
XL-320 NXC Programming:

Reference frames determine the relationship of the end
Denavit
The resulting frames define the tool transformation matrix and hence the robot’s forward
kinematics. This lab commands the 2
effector reaches the theoretical position.

Preliminary:

Figure B

In lecture, the end

Figure A:
(left).
the end

Figure B:

320 NXC Programming:

XL

Reference frames determine the relationship of the end
Denavit-Hartenberg (DH) notation prescribes the position and orientation of each joint’s
The resulting frames define the tool transformation matrix and hence the robot’s forward
kinematics. This lab commands the 2
effector reaches the theoretical position.

Preliminary: 2-link P

Figure B shows a 2

In lecture, the end-

Figure A: XL-320 servos serve as Joints 1 and 2 of a LEGO
(left). The colored circular 1
the end-effector.

Figure B: 2-link planar manipulator (left) and with reference frames and rotations

320 NXC Programming: Forward Kinematics

XL-320 NXC Programming

Reference frames determine the relationship of the end
Hartenberg (DH) notation prescribes the position and orientation of each joint’s

The resulting frames define the tool transformation matrix and hence the robot’s forward
kinematics. This lab commands the 2
effector reaches the theoretical position.

link Planar Manipulator and Forward Kinematics

shows a 2-link planar manipulator with link lengths

-effector (EE)

320 servos serve as Joints 1 and 2 of a LEGO
The colored circular 1-stud bricks on the base plate are various

 XL-320 manual shows the servo is centered at position 512 [counts] (right).

link planar manipulator (left) and with reference frames and rotations

Forward Kinematics

Hands

NXC Programming

Reference frames determine the relationship of the end
Hartenberg (DH) notation prescribes the position and orientation of each joint’s

The resulting frames define the tool transformation matrix and hence the robot’s forward
kinematics. This lab commands the 2-link planar manipulator’s joint angles to verify its end
effector reaches the theoretical position.

lanar Manipulator and Forward Kinematics

link planar manipulator with link lengths

 has the position (

320 servos serve as Joints 1 and 2 of a LEGO
stud bricks on the base plate are various

320 manual shows the servo is centered at position 512 [counts] (right).

link planar manipulator (left) and with reference frames and rotations

ݔ = ݈ଵ cos ߠ
ݕ = ݈ଵ sin ߠ

Forward Kinematics

Hands-on Lab

NXC Programming – Forward Kinematics

Reference frames determine the relationship of the end
Hartenberg (DH) notation prescribes the position and orientation of each joint’s

The resulting frames define the tool transformation matrix and hence the robot’s forward
link planar manipulator’s joint angles to verify its end

lanar Manipulator and Forward Kinematics

link planar manipulator with link lengths

has the position ൫ݔ, ݕ

320 servos serve as Joints 1 and 2 of a LEGO
stud bricks on the base plate are various

320 manual shows the servo is centered at position 512 [counts] (right).

link planar manipulator (left) and with reference frames and rotations

ଵߠ + ݈ଶ cos(ߠଵ +
ଵߠ + ݈ଶ sin(ߠଵ +

on Lab

Forward Kinematics

Reference frames determine the relationship of the end-effector’s position relative to the base.
Hartenberg (DH) notation prescribes the position and orientation of each joint’s

The resulting frames define the tool transformation matrix and hence the robot’s forward
link planar manipulator’s joint angles to verify its end

lanar Manipulator and Forward Kinematics

link planar manipulator with link lengths ݈ଵ and ݈ଶ.

൯ given by:

320 servos serve as Joints 1 and 2 of a LEGO-based 2
stud bricks on the base plate are various

320 manual shows the servo is centered at position 512 [counts] (right).

link planar manipulator (left) and with reference frames and rotations

+ (ଶߠ
+ (ଶߠ

© Copyright Paul Oh

Forward Kinematics

effector’s position relative to the base.
Hartenberg (DH) notation prescribes the position and orientation of each joint’s

The resulting frames define the tool transformation matrix and hence the robot’s forward
link planar manipulator’s joint angles to verify its end

given by:

based 2-link planar manipulator
stud bricks on the base plate are various (ݔ, goals positions for (ݕ

320 manual shows the servo is centered at position 512 [counts] (right).

link planar manipulator (left) and with reference frames and rotations

© Copyright Paul Oh

effector’s position relative to the base.
Hartenberg (DH) notation prescribes the position and orientation of each joint’s frame.

