎ sin ߛ

© Copyright Paul Oh

effector positions given joint positions. More common
effector to a desired

effector positions. Inverse
link planar manipulator must go to, to reach those

. Recall that the inverse

effector positions. The XL-320

(1)

(2)

link planar manipulator (left) and with reference frames and rotations ߠଵandߠଶ(right)

(3)

© Copyright Paul Oh

effector positions given joint positions. More common
desired

effector positions. Inverse
link planar manipulator must go to, to reach those

. Recall that the inverse

(right)

XL-320 NXC Programming: Inverse Kinematics

© Copyright Paul Oh

Concept 1 Implement Inverse Kinematics Equations xl320-ik-1_0.nxc

Figure 1A is the NXC code for implementing (1) for the 2-link planar manipulator. The code uses
the previously created H-files xl320-defines1_0a.h and xl320-functions1_0d.h which
define the constants and functions for using the XL-320 servo. Note: much of this code follows
xl320-2dof-fk-1_0.nxc developed in the previous forward kinematics lab.

// FILE: xl320-ik-1_0.nxc - Works!
// DATE: 01/16/20 09:12
// AUTH: P.Oh
// DESC: Inverse kinematics for 2-DOF planar manipulator using Dynamixel XL-320

#include "xl320-defines1_0a.h" // XL-320 defines from Control Table
#include "xl320-functions1_0d.h" // P.Oh functions written for XL-320

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X03 // Assumes Motor 1 configured with ID = 3
#define ID_MOTOR02 0X07 // Assumes Motor 2 configured with ID = 7
#define mmPerStud 8 // 8 millimeters per LEGO stud

// Global variables
 bool orangeButtonPushed; // Detect Brick Center button state
 bool rightArrowButtonPushed; // Detect Brick right arrow button state

void rotateMotorAbsolutely(float angle01, float angle02) { //------------------
 // Rotates desired the two Dynamixel XL-320 motors to their desired angles
 // Assumes motor count of 512 denotes 0 degrees. Uses right-hand rule for
 // rotational direction

 float desiredAngle01InDegrees; // Angle Motor 1 to move to [deg]
 float desiredAngle02InDegrees; // Angle Motor 2 to move to [deg]
 float degreesPerCount; // Conversion 0.29 [degrees/count]
 float calculatedCount; // Count equivalent of desired angle [count]
 int motor01Offset; // Motor 1's offset [count]
 float theta01InDegrees; // Motor 1 angle [counts]
 int theta01InCounts; // Motor 1 angle [deg]
 int motor02Offset; // Motor 2's offset [count]
 float theta02InDegrees; // Motor 2 angle [counts]
 int theta02InCounts; // Motor 2 angle [deg]
 string msg01, msg02; // dummy strings to print values to screen

 motor01Offset = 512; // Set Link 1 at 0 deg (i.e. 512 counts)
 motor02Offset = 512; // Set Link 2 at 0 deg (i.e. 512 counts)

 // Note 1: Looking into horn from Top, count > 512 is CCW (i.e. +Z axis)
 // and count < 512 is CW (i.e. -Z axis)
 degreesPerCount = 0.29; // [deg/count] found from XL-320 data sheet

 ClearScreen();
 desiredAngle01InDegrees = angle01;
 theta01InCounts = motor01Offset + desiredAngle01InDegrees/degreesPerCount;
 desiredAngle02InDegrees = angle02;
 theta02InCounts = motor02Offset + desiredAngle02InDegrees/degreesPerCount;

 // Format string so displays nicely on Brick screen
 sprintf(msg01, "Goto [%3.1f, " ,desiredAngle01InDegrees);
 sprintf(msg02, "%3.1f]" , desiredAngle02InDegrees);
 TextOut(0, LCD_LINE2, strcat(msg01, msg02));

 XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
 Wait(2000); // wait about 2 seconds before issuing another command
 XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
 Wait(2000); // wait about 2 seconds before issuing another command
 PlayTone(TONE_B3,50);

}; // end rotateMotorAbsolutely function ---------------------------------

Figure 1A: Inverse kinematics program xl320-ik-1_0.nxc

XL-320 NXC Programming: Inverse Kinematics

© Copyright Paul Oh

task main() {

 // planar manipulator variables
 float l1, l2; // length of link 1 and link 2 [mm]
 float theta1, theta2; // angle of joint 1 and joint 2 [rad]
 float theta1InDegrees, theta2InDegrees; // angle of joint 1 and 2 [deg]
 float xCalibrate[5], yCalibrate[5]; // 4 (x,y) calibration points wrt x0y0 frame [mm]
 ArrayInit(xCalibrate, 0, 5); // initialize the (4x1) x vector with zeros
 ArrayInit(yCalibrate, 0, 5); // initialize the (4x1) y vector with zeros
 float xP, yP; // end-effector absolute position i.e. wrt x0y0 frame [mm]

 // calculation and dummy variables
 float C, k1, k2, num, den;
 int i;

