
XL-320 NXC Programming: Intro (

Header files that define constants and contain XL
this to command the XL
mode)

Preliminary:

In Dynamixel Wizard,

Concept 1 Command XL

Step 1:

In a prior lab, the function XL320
Robotis XL
30 Decimal (or 0x1E), sized at 2
defines1_0a.h

Figure A:
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32
stud Lego base plate.

// RAM Address related Defines
// See Robotis Section 2.3 http:/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color
#define RAM_D_GAIN
#define RAM_I_GAIN
#define RAM_P_GAIN
#define RAM_GOAL_POSITION

320 NXC Programming: Intro (

XL-320

Header files that define constants and contain XL
this to command the XL
mode)

Preliminary: 1-DOF Planar Manipulator

In Dynamixel Wizard,
 Baud Rate: 57,600
 Motor ID: 0x01
 Torque Enable: On
 Velocity is at a slow setting e.g. 200
 Motor position is centered

Concept 1 Command XL

Step 1: Open previous

In a prior lab, the function XL320
Robotis XL-320 E-
30 Decimal (or 0x1E), sized at 2
defines1_0a.h verifies

Figure A: Pictured is an XL
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32
stud Lego base plate.

// RAM Address related Defines
// See Robotis Section 2.3 http:/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color
#define RAM_D_GAIN
#define RAM_I_GAIN
#define RAM_P_GAIN
#define RAM_GOAL_POSITION

320 NXC Programming: Intro (

320 NXC Programming

Header files that define constants and contain XL
this to command the XL-320 to rotate to desired angles (joint mode) or angular

DOF Planar Manipulator

In Dynamixel Wizard, make sure the XL
Baud Rate: 57,600
Motor ID: 0x01
Torque Enable: On
Velocity is at a slow setting e.g. 200
Motor position is centered

Concept 1 Command XL-

Open previous xl320-

In a prior lab, the function XL320
-Manual (shown again below as Figure 1B)

30 Decimal (or 0x1E), sized at 2
verifies this:

Pictured is an XL-320
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32
stud Lego base plate.

// RAM Address related Defines
// See Robotis Section 2.3 http:/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color
#define RAM_D_GAIN
#define RAM_I_GAIN
#define RAM_P_GAIN
#define RAM_GOAL_POSITION

320 NXC Programming: Intro (Write Joint and Wheel Modes

Hands

NXC Programming

Header files that define constants and contain XL
320 to rotate to desired angles (joint mode) or angular

DOF Planar Manipulator

make sure the XL-320 has the following settings:

Velocity is at a slow setting e.g. 200
Motor position is centered

-320 to Rotate Back

-defines1_0

In a prior lab, the function XL320-setLed was created
(shown again below as Figure 1B)

30 Decimal (or 0x1E), sized at 2-bytes, and has values from 0 to 1023 Decimal. Viewing

320-based 1-DOF planar manipulator using Lego and M2.5
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32

// RAM Address related Defines
// See Robotis Section 2.3 http://emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color

 0x1B // 1 byte; motor's derivative gai
 0x1C // 1 byte; motor's integral gain
 0x1D // 1 byte; motor's proportional gain

 0x1E // 2 bytes; destination position value

Write Joint and Wheel Modes

Hands-on Lab

NXC Programming – Write Joint and Wheel Modes

Header files that define constants and contain XL-320 functions were created. This lab builds on
320 to rotate to desired angles (joint mode) or angular

320 has the following settings:

320 to Rotate Back-

1_0a.h file

setLed was created using
(shown again below as Figure 1B)

bytes, and has values from 0 to 1023 Decimal. Viewing

DOF planar manipulator using Lego and M2.5
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32

/emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color

0x1B // 1 byte; motor's derivative gai
0x1C // 1 byte; motor's integral gain
0x1D // 1 byte; motor's proportional gain

// 2 bytes; destination position value
 // from [0, 102
 // 1023 most CCW

Write Joint and Wheel Modes)

on Lab

Write Joint and Wheel Modes

320 functions were created. This lab builds on
320 to rotate to desired angles (joint mode) or angular

320 has the following settings:

-and-Forth

using Section 2.2
(shown again below as Figure 1B). Goal Position

bytes, and has values from 0 to 1023 Decimal. Viewing

DOF planar manipulator using Lego and M2.5
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32

/emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color

0x1B // 1 byte; motor's derivative gai
0x1C // 1 byte; motor's integral gain
0x1D // 1 byte; motor's proportional gain

// 2 bytes; destination position value
// from [0, 1023] with 0 most CW and
// 1023 most CCW

© Copyright Paul Oh

Write Joint and Wheel Modes

320 functions were created. This lab builds on
320 to rotate to desired angles (joint mode) or angular velocities (wheel

320 has the following settings:

Forth xl320-helloServo

Section 2.2 (Control Table) of the
Goal Position has the address

bytes, and has values from 0 to 1023 Decimal. Viewing

DOF planar manipulator using Lego and M2.5
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32