The resulting frames define the tool transformation matrix and hence the robot’s forward
link planar manipulator’s joint angles to verify its end

link planar manipulator
goals positions for

320 manual shows the servo is centered at position 512 [counts] (right).

link planar manipulator (left) and with reference frames and rotations ߠଵandߠଶ(right)

(1)

© Copyright Paul Oh

effector’s position relative to the base.
frame.

The resulting frames define the tool transformation matrix and hence the robot’s forward
link planar manipulator’s joint angles to verify its end-

goals positions for

(right)

XL-320 NXC Programming: Forward Kinematics

© Copyright Paul Oh

Concept 1 Implement Forward Kinematics Equations xl320-2dof-fk-1_0.nxc

Figure 1A is the NXC code for implementing (1) for the 2-link planar manipulator. The code uses
the previously created H-files xl320-defines1_0a.h and xl320-functions1_0d.h which
define the constants and functions for using the XL-320 servo.

// FILE: xl320-2dof-fk-1_0.nxc - Works!
// DATE: 01/11/20 19:20
// AUTH: P.Oh
// DESC: Forward kinematics for 2-DOF planar manipulator using Dynamixel XL-320

#include "xl320-defines1_0a.h" // XL-320 defines from Control Table
#include "xl320-functions1_0d.h" // P.Oh functions written for XL-320

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X03 // Assumes Motor 1 configured with ID = 3
#define ID_MOTOR02 0X07 // Assumes Motor 2 configured with ID = 7
#define mmPerStud 8 // 8 millimeters per LEGO stud

// Global variables
 bool orangeButtonPushed; // Detect Brick Center button state
 bool rightArrowButtonPushed; // Detect Brick right arrow button state
 bool leftArrowButtonPushed; // Detect Brick left arrow button state
 bool greyButtonPushed; // Detect Brick Grey/Abort button state

void rotateMotorAbsolutely(float angle01, float angle02) { //------------------
 // Rotates desired the two Dynamixel XL-320 motors to their desired angles
 // Assumes motor count of 512 denotes 0 degrees. Uses right-hand rule for
 // rotational direction

 float desiredAngle01InDegrees; // Angle Motor 1 to move to [deg]
 float desiredAngle02InDegrees; // Angle Motor 2 to move to [deg]
 float degreesPerCount; // Conversion 0.29 [degrees/count]
 float calculatedCount; // Count equivalent of desired angle [count]
 int motor01Offset; // Motor 1's offset [count]
 float theta01InDegrees; // Motor 1 angle [counts]
 int theta01InCounts; // Motor 1 angle [deg]
 int motor02Offset; // Motor 2's offset [count]
 float theta02InDegrees; // Motor 2 angle [counts]
 int theta02InCounts; // Motor 2 angle [deg]
 string msg01, msg02; // dummy strings to print values to screen

 motor01Offset = 512; // Set Link 1 at 0 deg (i.e. 512 counts)
 motor02Offset = 512; // Set Link 2 at 0 deg (i.e. 512 counts)

 // Note 1: Looking into horn from Top, count > 512 is CCW (i.e. +Z axis)
 // and count < 512 is CW (i.e. -Z axis)
 degreesPerCount = 0.29; // [deg/count] found from XL-320 data sheet

 ClearScreen();
 desiredAngle01InDegrees = angle01;
 theta01InCounts = motor01Offset + desiredAngle01InDegrees/degreesPerCount;
 desiredAngle02InDegrees = angle02;
 theta02InCounts = motor02Offset + desiredAngle02InDegrees/degreesPerCount;

 // Format string so displays nicely on Brick screen
 sprintf(msg01, "Goto [%3.1f, " ,desiredAngle01InDegrees);
 sprintf(msg02, "%3.1f]" , desiredAngle02InDegrees);
 TextOut(0, LCD_LINE2, strcat(msg01, msg02));

 XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200
 Wait(2000); // wait about 2 seconds before issuing another command
 XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200
 Wait(2000); // wait about 2 seconds before issuing another command
 PlayTone(TONE_B3,50);

}; // end rotateMotorAbsolutely function ---------------------------------

Figure 1A: Forward kinematics program xl320-2dof-fk-1_0.nxc

XL-320 NXC Programming: Forward Kinematics

© Copyright Paul Oh

task main() {

 // planar manipulator variables
 float l1, l2; // length of link 1 and link 2 [mm]
 float theta1, theta2; // angle of joint 1 and joint 2 [rad]
 float theta1InDegrees, theta2InDegrees; // angle of joint 1 and 2 [deg]
 float xP0, yP0; // end-effector absolute position i.e. wrt x0y0 frame [mm]
 int xP0InStuds, yP0InStuds; // [studs]
 // calculation and dummy variables
 float C, k1, k2, num, den;
 int i;
 // initializations
 l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long
 l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long

