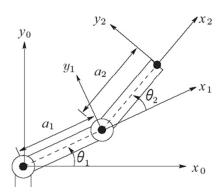
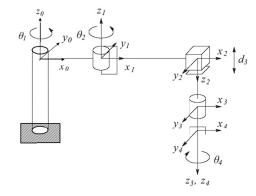
Homework - Forward Kinematics

Recall that for a 2-link planar manipulator the end-effector (EE) p has the position (x_{p0}, y_{p0}) :


$$x_{p0} = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) y_{p0} = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)$$
 (1)

For both 1 and 2 provide the following

- a. All files (e.g. NXC and Headers). Comment and make readable (e.g. good use of white space)
- b. URL to your YouTube video demonstrating this program
- 1. Show hand calculations given (1) and the values in Columns 1 and 2 to complete Column 3. Execute program with those values to complete Column 4 below (20-points).


θ_1	θ_2	Equation (1)	Observed value
[deg]	[deg]	[studs]	[studs]
0	+90	(7, 5)	(7, 5)
0	-90		
+90	-90		
-90	-90		
+45	+45		

- 2. Unscrew and reverse the beams such that Link 1 is a Beam 7 and Link 2 is a Beam 9. Repeat Question 1 to complete a new table (20-points).
- 3. The sketch, DH parameters and arm matrix for the two-link planar arm are given in the figure below (left). Confirm by hand calculations and derivations the given T_2^0 (15-points).
- 4. The sketch, DH parameters and arm matrix for the SCARA arm are given below (right). Confirm by hand calculations and derivations the given T_4^0 (15-points).

Link	a_{i}	α_i	d_i	θ_i
1	a_1	α_1	d_1	θ_1
2	a_2	α_2	d_2	θ_2

$$T_2^0 = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_1c_1 + a_2c_{12} \\ s_{12} & c_{12} & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Link	a_i	α_i	d_i	θ_i	
1	a_1	0	0	θ^*_1	
2	a_2	180	0	θ^*_2	
3	0	0	d^*_3	0	
4	0	0	d_4	θ^*_4	

* denotes variable

$$T_4^0 = \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$