/emanual.robotis.com/docs/en/dxl/x/xl320/

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control
#define RAM_LED 0x19 // 1 byte; changes motor's LED color

0x1B // 1 byte; motor's derivative gain
0x1C // 1 byte; motor's integral gain
0x1D // 1 byte; motor's proportional gain

// 2 bytes; destination position value
3] with 0 most CW and

Copyright Paul Oh

Write Joint and Wheel Modes

320 functions were created. This lab builds on
velocities (wheel

helloServo1_0a.nxc

(Control Table) of the
has the address

bytes, and has values from 0 to 1023 Decimal. Viewing xl320

DOF planar manipulator using Lego and M2.5
fastener hardware. The manipulator and XY Cartesian axes are mounted on a 32 stud by 32

#define RAM_TORQUE_ENABLE 0x18 // 1 byte; turns on/off torque control

// 2 bytes; destination position value

3] with 0 most CW and

Copyright Paul Oh

320 functions were created. This lab builds on
velocities (wheel

nxc

(Control Table) of the
has the address

xl320-

XL-320 NXC Programming: Intro (

Step 2:

Section 2.3 of
shown in
#defines to be added to

Step 2:

The write instruction (
XL-320’s LED. Similarly,
values.

Figure 1
Section 2.2

320 NXC Programming: Intro (

Step 2: Create Definition Header File (H

Section 2.3 of http://emanual.robotis.com/docs/en/dxl/x/xl320/
shown in Figure 1
#defines to be added to

Step 2: Open xl320

The write instruction (
320’s LED. Similarly,

values. Recall that the status packet has the form:

Section 3

Figure 1A: Addresses (in Decimal) for each Data Name in
Section 2.2 (Control Table) of the Robotis XL

320 NXC Programming: Intro (

Create Definition Header File (H

http://emanual.robotis.com/docs/en/dxl/x/xl320/
Figure 1C. Following the aforementioned naming convention,

#defines to be added to the H-file in

xl320-functions1_0c.h

The write instruction (0x03) was used to write values (and hence desired colors) to change the
320’s LED. Similarly, 0x03

Recall that the status packet has the form:

Section 3 of the Robotis Dynamixel Protocol 2.

Addresses (in Decimal) for each Data Name in
(Control Table) of the Robotis XL

320 NXC Programming: Intro (Write Joint and Wheel Modes

Create Definition Header File (H-File)

http://emanual.robotis.com/docs/en/dxl/x/xl320/
. Following the aforementioned naming convention,

file in Figure 1B

functions1_0c.h and write

) was used to write values (and hence desired colors) to change the
0x03 will be used again, but with desired angle position and velocity

Recall that the status packet has the form:

of the Robotis Dynamixel Protocol 2.

Addresses (in Decimal) for each Data Name in
(Control Table) of the Robotis XL

Write Joint and Wheel Modes

File) – RAM Area

http://emanual.robotis.com/docs/en/dxl/x/xl320/
. Following the aforementioned naming convention,

Figure 1B.

and write XL320_servo function

) was used to write values (and hence desired colors) to change the
will be used again, but with desired angle position and velocity

Recall that the status packet has the form:

of the Robotis Dynamixel Protocol 2.0 illustrates the packet format

Addresses (in Decimal) for each Data Name in
(Control Table) of the Robotis XL-320 E-Manual.

Write Joint and Wheel Modes)

RAM Area

http://emanual.robotis.com/docs/en/dxl/x/xl320/ details the
. Following the aforementioned naming convention,

XL320_servo function

) was used to write values (and hence desired colors) to change the
will be used again, but with desired angle position and velocity

0 illustrates the packet format

Addresses (in Decimal) for each Data Name in RAM. This table can be found in
Manual.

© Copyright Paul Oh

details the RAM Control Table and
. Following the aforementioned naming convention, Figure 1

XL320_servo function

) was used to write values (and hence desired colors) to change the
will be used again, but with desired angle position and velocity

0 illustrates the packet format

. This table can be found in

Copyright Paul Oh

ntrol Table and
Figure 1D shows the

) was used to write values (and hence desired colors) to change the
will be used again, but with desired angle position and velocity

0 illustrates the packet format

. This table can be found in

Copyright Paul Oh

ntrol Table and
shows the

) was used to write values (and hence desired colors) to change the
will be used again, but with desired angle position and velocity

XL-320 NXC Programming: Intro (

However, there to command the XL
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that
packet length is the number
Figure 1B

The resulting XL320_servo function is given in

// ---
// Servo Function: move XL
void XL320_servo(unsigned char XL320_motorId,

 // Variables to set Length 1 and Length 2
 // unsigned char XL320_setServoLength_L;
 // unsigned char XL320_setServoLength_H;
 byte XL320_setServ
 byte XL320_setServoLength_H;