 UseRS485();
 RS485Enable();
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //57600 baud, 8bit, 1stop, no parity

 ClearScreen();
 // Prompt user to begin
 TextOut(0, LCD_LINE1, "Start: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);
 ClearScreen();

 // First go to home position
 ClearScreen();
 TextOut(0, LCD_LINE2, "Homing...");
 Wait(2000);
 theta1InDegrees = theta2InDegrees = 0.0;
 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 Wait(2000);
 PlayTone(TONE_E4, 500);
 // Second, user sets desired theta 1 and theta 2 here
 theta1InDegrees = 0.0; // [deg]
 theta2InDegrees = 90.0; // [deg]
 theta1 = theta1InDegrees * PI/180; // [rad]
 theta2 = theta2InDegrees * PI/180; // [rad]
 // Forward Kinematics equations yield end-effector position (xP0, yP0)
 xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
 yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2); // [mm]
 // End-effector position in LEGO studs
 xP0InStuds = ceil(xP0 / mmPerStud); // round up [stud]
 yP0InStuds = ceil(yP0 / mmPerStud); // round up [stud]
 ClearScreen();
 TextOut(0, LCD_LINE1, "Will go to:");
 TextOut(0, LCD_LINE3, FormatNum("xP0 = %3d studs" , xP0InStuds));
 TextOut(0, LCD_LINE5, FormatNum("yP0 = %3d studs" , yP0InStuds));
 // Prompt user to begin motion
 TextOut(0, LCD_LINE8, "Yes: hit ->");
 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);
 ClearScreen();

 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);

 // Last, go back to home position and quit
 ClearScreen();
 TextOut(0, LCD_LINE2, "Back to Home");
 Wait(2000);
 theta1InDegrees = theta2InDegrees = 0.0;
 rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees);
 Wait(2000);
 PlaySound(SOUND_DOUBLE_BEEP);
} // end main

Figure 1A continued: xl320-2dof-fk-1_0.nxc

XL-320 NXC Programming:

This particular 2
and 0x07
from its standard 8
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such
the mmPerStud

The links are affixed to the XL
beams, t
[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
rotateMotorAbsolutely
highlighted lines for

The main function defines the link lengths. This particular 2
Beams 7 and 5 for link lengths

The Brick
prompts the user to push the right arrow button to commence. Once pushed, the XL
are commanded to their home position. For this example, home position is defined by
two links aligned with the +X axis.

For this example, joint angles are set at
the result as shown in

The lines below are the forward kinematics for the 2
that NXC says cos and sin take radians as arguments.

The program displays the calculated EE position in stud values. Since these calculations are in
float, the NXC
position, the program then returns to the home posit

Figure 1B:

Congratulations! You

320 NXC Programming:

This particular 2-link planar manipulator uses two XL
0x07 respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

from its standard 8
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

mmPerStud is also defined.

The links are affixed to the XL
beams, they are oriented to align with the +X
[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
rotateMotorAbsolutely
highlighted lines for

main function defines the link lengths. This particular 2
Beams 7 and 5 for link lengths

The Brick sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
prompts the user to push the right arrow button to commence. Once pushed, the XL
are commanded to their home position. For this example, home position is defined by
two links aligned with the +X axis.

For this example, joint angles are set at
the result as shown in

The lines below are the forward kinematics for the 2
that NXC says cos and sin take radians as arguments.

xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2

The program displays the calculated EE position in stud values. Since these calculations are in
float, the NXC ceil
position, the program then returns to the home posit

Figure 1B: 2-link planar manipulator in home position (left). Configuration after execution (right)

Congratulations! You

320 NXC Programming: Forward Kinematics

link planar manipulator uses two XL
respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

from its standard 8 ݉݉ stud spacing. This spacing is universall
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

is also defined.

The links are affixed to the XL
hey are oriented to align with the +X

[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
rotateMotorAbsolutely is written to account for this 512 [count]
highlighted lines for motor01Offset

main function defines the link lengths. This particular 2
Beams 7 and 5 for link lengths ݈

sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
prompts the user to push the right arrow button to commence. Once pushed, the XL
are commanded to their home position. For this example, home position is defined by
two links aligned with the +X axis.