 // initializations
 l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long
 l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long
 // xCalibration[i] and yCalibrate[i] in [mm]
 // 90-degree calibration points easiest to envision end-effector location
 xCalibrate[0] = l1; yCalibrate[0] = l2; // +'ve root: (theta1, theta2)=(0,90)
 xCalibrate[1] = l1; yCalibrate[1] = -l2; // -'ve root: (theta1, theta2)=(0,-90)
 xCalibrate[2] = l2; yCalibrate[2] = l1; // -'ve root: (theta1, theta2)=(90,-90)
 xCalibrate[3] = l2; yCalibrate[3] = -l1; // +'ve root: (theta1, theta2)=(-90,90)
 // slightly harder to envision example
 // [mm] (theta1, theta2) will = +'ve root (8.7, 43.2) or -'ve (44.4, -43.2)
 xCalibrate[4] = 10 * mmPerStud; yCalibrate[4] = 5 * mmPerStud;

 UseRS485();
 RS485Enable();
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //57600 baud, 8bit, 1stop, no parity

 ClearScreen();
 // Prompt user to begin
 TextOut(0, LCD_LINE1, "Start: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);
 ClearScreen();

 // First go to home position
 ClearScreen();
 TextOut(0, LCD_LINE2, "Homing...");
 Wait(2000);
 theta1InDegrees = theta2InDegrees = 0.0;
 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 Wait(2000);
 PlayTone(TONE_E4, 500);

 // Next, go to desired points
 for(i=0; i<=4; i++) { // cycle thru the 4 calibration points and 5th point
 xP = xCalibrate[i];
 yP = yCalibrate[i];
 // pow function for power. Using ^ is incorrect
 C = (pow(xP,2)+pow(yP,2) - pow(l1,2)-pow(l2,2)) / (2*l1*l2);
 if(i==0 || i==3) { // choose +'ve root
 num = sqrt(1-pow(C,2));
 } else { // use -'ve root for xPCalibrate[1], yPCalibrate[1] theta2 should be -90
 num = sqrt(1-pow(C,2));
 };
 theta2 = atan2(num, C); // [rad]
 theta2InDegrees = theta2 * 180/PI; // [deg]
 k1 = l1 + l2*cos(theta2);
 k2 = l2*sin(theta2);
 theta1 = atan2(yP, xP) - atan2(k2, k1); // [rad]
 theta1InDegrees = (theta1 * 180/PI); // [deg]

 // Actuate the XL-320 motors
 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 }; // end for-loop

Figure 1A continued: Inverse kinematics program xl320-ik-1_0.nxc

XL-320 NXC Programming: Inverse Kinematics

© Copyright Paul Oh

To repeat the NXC code in Figure 1A is very much like the previous lab’s code (xl320-2dof-
fk-1_0.nxc). Thus only the key differences of xl320-ik-1_0.nxc will be described.

The main function initializes (see yellow highlight in Figure 1A) the link lengths ݈ଵ and ݈ଶ in
millimeters. Also, arrays are used to simplify coding. Five desired points (called xCalibrate
and yCalibrate) are defined. For the first four, the necessary joint angles can be easily
visualized, and confirmed when the program runs. The last point is harder to visualize what joint
angles are needed but during run-time, one can visually observe that the end-effector indeed
reaches that point.

To make the code more readable, one observes in Figure 1A:

C = (pow(xP,2)+pow(yP,2) - pow(l1,2)-pow(l2,2)) / (2*l1*l2);

This implements:

ݔ
ଶ + ݕ

ଶ − ݈ଵ
ଶ − ݈ଶ

ଶ

2݈ଵ݈ଶ

which is a part of (1). The remaining yellow highlighted lines in Figure 1A implement (2) and (3).

The for-loop commands the XL-320 servos to the necessary joint angles for each desired
calibration point. Figure A shows green-colored 1-stud bricks. These are fixed on the LEGO
base plate for each xCalibrate and yCalibrate position. Running the code, the 2-link
planar manipulator’s end-effector should hover over these green-colored 1-stud bricks.

Exercises

1.1 Edit xl320-ik-1_0.nxc to use the negative square roots of (1). Calculate by hand, what

the resulting xCalibrate and yCalibrate points should be, Affix green-colored 1-stud
bricks at these points. Confirm your program indeed commands the 2-link planar
manipulator’s end-effector to hover over those points.

1.2 Unscrew and reverse the beams such that Link 1 is a Beam 7 and Link 2 is a Beam 9 and

appropriately change in xl320-ik-1_0.nxc. Affix green-colored 1-stud bricks at these
points. Confirm your program indeed commands the 2-link planar manipulator’s end-
effector to hover over those points.

Congratulations! You implemented Inverse Kinematics for the 2-link planar
manipulator

 // Go back to home position
 ClearScreen();
 TextOut(0, LCD_LINE2, "Back to Home");
 Wait(2000);
 theta1InDegrees = theta2InDegrees = 0.0;
 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 Wait(2000);
 PlaySound(SOUND_DOUBLE_BEEP);
} // end main

Figure 1A continued: Inverse kinematics program xl320-ik-1_0.nxc