 // Variables for position and speed
 unsigned char XL320_position_L, XL320_position_H;
 unsigned char XL320_speed_L, XL320_speed_H;
 // byte XL320_position_L, XL320_position_H;
 // byte XL320_speed_L, XL320_

 // Variables to set up packet array
 unsigned char tempPacket[]; // temporary packet
 unsigned char finalPacket[]; // final packet to transmit

 // Variables for checksum CRC
 unsigned short setServo_CRC;
 byte CRC_L, CRC_H;

 // 1. Calculate lengths
 // Recall that Length 1 and Length 2 = number of parameters + 3
 // Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,
 // Position_H, Speed_L, and Speed_H
 // Hence number of param

 XL320_setServoLength_L = 0x09;
 XL320_setServoLength_H = 0x00;
 XL320_position_L = XL320_desiredPosition; // Lower byte of 16
 XL320_position_H = XL320_desiredPosition >> 8; // Upper byte
 XL320_speed_L = XL320_desiredSpee
 XL320_speed_H = XL320_desiredSpeed >> 8; // Upper byte

320 NXC Programming: Intro (

However, there to command the XL
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that
packet length is the number
Figure 1B pictorially shows this packet.

The resulting XL320_servo function is given in

Figure 1B:

// Servo Function: move XL
void XL320_servo(unsigned char XL320_motorId,

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;
byte XL320_setServ
byte XL320_setServoLength_H;

// Variables for position and speed
unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;
// byte XL320_speed_L, XL320_

// Variables to set up packet array
unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

// Variables for checksum CRC
unsigned short setServo_CRC;
byte CRC_L, CRC_H;

// 1. Calculate lengths
// Recall that Length 1 and Length 2 = number of parameters + 3
// Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,
// Position_H, Speed_L, and Speed_H
// Hence number of param

XL320_setServoLength_L = 0x09;
XL320_setServoLength_H = 0x00;
XL320_position_L = XL320_desiredPosition; // Lower byte of 16
XL320_position_H = XL320_desiredPosition >> 8; // Upper byte
XL320_speed_L = XL320_desiredSpee
XL320_speed_H = XL320_desiredSpeed >> 8; // Upper byte

Figure 1C:

320 NXC Programming: Intro (

However, there to command the XL
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that
packet length is the number of parameters (6 in this case) plus 3. Thus, the packet length is 9.

pictorially shows this packet.

The resulting XL320_servo function is given in

Figure 1B: Packet to command XL

// Servo Function: move XL-320 to desired position and desired speed
void XL320_servo(unsigned char XL320_motorId,
 unsigned int XL320_desiredPosition,
 unsigned int XL320_desiredSpeed) {

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;
byte XL320_setServoLength_L;
byte XL320_setServoLength_H;

// Variables for position and speed
unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;
// byte XL320_speed_L, XL320_

// Variables to set up packet array
unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

// Variables for checksum CRC
unsigned short setServo_CRC;
byte CRC_L, CRC_H;

// 1. Calculate lengths
// Recall that Length 1 and Length 2 = number of parameters + 3
// Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,
// Position_H, Speed_L, and Speed_H
// Hence number of parameters + 3 is 6 + 3 =

XL320_setServoLength_L = 0x09;
XL320_setServoLength_H = 0x00;
XL320_position_L = XL320_desiredPosition; // Lower byte of 16
XL320_position_H = XL320_desiredPosition >> 8; // Upper byte
XL320_speed_L = XL320_desiredSpee
XL320_speed_H = XL320_desiredSpeed >> 8; // Upper byte

Figure 1C: XL320_servo

320 NXC Programming: Intro (Write Joint and Wheel Modes

However, there to command the XL-320 to move, 6 parameters will be required: Goal Position;
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that

of parameters (6 in this case) plus 3. Thus, the packet length is 9.
pictorially shows this packet.

The resulting XL320_servo function is given in

Packet to command XL

320 to desired position and desired speed

void XL320_servo(unsigned char XL320_motorId,
unsigned int XL320_desiredPosition,
unsigned int XL320_desiredSpeed) {

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;

oLength_L;
byte XL320_setServoLength_H;

// Variables for position and speed
unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;
// byte XL320_speed_L, XL320_speed_H;

// Variables to set up packet array
unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

// Variables for checksum CRC
unsigned short setServo_CRC;

// Recall that Length 1 and Length 2 = number of parameters + 3
// Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,
// Position_H, Speed_L, and Speed_H

ters + 3 is 6 + 3 =

XL320_setServoLength_L = 0x09;
XL320_setServoLength_H = 0x00;
XL320_position_L = XL320_desiredPosition; // Lower byte of 16
XL320_position_H = XL320_desiredPosition >> 8; // Upper byte
XL320_speed_L = XL320_desiredSpeed; // Lower byte of 16
XL320_speed_H = XL320_desiredSpeed >> 8; // Upper byte

XL320_servo function in

Write Joint and Wheel Modes

320 to move, 6 parameters will be required: Goal Position;
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that

of parameters (6 in this case) plus 3. Thus, the packet length is 9.