For this example, joint angles are set at
the result as shown in Figure 1B

The lines below are the forward kinematics for the 2
that NXC says cos and sin take radians as arguments.

xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2

The program displays the calculated EE position in stud values. Since these calculations are in
ceil function rounds up to the nearest integer of studs. After reaching the EE

position, the program then returns to the home posit

link planar manipulator in home position (left). Configuration after execution (right)

Congratulations! You

Forward Kinematics

link planar manipulator uses two XL
respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

stud spacing. This spacing is universall
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

is also defined.

The links are affixed to the XL-320’s horns with M2.5 screws. Before screwing these LEGO
hey are oriented to align with the +X

[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
is written to account for this 512 [count]

motor01Offset and motor01Offset

main function defines the link lengths. This particular 2
݈ଵ and ݈ଶ respectively.

sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
prompts the user to push the right arrow button to commence. Once pushed, the XL
are commanded to their home position. For this example, home position is defined by
two links aligned with the +X axis.

For this example, joint angles are set at ߠଵ =
Figure 1B.

The lines below are the forward kinematics for the 2
that NXC says cos and sin take radians as arguments.

xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2

The program displays the calculated EE position in stud values. Since these calculations are in
function rounds up to the nearest integer of studs. After reaching the EE

position, the program then returns to the home posit

link planar manipulator in home position (left). Configuration after execution (right)

Congratulations! You implemented Forward Kinematics for the 2
manipulator

Forward Kinematics

link planar manipulator uses two XL-320 servos; joints 1 and 2 have IDs
respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

stud spacing. This spacing is universall
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

320’s horns with M2.5 screws. Before screwing these LEGO
hey are oriented to align with the +X-axis. This means each XL

[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
is written to account for this 512 [count]

motor01Offset

main function defines the link lengths. This particular 2
respectively.

sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
prompts the user to push the right arrow button to commence. Once pushed, the XL
are commanded to their home position. For this example, home position is defined by

= 0.0 [deg] and

The lines below are the forward kinematics for the 2-link planar manipulator as given in (1). Note
that NXC says cos and sin take radians as arguments.

xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2

The program displays the calculated EE position in stud values. Since these calculations are in
function rounds up to the nearest integer of studs. After reaching the EE

position, the program then returns to the home position.

link planar manipulator in home position (left). Configuration after execution (right)

implemented Forward Kinematics for the 2
manipulator

320 servos; joints 1 and 2 have IDs
respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

stud spacing. This spacing is universally used in all LEGO parts and
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

320’s horns with M2.5 screws. Before screwing these LEGO
axis. This means each XL

[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
is written to account for this 512 [count] offset

motor01Offset.

main function defines the link lengths. This particular 2-link planar manipulator uses Technic

sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
prompts the user to push the right arrow button to commence. Once pushed, the XL
are commanded to their home position. For this example, home position is defined by

[deg] and ߠଶ[deg] respectively.

link planar manipulator as given in (1). Note

xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2

The program displays the calculated EE position in stud values. Since these calculations are in
function rounds up to the nearest integer of studs. After reaching the EE

link planar manipulator in home position (left). Configuration after execution (right)

implemented Forward Kinematics for the 2
manipulator

© Copyright Paul Oh

320 servos; joints 1 and 2 have IDs
respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

y used in all LEGO parts and
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

320’s horns with M2.5 screws. Before screwing these LEGO
axis. This means each XL-320 is centered (i.e. 512

[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
offset as seen by the yellow

link planar manipulator uses Technic

sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
prompts the user to push the right arrow button to commence. Once pushed, the XL
are commanded to their home position. For this example, home position is defined by

respectively. One can envision

link planar manipulator as given in (1). Note

xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2); // [mm]

The program displays the calculated EE position in stud values. Since these calculations are in
function rounds up to the nearest integer of studs. After reaching the EE

link planar manipulator in home position (left). Configuration after execution (right)

implemented Forward Kinematics for the 2-

© Copyright Paul Oh

320 servos; joints 1 and 2 have IDs 0x03
respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

y used in all LEGO parts and
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

320’s horns with M2.5 screws. Before screwing these LEGO
320 is centered (i.e. 512

[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
as seen by the yellow

link planar manipulator uses Technic

sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
prompts the user to push the right arrow button to commence. Once pushed, the XL-320 servos
are commanded to their home position. For this example, home position is defined by having the

