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Concept 1 Implement Inverse Kinematics Equations xl320-ik-1_0.nxc 
 
Figure 1A is the NXC code for implementing (1) for the 2-link planar manipulator.  The code uses 
the previously created H-files xl320-defines1_0a.h and xl320-functions1_0d.h which 
define the constants and functions for using the XL-320 servo.  Note: much of this code follows 
xl320-2dof-fk-1_0.nxc developed in the previous forward kinematics lab. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// FILE: xl320-ik-1_0.nxc - Works! 
// DATE: 01/16/20 09:12 
// AUTH: P.Oh 
// DESC: Inverse kinematics for 2-DOF planar manipulator using Dynamixel XL-320 
 
#include "xl320-defines1_0a.h"   // XL-320 defines from Control Table 
#include "xl320-functions1_0d.h" // P.Oh functions written for XL-320 
 
#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors 
#define ID_MOTOR01    0X03 // Assumes Motor 1 configured with ID = 3 
#define ID_MOTOR02    0X07 // Assumes Motor 2 configured with ID = 7 
#define mmPerStud     8    // 8 millimeters per LEGO stud 
 
// Global variables 
  bool  orangeButtonPushed;      // Detect Brick Center button state 
  bool  rightArrowButtonPushed;  // Detect Brick right arrow button state 
 
void rotateMotorAbsolutely(float angle01, float angle02) { //------------------ 
 // Rotates desired the two Dynamixel XL-320 motors to their desired angles 
 // Assumes motor count of 512 denotes 0 degrees.  Uses right-hand rule for 
 // rotational direction 
 
  float desiredAngle01InDegrees;   // Angle Motor 1 to move to [deg] 
  float desiredAngle02InDegrees;   // Angle Motor 2 to move to [deg] 
  float degreesPerCount;           // Conversion 0.29 [degrees/count] 
  float calculatedCount;           // Count equivalent of desired angle [count] 
  int   motor01Offset;             // Motor 1's offset [count] 
  float theta01InDegrees;          // Motor 1 angle [counts] 
  int   theta01InCounts;           // Motor 1 angle [deg] 
  int   motor02Offset;             // Motor 2's offset [count] 
  float theta02InDegrees;          // Motor 2 angle [counts] 
  int   theta02InCounts;           // Motor 2 angle [deg] 
  string msg01, msg02;             // dummy strings to print values to screen 
   
  motor01Offset = 512; // Set Link 1 at 0 deg (i.e. 512 counts) 
  motor02Offset = 512; // Set Link 2 at 0 deg (i.e. 512 counts) 
 
  // Note 1: Looking into horn from Top, count > 512 is CCW (i.e. +Z axis) 
  // and count < 512 is CW (i.e. -Z axis) 
  degreesPerCount = 0.29; // [deg/count] found from XL-320 data sheet 
 
  ClearScreen(); 
  desiredAngle01InDegrees = angle01; 
  theta01InCounts = motor01Offset + desiredAngle01InDegrees/degreesPerCount; 
  desiredAngle02InDegrees = angle02; 
  theta02InCounts = motor02Offset + desiredAngle02InDegrees/degreesPerCount; 
 
  // Format string so displays nicely on Brick screen 
  sprintf(msg01, "Goto [%3.1f, " ,desiredAngle01InDegrees); 
  sprintf(msg02, "%3.1f]" , desiredAngle02InDegrees); 
  TextOut(0, LCD_LINE2, strcat(msg01, msg02)); 
   
  XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200 
  Wait(2000); // wait about 2 seconds before issuing another command 
  XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200 
  Wait(2000); // wait about 2 seconds before issuing another command 
  PlayTone(TONE_B3,50); 
 
}; // end rotateMotorAbsolutely function --------------------------------- 
 

Figure 1A: Inverse kinematics program xl320-ik-1_0.nxc 
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task main() { 
 
  // planar manipulator variables 
  float l1, l2; // length of link 1 and link 2 [mm] 
  float theta1, theta2; // angle of joint 1 and joint 2 [rad] 
  float theta1InDegrees, theta2InDegrees; // angle of joint 1 and 2 [deg] 
  float xCalibrate[5], yCalibrate[5]; // 4 (x,y) calibration points wrt x0y0 frame [mm] 
  ArrayInit(xCalibrate, 0, 5); // initialize the (4x1) x vector with zeros 
  ArrayInit(yCalibrate, 0, 5); // initialize the (4x1) y vector with zeros 
  float xP, yP; // end-effector absolute position i.e. wrt x0y0 frame [mm] 
 
  // calculation and dummy variables 
  float C, k1, k2, num, den; 
  int i; 
 