The resulting XL320_servo function is given in Figure 1C

Packet to command XL-320 to desired position and/or velocity

320 to desired position and desired speed

void XL320_servo(unsigned char XL320_motorId,
unsigned int XL320_desiredPosition,
unsigned int XL320_desiredSpeed) {

// Variables to set Length 1 and Length 2
// unsigned char XL320_setServoLength_L;
// unsigned char XL320_setServoLength_H;

unsigned char XL320_position_L, XL320_position_H;
unsigned char XL320_speed_L, XL320_speed_H;
// byte XL320_position_L, XL320_position_H;

unsigned char tempPacket[]; // temporary packet
unsigned char finalPacket[]; // final packet to transmit

// Recall that Length 1 and Length 2 = number of parameters + 3
// Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,

ters + 3 is 6 + 3 = 9 Dec = 0x09

XL320_position_L = XL320_desiredPosition; // Lower byte of 16
XL320_position_H = XL320_desiredPosition >> 8; // Upper byte

d; // Lower byte of 16
XL320_speed_H = XL320_desiredSpeed >> 8; // Upper byte

function in xl320

Write Joint and Wheel Modes)

320 to move, 6 parameters will be required: Goal Position;
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that

of parameters (6 in this case) plus 3. Thus, the packet length is 9.

Figure 1C.

320 to desired position and/or velocity

320 to desired position and desired speed

unsigned int XL320_desiredPosition,

unsigned char finalPacket[]; // final packet to transmit

// Recall that Length 1 and Length 2 = number of parameters + 3
// Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,

9 Dec = 0x09

XL320_position_L = XL320_desiredPosition; // Lower byte of 16-
XL320_position_H = XL320_desiredPosition >> 8; // Upper byte

d; // Lower byte of 16-bit speed
XL320_speed_H = XL320_desiredSpeed >> 8; // Upper byte

xl320-functions1_0c.h

© Copyright Paul Oh

320 to move, 6 parameters will be required: Goal Position;
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that

of parameters (6 in this case) plus 3. Thus, the packet length is 9.

320 to desired position and/or velocity

320 to desired position and desired speed

// Recall that Length 1 and Length 2 = number of parameters + 3
// Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,

-bit position

bit speed

functions1_0c.h

Copyright Paul Oh

320 to move, 6 parameters will be required: Goal Position;
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that

of parameters (6 in this case) plus 3. Thus, the packet length is 9.

320 to desired position and/or velocity

// Setting Servo requires only 6 parameters: Goal Position, 0x00, Position_L,

bit position

functions1_0c.h

Copyright Paul Oh

320 to move, 6 parameters will be required: Goal Position;
0x00; Position LO byte, Position HI byte; Velocity LO byte, and Velocity HI byte. Recall that

of parameters (6 in this case) plus 3. Thus, the packet length is 9.

XL-320 NXC Programming: Intro (Write Joint and Wheel Modes)

© Copyright Paul Oh

The packet is completed by adding the CRC checksum values, returned from the call to
update_crc.

Make sure the above code is saved into xl320-functions1_0c.h. This will ensure
XL320_servo can be called when needed.

Step 3: Write NXC Program xl320-helloServo1_0a.nxc

Figure 1D lists the NXC program that commands the XL-320 to rotate back-and-forth. The
program begins by including the H-files containing XL-320 constants (xl320-defines1_0a.h)
and functions (xl320-functions1_0c.h).

In main, Boolean variables for the NXT Brick’s buttons are declared. The Brick’s serial port is
enabled and configured for 57,600 baud, at 8N1 (8-bits, no parity, 1 stop bit).

The do-while loop first calls XL320_servo with an angular position of 900 and angular velocity
of 200. The XL-320 features on-the-fly changes; once the position and velocity command is
issued, the next command is processed. Thus, a Wait(1500) is used to wait until the XL-320
has reached position 900.

The XL-320 then rotates to position 0 at an angular velocity of 200. Again, a Wait(1500) is
issued to ensure the servo reaches this position. The loop iterates this back-and-forth rotation
until the NXT’s grey button is pushed.