One can envision

link planar manipulator as given in (1). Note

xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm]
); // [mm]

The program displays the calculated EE position in stud values. Since these calculations are in
function rounds up to the nearest integer of studs. After reaching the EE

link planar manipulator in home position (left). Configuration after execution (right)

-link planar

© Copyright Paul Oh

0x03
respectively and hence defined accordingly. Recall, the motivation to use LEGO stems

y used in all LEGO parts and
hence provides a standard basis to calibrate lengths and assess positioning accuracies. As such

320’s horns with M2.5 screws. Before screwing these LEGO
320 is centered (i.e. 512

[count]) as shown in Figure A (right). This orientation is defined to be zero degrees. The function
as seen by the yellow-

link planar manipulator uses Technic

sets Port 4 for RS485 communications at 57,800 baud (8N1) and upon execution,
320 servos
having the

One can envision

link planar manipulator as given in (1). Note

The program displays the calculated EE position in stud values. Since these calculations are in
function rounds up to the nearest integer of studs. After reaching the EE

link planar manipulator in home position (left). Configuration after execution (right)

link planar

XL-320 NXC Programming:

Exercises

1.1 Edit

1.2 Calculate (1) by hand, execute program with the
complete the table below

1.3 Unscrew and reverse the beams such that Link 1 is a Beam
1.2 to complete a new table

1.4 Int

figure below)
offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation
matrix and complete a new table like in 1.2

320 NXC Programming:

Exercises

Edit xl320-2dof

Calculate (1) by hand, execute program with the
complete the table below

 ଵߠ
[deg] [deg]

0 +90
0 -

+90 -
-90 -
+45 +45

Unscrew and reverse the beams such that Link 1 is a Beam
1.2 to complete a new table

Introduce an offset by add a L
figure below). Link 1
offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation
matrix and complete a new table like in 1.2

320 NXC Programming: Forward Kinematics

2dof-fk-1_0.nxc

Calculate (1) by hand, execute program with the
complete the table below

 ଶߠ
[deg]

Equation (1)

+90
-90
-90
-90
+45

Unscrew and reverse the beams such that Link 1 is a Beam
1.2 to complete a new table

roduce an offset by add a L
. Link 1 will still remain aligned with the +X axis but this Beam 5 causes Link 2 to be

offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation
matrix and complete a new table like in 1.2

Forward Kinematics

1_0.nxc to also

Calculate (1) by hand, execute program with the

Equation (1)
[studs]
(7, 5)

Unscrew and reverse the beams such that Link 1 is a Beam

roduce an offset by add a L-shape 3 x 5 Liftarm (Part# 32526)
still remain aligned with the +X axis but this Beam 5 causes Link 2 to be

offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation
matrix and complete a new table like in 1.2

Forward Kinematics

to also display the EE’s position in millimeters on the Brick

Calculate (1) by hand, execute program with the commanded angles and verify stud values to

Observed value
[studs]
(7, 5)

Unscrew and reverse the beams such that Link 1 is a Beam

shape 3 x 5 Liftarm (Part# 32526)
still remain aligned with the +X axis but this Beam 5 causes Link 2 to be

offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation
matrix and complete a new table like in 1.2

display the EE’s position in millimeters on the Brick

commanded angles and verify stud values to

Observed value
[studs]
(7, 5)

Unscrew and reverse the beams such that Link 1 is a Beam 7 and Link 2 is a Beam 9. Repeat

shape 3 x 5 Liftarm (Part# 32526)
still remain aligned with the +X axis but this Beam 5 causes Link 2 to be

offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation

© Copyright Paul Oh

display the EE’s position in millimeters on the Brick

commanded angles and verify stud values to

7 and Link 2 is a Beam 9. Repeat

shape 3 x 5 Liftarm (Part# 32526) between Links 1 and 2
still remain aligned with the +X axis but this Beam 5 causes Link 2 to be

offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation

© Copyright Paul Oh

display the EE’s position in millimeters on the Brick

commanded angles and verify stud values to

7 and Link 2 is a Beam 9. Repeat

between Links 1 and 2
still remain aligned with the +X axis but this Beam 5 causes Link 2 to be

offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation

© Copyright Paul Oh

commanded angles and verify stud values to

7 and Link 2 is a Beam 9. Repeat

 (see
still remain aligned with the +X axis but this Beam 5 causes Link 2 to be

offset (but parallel) to the +X axis. Use DH notation to derive the resulting tool transformation

