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Concept 1 Implement Forward Kinematics Equations xl320-2dof-fk-1_0.nxc 
 
Figure 1A is the NXC code for implementing (1) for the 2-link planar manipulator.  The code uses 
the previously created H-files xl320-defines1_0a.h and xl320-functions1_0d.h which 
define the constants and functions for using the XL-320 servo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// FILE: xl320-2dof-fk-1_0.nxc - Works! 
// DATE: 01/11/20 19:20 
// AUTH: P.Oh 
// DESC: Forward kinematics for 2-DOF planar manipulator using Dynamixel XL-320 
 
#include "xl320-defines1_0a.h"   // XL-320 defines from Control Table 
#include "xl320-functions1_0d.h" // P.Oh functions written for XL-320 
 
#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors 
#define ID_MOTOR01    0X03 // Assumes Motor 1 configured with ID = 3 
#define ID_MOTOR02    0X07 // Assumes Motor 2 configured with ID = 7 
#define mmPerStud     8    // 8 millimeters per LEGO stud 
 
// Global variables 
  bool  orangeButtonPushed;      // Detect Brick Center button state 
  bool  rightArrowButtonPushed;  // Detect Brick right arrow button state 
  bool  leftArrowButtonPushed;   // Detect Brick left arrow button state 
  bool  greyButtonPushed;        // Detect Brick Grey/Abort button state 
 
void rotateMotorAbsolutely(float angle01, float angle02) { //------------------ 
 // Rotates desired the two Dynamixel XL-320 motors to their desired angles 
 // Assumes motor count of 512 denotes 0 degrees.  Uses right-hand rule for 
 // rotational direction 
 
  float desiredAngle01InDegrees;   // Angle Motor 1 to move to [deg] 
  float desiredAngle02InDegrees;   // Angle Motor 2 to move to [deg] 
  float degreesPerCount;           // Conversion 0.29 [degrees/count] 
  float calculatedCount;           // Count equivalent of desired angle [count] 
  int   motor01Offset;             // Motor 1's offset [count] 
  float theta01InDegrees;          // Motor 1 angle [counts] 
  int   theta01InCounts;           // Motor 1 angle [deg] 
  int   motor02Offset;             // Motor 2's offset [count] 
  float theta02InDegrees;          // Motor 2 angle [counts] 
  int   theta02InCounts;           // Motor 2 angle [deg] 
  string msg01, msg02;             // dummy strings to print values to screen 
   
  motor01Offset = 512; // Set Link 1 at 0 deg (i.e. 512 counts) 
  motor02Offset = 512; // Set Link 2 at 0 deg (i.e. 512 counts) 
 
  // Note 1: Looking into horn from Top, count > 512 is CCW (i.e. +Z axis) 
  // and count < 512 is CW (i.e. -Z axis) 
  degreesPerCount = 0.29; // [deg/count] found from XL-320 data sheet 
 
  ClearScreen(); 
  desiredAngle01InDegrees = angle01; 
  theta01InCounts = motor01Offset + desiredAngle01InDegrees/degreesPerCount; 
  desiredAngle02InDegrees = angle02; 
  theta02InCounts = motor02Offset + desiredAngle02InDegrees/degreesPerCount; 
 
  // Format string so displays nicely on Brick screen 
  sprintf(msg01, "Goto [%3.1f, " ,desiredAngle01InDegrees); 
  sprintf(msg02, "%3.1f]" , desiredAngle02InDegrees); 
  TextOut(0, LCD_LINE2, strcat(msg01, msg02)); 
   
  XL320_servo(ID_MOTOR01, theta01InCounts, 200); // motor position at speed 200 
  Wait(2000); // wait about 2 seconds before issuing another command 
  XL320_servo(ID_MOTOR02, theta02InCounts, 200); // motor position at speed 200 
  Wait(2000); // wait about 2 seconds before issuing another command 
  PlayTone(TONE_B3,50); 
 
}; // end rotateMotorAbsolutely function --------------------------------- 
 

Figure 1A: Forward kinematics program xl320-2dof-fk-1_0.nxc 
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task main() { 
 
  // planar manipulator variables 
  float l1, l2; // length of link 1 and link 2 [mm] 
  float theta1, theta2; // angle of joint 1 and joint 2 [rad] 
  float theta1InDegrees, theta2InDegrees; // angle of joint 1 and 2 [deg] 
  float xP0, yP0; // end-effector absolute position i.e. wrt x0y0 frame [mm] 
  int xP0InStuds, yP0InStuds; // [studs]   
  // calculation and dummy variables 
  float C, k1, k2, num, den; 
  int i; 
  // initializations 
  l1 = 7 * mmPerStud; // [mm] link 1 is 7 studs long 
  l2 = 5 * mmPerStud; // [mm] link 2 is 5 studs long 
 
  UseRS485(); 
  RS485Enable(); 
  RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //57600 baud, 8bit, 1stop, no parity 
 
  ClearScreen(); 
  // Prompt user to begin 
  TextOut(0, LCD_LINE1, "Start: hit ->"); 
  do { 
     rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE); 
  } while(!rightArrowButtonPushed); 
  ClearScreen(); 
   
  // First go to home position 
  ClearScreen(); 
  TextOut(0, LCD_LINE2, "Homing..." ); 
  Wait(2000); 
  theta1InDegrees = theta2InDegrees = 0.0; 
  rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees); 
  Wait(2000); 
  PlayTone(TONE_E4, 500); 
  // Second, user sets desired theta 1 and theta 2 here 
  theta1InDegrees = 0.0; // [deg] 
  theta2InDegrees = 90.0; // [deg] 
  theta1 = theta1InDegrees * PI/180; // [rad] 
  theta2 = theta2InDegrees * PI/180; // [rad] 
  // Forward Kinematics equations yield end-effector position (xP0, yP0) 
  xP0 = l1*cos(theta1) + l2*cos(theta1 + theta2); // [mm] 
  yP0 = l1*sin(theta1) + l2*sin(theta1 + theta2); // [mm] 
  // End-effector position in LEGO studs 
  xP0InStuds = ceil(xP0 / mmPerStud); // round up [stud] 
  yP0InStuds = ceil(yP0 / mmPerStud); // round up [stud] 
  ClearScreen(); 
  TextOut(0, LCD_LINE1, "Will go to:" ); 
  TextOut(0, LCD_LINE3, FormatNum("xP0 = %3d studs" , xP0InStuds) ); 
  TextOut(0, LCD_LINE5, FormatNum("yP0 = %3d studs" , yP0InStuds) ); 
  // Prompt user to begin motion 
  TextOut(0, LCD_LINE8, "Yes: hit ->"); 
  do { 
     rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE); 
  } while(!rightArrowButtonPushed); 
  ClearScreen(); 
 
  rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees); 
   
  // Last, go back to home position and quit 
  ClearScreen(); 
  TextOut(0, LCD_LINE2, "Back to Home" ); 
  Wait(2000); 
  theta1InDegrees = theta2InDegrees = 0.0; 
  rotateMotorAbsolutely(theta1InDegrees, theta2InDegrees); 
  Wait(2000); 
  PlaySound(SOUND_DOUBLE_BEEP); 
} // end main 
 

Figure 1A continued: xl320-2dof-fk-1_0.nxc 
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