 // 2. Construct first part of packet
 ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,
 XL320_setServoLength_L, XL320_setServoLength_H, INSTRUCTION_WRITE,
 RAM_GOAL_POSITION, 0x00, XL320_position_L, XL320_position_H,
 XL320_speed_L, XL320_speed_H);

 // 3. Perform checksum, see Section 1.2
 // of http://emanual.robotis.com/docs/en/dxl/crc/
 unsigned int packetLength = (XL320_setServoLength_H >> 8) + XL320_setServoLength_L;

 // See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
 setServo_CRC = update_crc(0, tempPacket, 5 + packetLength);
 CRC_L = (setServo_CRC & 0x00FF);
 CRC_H = (setServo_CRC >> 8) & 0x00FF;

 // 4. Concatenate into final packet and sent thru NXT RS485
 ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);
 RS485Write(finalPacket);

 // 5. Call inline function
 waitForMessageToBeSent();

}; // end XL320_servo

/* === */

Figure 1C: Continued

XL-320 NXC Programming: Intro (Write Joint and Wheel Modes)

© Copyright Paul Oh

Congratulations! You can command the XL-320 to rotate to desired
angles at desired speeds

// FILE: xl320-helloServo1_0a.nxc - Works!
// DATE: 12/08/19 14:03
// AUTH: P.Oh
// DESC: Command servo to rotate back-and-forth by fixed amount
// VERS: 1.0a: based on P.Oh's xl320-defines1_0a.h and xl320-funtions1_0a.h
// REFS: xl320-functions1_0a.h; xl320-defines.h, xl320-helloLed1_0a.nxc
// 09/10/19 ppt-paulOhDynamixelXl320HeaderFile-1.0a.pptx
// NOTE: If factory default XL-320 used, then ID is 0x01
// ID of 0xFE commands any and all XL-320 motors

#include "xl320-defines1_0a.h" // XL-320 defines from Control Table
#include "xl320-functions1_0c.h" // P.Oh functions written for XL-320

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X01 // Assumes Motor 1 configured with ID = 01

task main() {

 bool orangeButtonPushed; // Detect Brick Center button state
 bool rightArrowButtonPushed; // Detect Brick right arrow button state
 bool leftArrowButtonPushed; // Detect Brick left arrow button state
 bool greyButtonPushed; // Detect Brick Grey/Abort button state
 UseRS485();
 RS485Enable();
 // Note: First, use Dynamixel Wizard to set XL-320 to desired baud rate
 // Then, use RS485Uart to match this baud rate e.g. 57600
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); // 57600 baud, 8bit, 1stop, no parity

 ClearScreen();
 // Prompt user to begin
 TextOut(0, LCD_LINE1, "Stop: Press GRAY");

 do {
 greyButtonPushed = ButtonPressed(BTNEXIT, FALSE);
 XL320_servo(ID_ALL_MOTORS, 900, 200); // rotate to motor position 900, speed 200
 Wait(1500);
 XL320_servo(ID_ALL_MOTORS, 0, 200); // counter-rotate to 0 at speed 200;
 Wait(1500);
 } while(!greyButtonPushed);
 ClearScreen();

} // end main

Figure 1D: NXC program xl-320-helloServo1_0a.nxc

XL-320 NXC Programming: Intro (

Concept 2 Command XL

Wheel mode allows the XL
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then
command the XL

Step

Two functions are created and saved in
XL320_setTorqueEnable
address 25 Decimal (defined as
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)
will be 6

The second function created is
XL-320’s firmware shows that it has an address of 11 Decimal (defined as
EEPROM_CONTROL_MODE
will be 6 Decimal (or 0x06). This function’s listing is given in

Exercises

1.1 From the above figure, what is the resolution of the XL

degrees of motion

1.2 Write a NXC program to home the 1
DOF planar manipulator in the 12:00 position.
clockwise. What the XY stud position of the manipulator’s end

1.3 Based on the end

angle and command the XL

320 NXC Programming: Intro (

Concept 2 Command XL

Wheel mode allows the XL
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then
command the XL-320 to rotate at a desired velocity.

Step 1: Open previous

Two functions are created and saved in
XL320_setTorqueEnable
address 25 Decimal (defined as
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)
will be 6 Decimal (or 0x06). The function’s listing is given in

The second function created is
320’s firmware shows that it has an address of 11 Decimal (defined as

EEPROM_CONTROL_MODE
will be 6 Decimal (or 0x06). This function’s listing is given in

Exercises

From the above figure, what is the resolution of the XL
degrees of motion

Write a NXC program to home the 1
DOF planar manipulator in the 12:00 position.
clockwise. What the XY stud position of the manipulator’s end

Based on the end
angle and command the XL

320 NXC Programming: Intro (

Concept 2 Command XL-

Wheel mode allows the XL-320 to rotate continuously. In the Dynamixel Wizard mode, one might
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then

320 to rotate at a desired velocity.

Open previous xl320-

Two functions are created and saved in
XL320_setTorqueEnable. The Control Table in
address 25 Decimal (defined as
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)

(or 0x06). The function’s listing is given in

The second function created is
320’s firmware shows that it has an address of 11 Decimal (defined as

EEPROM_CONTROL_MODE in xl
will be 6 Decimal (or 0x06). This function’s listing is given in

From the above figure, what is the resolution of the XL
degrees of motion

Write a NXC program to home the 1
DOF planar manipulator in the 12:00 position.
clockwise. What the XY stud position of the manipulator’s end

Based on the end-effector’s length, determine a desired XY stud position. Calculate the required
angle and command the XL-

320 NXC Programming: Intro (Write Joint and Wheel Modes

-320 to Wheel Mode

320 to rotate continuously. In the Dynamixel Wizard mode, one might
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then

320 to rotate at a desired velocity.