  // initializations 
  l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long 
  l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long 
  // xCalibration[i] and yCalibrate[i] in [mm] 
  // 90-degree calibration points easiest to envision end-effector location 
  xCalibrate[0] = l1; yCalibrate[0] = l2;  // +'ve root: (theta1, theta2)=(0,90) 
  xCalibrate[1] = l1; yCalibrate[1] = -l2; // -'ve root: (theta1, theta2)=(0,-90) 
  xCalibrate[2] = l2; yCalibrate[2] = l1;  // -'ve root: (theta1, theta2)=(90,-90) 
  xCalibrate[3] = l2; yCalibrate[3] = -l1; // +'ve root: (theta1, theta2)=(-90,90) 
  // slightly harder to envision example 
  // [mm] (theta1, theta2) will = +'ve root (8.7, 43.2) or -'ve (44.4, -43.2) 
  xCalibrate[4] = 10 * mmPerStud; yCalibrate[4] = 5 * mmPerStud; 
 
  UseRS485(); 
  RS485Enable(); 
  RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //57600 baud, 8bit, 1stop, no parity 
 
  ClearScreen(); 
  // Prompt user to begin 
  TextOut(0, LCD_LINE1, "Start: hit ->"); 
  do { 
     rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE); 
  } while(!rightArrowButtonPushed); 
  ClearScreen(); 
   
  // First go to home position 
  ClearScreen(); 
  TextOut(0, LCD_LINE2, "Homing..." ); 
  Wait(2000); 
  theta1InDegrees = theta2InDegrees = 0.0; 
  rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees); 
  Wait(2000); 
  PlayTone(TONE_E4, 500); 
 
  // Next, go to desired points 
  for(i=0; i<=4; i++) { // cycle thru the 4 calibration points and 5th point 
      xP = xCalibrate[i]; 
      yP = yCalibrate[i]; 
      // pow function for power.  Using ^ is incorrect 
      C = ( pow(xP,2)+pow(yP,2) - pow(l1,2)-pow(l2,2) ) / (2*l1*l2); 
      if(i==0 || i==3) { // choose +'ve root 
         num = sqrt(1-pow(C,2)); 
      } else { // use -'ve root for xPCalibrate[1], yPCalibrate[1] theta2 should be -90 
         num = sqrt(1-pow(C,2)); 
      }; 
      theta2 = atan2(num, C); // [rad] 
      theta2InDegrees = theta2 * 180/PI; // [deg] 
      k1 = l1 + l2*cos(theta2); 
      k2 = l2*sin(theta2); 
      theta1 = atan2(yP, xP) - atan2(k2, k1); // [rad] 
      theta1InDegrees = (theta1 * 180/PI); // [deg] 
 
      // Actuate the XL-320 motors 
      rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees); 
  }; // end for-loop 
 

Figure 1A continued: Inverse kinematics program xl320-ik-1_0.nxc 
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To repeat the NXC code in Figure 1A is very much like the previous lab’s code (xl320-2dof-
fk-1_0.nxc). Thus only the key differences of xl320-ik-1_0.nxc will be described. 
 
The main function initializes (see yellow highlight in Figure 1A) the link lengths ݈ଵ and  ݈ଶ in 
millimeters.  Also, arrays are used to simplify coding.  Five desired points (called xCalibrate 
and yCalibrate) are defined.  For the first four, the necessary joint angles can be easily 
visualized, and confirmed when the program runs.  The last point is harder to visualize what joint 
angles are needed but during run-time, one can visually observe that the end-effector indeed 
reaches that point. 
 
To make the code more readable, one observes in Figure 1A: 
 

C = ( pow(xP,2)+pow(yP,2) - pow(l1,2)-pow(l2,2) ) / (2*l1*l2); 
 
This implements: 
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which is a part of (1).  The remaining yellow highlighted lines in Figure 1A implement (2) and (3). 
 
The for-loop commands the XL-320 servos to the necessary joint angles for each desired 
calibration point.  Figure A shows green-colored 1-stud bricks.  These are fixed on the LEGO 
base plate for each xCalibrate and yCalibrate position.  Running the code, the 2-link 
planar manipulator’s end-effector should hover over these green-colored 1-stud bricks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercises 
 
1.1 Edit xl320-ik-1_0.nxc to use the negative square roots of (1).  Calculate by hand, what 

the resulting xCalibrate and yCalibrate points should be,   Affix green-colored 1-stud 
bricks at these points.  Confirm your program indeed commands the 2-link planar 
manipulator’s end-effector to hover over those points. 

 
1.2 Unscrew and reverse the beams such that Link 1 is a Beam 7 and Link 2 is a Beam 9 and 

appropriately change in xl320-ik-1_0.nxc.  Affix green-colored 1-stud bricks at these 
points.  Confirm your program indeed commands the 2-link planar manipulator’s end-
effector to hover over those points. 

Congratulations!  You implemented Inverse Kinematics for the 2-link planar 
manipulator 

 

  // Go back to home position 
  ClearScreen(); 
  TextOut(0, LCD_LINE2, "Back to Home" ); 
  Wait(2000); 
  theta1InDegrees = theta2InDegrees = 0.0; 
  rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees); 
  Wait(2000); 
  PlaySound(SOUND_DOUBLE_BEEP); 
} // end main 
 

Figure 1A continued: Inverse kinematics program xl320-ik-1_0.nxc 