-functions1_0

Two functions are created and saved in
. The Control Table in

address 25 Decimal (defined as RAM_TORQUE_ENABLE
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)

(or 0x06). The function’s listing is given in

The second function created is XL320_controlMode
320’s firmware shows that it has an address of 11 Decimal (defined as

xl-defines1_0.h
will be 6 Decimal (or 0x06). This function’s listing is given in

From the above figure, what is the resolution of the XL

Write a NXC program to home the 1-DOF planar manipulator at position 512. This puts the 1
DOF planar manipulator in the 12:00 position.
clockwise. What the XY stud position of the manipulator’s end

effector’s length, determine a desired XY stud position. Calculate the required
-320 to that stud position

Write Joint and Wheel Modes

320 to Wheel Mode

320 to rotate continuously. In the Dynamixel Wizard mode, one might
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then

320 to rotate at a desired velocity.

1_0d.h file

Two functions are created and saved in xl320
. The Control Table in Figure 1A

RAM_TORQUE_ENABLE
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)

(or 0x06). The function’s listing is given in

XL320_controlMode. Section 2.2
320’s firmware shows that it has an address of 11 Decimal (defined as

defines1_0.h) and takes 1 byte a
will be 6 Decimal (or 0x06). This function’s listing is given in

From the above figure, what is the resolution of the XL

DOF planar manipulator at position 512. This puts the 1
DOF planar manipulator in the 12:00 position. Then command the servo to rotate 45
clockwise. What the XY stud position of the manipulator’s end

effector’s length, determine a desired XY stud position. Calculate the required
320 to that stud position

Write Joint and Wheel Modes)

320 to Wheel Mode xl320-helloWheelMode

320 to rotate continuously. In the Dynamixel Wizard mode, one might
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then

xl320-functions1_0d.h
Figure 1A shows that

RAM_TORQUE_ENABLE in xl-defines1_0.h
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)

(or 0x06). The function’s listing is given in Figure 2A

Section 2.2 for the EEPROM area of the
320’s firmware shows that it has an address of 11 Decimal (defined as

) and takes 1 byte a
will be 6 Decimal (or 0x06). This function’s listing is given in Figure 2B

From the above figure, what is the resolution of the XL-320? Hint: 1024 range yields 300

DOF planar manipulator at position 512. This puts the 1
Then command the servo to rotate 45

clockwise. What the XY stud position of the manipulator’s end-effector?

effector’s length, determine a desired XY stud position. Calculate the required

© Copyright Paul Oh

helloWheelMode1_0a.nxc

320 to rotate continuously. In the Dynamixel Wizard mode, one might
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then

functions1_0d.h. The first is
shows that Torque Enable

defines1_0.h
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)

Figure 2A.

for the EEPROM area of the
320’s firmware shows that it has an address of 11 Decimal (defined as

) and takes 1 byte as well. The packet length
Figure 2B.

320? Hint: 1024 range yields 300

DOF planar manipulator at position 512. This puts the 1
Then command the servo to rotate 45

effector?

effector’s length, determine a desired XY stud position. Calculate the required

Copyright Paul Oh

1_0a.nxc

320 to rotate continuously. In the Dynamixel Wizard mode, one might
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then

. The first is
Torque Enable is at

defines1_0.h) and takes 1
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)

for the EEPROM area of the
320’s firmware shows that it has an address of 11 Decimal (defined as

s well. The packet length

320? Hint: 1024 range yields 300

DOF planar manipulator at position 512. This puts the 1
Then command the servo to rotate 45-degrees

effector’s length, determine a desired XY stud position. Calculate the required

Copyright Paul Oh

320 to rotate continuously. In the Dynamixel Wizard mode, one might
recall that Torque Enable must first be turned off. Then, one can select Wheel Mode and then

. The first is
is at

) and takes 1
byte. Thus the number of parameters will be 3 and the resulting packet (number of packets + 3)

for the EEPROM area of the
320’s firmware shows that it has an address of 11 Decimal (defined as

s well. The packet length

DOF planar manipulator at position 512. This puts the 1-
degrees

effector’s length, determine a desired XY stud position. Calculate the required

XL-320 NXC Programming: Intro (Write Joint and Wheel Modes)

© Copyright Paul Oh

// XL320_setTorqueEnable Function: Enable Torque on or off on XL-320 motor
void XL320_setTorqueEnable(unsigned char XL320_servoId,
 unsigned char XL320_torqueEnable) {

 // Section 2.1.1 http://emanual.robotis.com/docs/en/dxl/x/xl320/
 // says that changing EEPROM areas in Control table, requires setting
 // Torque Enable to zero (i.e. off). EG: Baud Rate is under EEPROM Control
 // area. So, if one wishes to set the baud rate, one probably needs to turn
 // off Torque Enable

 // Torque Enable Section 2.4.13
 // http://emanual.robotis.com/docs/en/dxl/x/xl320/#torque-enable
 // Takes 1 byte. 0 = Off; 1 = On

 // Variables to set Length 1 and Length 2
 unsigned char XL320_setTorqueEnableLength_L;
 unsigned char XL320_setTorqueEnableLength_H;

 // Variables to set up packet array
 unsigned char tempPacket[]; // temporary packet
 unsigned char finalPacket[]; // final packet to transmit

 // Variables for checksum CRC
 unsigned short setTorqueEnable_CRC;
 byte CRC_L, CRC_H;

 // 1. Calculate lengths
 // Recall that Length 1 and Length 2 = number of parameters + 3
 // Setting Torque Enable requires only 3 parameters: address, 0x00 and Torque Enable value
 // Hence number of (paramters + 3) is (3 + 3) = 6 Dec = 0x06

 XL320_setTorqueEnableLength_L = 0x06;
 XL320_setTorqueEnableLength_H = 0x00;

 // 2. Construct first part of packet
 ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_servoId,
 XL320_setTorqueEnableLength_L, XL320_setTorqueEnableLength_H, INSTRUCTION_WRITE,
 RAM_TORQUE_ENABLE, 0x00, XL320_torqueEnable);

 // 3. Perform checksum, see Section 1.2 of http://emanual.robotis.com/docs/en/dxl/crc/
 unsigned int packetLength = (XL320_setTorqueEnableLength_H >> 8) + XL320_setTorqueEnableLength_L;

 // See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
 setTorqueEnable_CRC = update_crc(0, tempPacket, 5 + packetLength);
 CRC_L = (setTorqueEnable_CRC & 0x00FF);
 CRC_H = (setTorqueEnable_CRC >> 8) & 0x00FF;

 // 4. Concatenate into final packet and sent thru NXT RS485
 ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);
 RS485Write(finalPacket);

 // 5. Call inline function
 waitForMessageToBeSent();

}; // end XL320_setTorqueEnable

Figure 2A: Listing for function XL320_setTorqueEnable (see xl-functions1_0d.h)

XL-320 NXC Programming: Intro (Write Joint and Wheel Modes)

© Copyright Paul Oh

Step 1: Write NXC Program to Rotate XL-320 continuously xl320-helloWheelMode1_0a.nxc

Listing 2C is NXC code where hitting the NXT Brick’s buttons will rotate the XL-320 clockwise,
counter-clockwise or quit. After RS-485 communications have been set (57,600 baud, 8N1), the
process involves turning Torque Enable off, selecting Wheel Mode, and then commanding
continuous angular rotations at the desired speed (e.g. 200).

// ---
// Control Mode Function: set XL-320 to Wheel or Joint mode
// XL320_controlModeDesired = 1 (Wheel Mode) or 2 (Joint mode)
void XL320_controlMode(unsigned char XL320_motorId,
 unsigned char XL320_controlModeDesired) {

 // Variables to set Length 1 and Length 2
 byte XL320_setControlModeLength_L;
 byte XL320_setControlModeLength_H;

 // Variables to set up packet array
 unsigned char tempPacket[]; // temporary packet
 unsigned char finalPacket[]; // final packet to transmit

 // Variables for checksum CRC
 unsigned short setControlMode_CRC;
 byte CRC_L, CRC_H;

 // 1. Calculate lengths
 // Recall that Length 1 and Length 2 = number of parameters + 3
 // Setting Servo requires only 3 parameters: Goal Position, 0x00, desired mode
 // Hence number of paramters + 3 is 3 + 3 = 6 Dec = 0x06

 XL320_setControlModeLength_L = 0x06;
 XL320_setControlModeLength_H = 0x00;

 // 2. Construct first part of packet
 ArrayBuild(tempPacket, HEADER_1, HEADER_2, HEADER_3, RESERVED, XL320_motorId,
 XL320_setControlModeLength_L, XL320_setControlModeLength_H, INSTRUCTION_WRITE,
 EEPROM_CONTROL_MODE, 0x00, XL320_controlModeDesired);

 // 3. Perform checksum, see Section 1.2
 // of http://emanual.robotis.com/docs/en/dxl/crc/
 unsigned int packetLength = (XL320_setControlModeLength_H >> 8) + XL320_setControlModeLength_L;

 // See last bullet in Section 1.2 "Packet Analysis and CRC Calculation"
 setControlMode_CRC = update_crc(0, tempPacket, 5 + packetLength);
 CRC_L = (setControlMode_CRC & 0x00FF);
 CRC_H = (setControlMode_CRC >> 8) & 0x00FF;

 // 4. Concatenate into final packet and sent thru NXT RS485
 ArrayBuild(finalPacket, tempPacket, CRC_L, CRC_H);
 RS485Write(finalPacket);

 // 5. Call inline function
 waitForMessageToBeSent();

}; // end XL320_controlMode

Figure 2B: Listing for XL320_controlMode in xl-functions1_0d.h

XL-320 NXC Programming: Intro (Write Joint and Wheel Modes)

© Copyright Paul Oh

// FILE: xl320-helloWheelMode1_0a.nxc - Works!
// DATE: 12/23/19 08:38
// AUTH: P.Oh
// DESC: NXT commands Dynamixel XL-320 in wheel mode
// VERS: 1.0a: uses xl320-functions1_0d.h
// - XL320_TorqueEnable
// - XL320_ControlMode
// REFS: wheelJointXl320-1.0b.nxc
// NOTE: If factory default XL-320 used, then ID is 0x01
// ID of 0xFE commands any and all XL-320 motors

#include "xl320-defines1_0a.h"
#include "xl320-functions1_0d.h" // contains XL320_ControlMode function

#define ID_ALL_MOTORS 0XFE // 0XFE commands all XL-320 motors
#define ID_MOTOR01 0X01 // Assumes Motor 1 configured with ID = 1

task main() {

 bool orangeButtonPushed;
 bool leftArrowButtonPushed, rightArrowButtonPushed;

 UseRS485();
 RS485Enable();
 RS485Uart(HS_BAUD_57600, HS_MODE_8N1); //9600 baud, 8bit, 1stop, no parity
 Wait(MS_100);

 // First, home to center position
 TextOut(0, LCD_LINE1, "Homing...");
 XL320_servo(ID_ALL_MOTORS, 512, 200); // 512 should be center position
 Wait(2000);
 TextOut(0, LCD_LINE2, "Homed...");

 // Second, turn XL-320 torque enable OFF (ON/OFF = 1/0)
 XL320_setTorqueEnable(ID_ALL_MOTORS, 0);
 Wait(20);

 // Third, select Wheel Mode
 XL320_controlMode(ID_ALL_MOTORS, 1); // 1 = Wheel Mode; 2 = Joint Mode
 Wait(20);
 ClearScreen();
 TextOut(0, LCD_LINE2, "In Wheel mode");
 TextOut(0, LCD_LINE4, "<-/->/ORG CW/CCW/QUIT");

 do {
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 if(rightArrowButtonPushed) {
 TextOut(0, LCD_LINE6, "CCW");
 XL320_servo(ID_ALL_MOTORS, 0, 250); // Continuous CCW rotation
 // Section 2.4.21 says 0-1023 is CCW; 1024-2047 is CW
 // http://emanual.robotis.com/docs/en/dxl/x/xl320/#moving-speed
 Wait(2000);
 };
 leftArrowButtonPushed = ButtonPressed(BTNLEFT, FALSE);
 if(leftArrowButtonPushed) {
 TextOut(0, LCD_LINE6, "CW ");
 XL320_servo(ID_ALL_MOTORS, 0, 1024 + 250); // Continuous CCW rotation
 Wait(2000);
 };
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

Figure 2C: NXC code xl-320-helloWheelMode1_0a.nxc rotates continuously CW or CCW

XL-320 NXC Programming: Intro (Write Joint and Wheel Modes)

© Copyright Paul Oh

 // Turn XL-320 torque enable ON (ON/OFF = 1/0)
 XL320_setTorqueEnable(ID_ALL_MOTORS, 0);
 Wait(200);
 TextOut(0, LCD_LINE1, "Torque Enable: OFF...");

 // Return back to Joint Mode
 XL320_controlMode(ID_ALL_MOTORS, 2); // 1 = Wheel Mode; 2 = Joint Mode
 Wait(200);
 ClearScreen();
 TextOut(0, LCD_LINE3, "Joint mode...");
 TextOut(0, LCD_LINE4, "Homing...");
 XL320_servo(ID_ALL_MOTORS, 512, 200); // 512 should be center position
 Wait(2000);
 TextOut(0, LCD_LINE6, "Quitting");
 PlaySound(SOUND_DOWN);

} // end main

Figure 2C continued:

Congratulations! You can command the XL-320 to rotate
continuously (i.e. Wheel Mode) at desired angular velocities

Exercises

2.1 Write an NXC program that reads the NXT Brick’s left and right buttons. When the right button is

pushed, the XL-320 velocity increases by 100. When the left button is pressed, the velocity
decreases by 100. Hitting the Orange button stops rotation.

2.2 Write an NXT program that switches from Wheel Mode and Joint Mode. When the left arrow
button is pushed, the XL-320 rotates continuously (say, at 200). When right arrow button is
pushed, the XL-320 rotates from -90 to +90 degrees e.g. wheelJointXl320-1.0b.nxc demo.

