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5. Sensing and Estimation

Henrik I. Christensen, Gregory D. Hager

Sensing and estimation are essential aspects of the
design of any robotic system. At a very basic level,
the state of the robot itself must be estimated for
feedback control. At a higher level, perception,
which is defined here to be task-oriented inter-
pretation of sensor data, allows the integration
of sensor information across space and time to
facilitate planning.

This chapter provides a brief overview of
common sensing methods and estimation tech-
niques that have found broad applicability in
robotics. The presentation is structured accord-
ing to a process model that includes sensing,
feature extraction, data association, parameter es-
timation, and model integration. Several common
sensing modalities are introduced and character-
ized. Common methods for estimation in linear
and nonlinear systems are discussed, includ-
ing statistical estimation, the Kalman filter, and
sample-based methods. Strategies for robust esti-
mation are also briefly described. Finally, several
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common representations for estimation are
introduced.

5.1 Introduction

Controlling a robotic system would be relatively simple
if a complete model of the environment was available,
and if the robot actuators could execute motion com-
mands perfectly relative to this model. Unfortunately,
in most cases of interest, a complete world model is not
available, and perfect control of mechanical structures
is never a realistic assumption. Sensing and estimation
are a means of compensating for this lack of complete
information. Their role is to provide information about
the state of the environment and the state of the robot
system as a basis for control, decision making, and in-
teraction with other agents in the environment, such as
humans.

For the purposes of discussion, we will differenti-
ate between sensing and estimation to recover the state
of the robot itself, referred to as proprioception, versus
sensing and estimation to recover the state of the ex-
ternal world, referred to as exteroception. In practice,
most robot systems are designed to have the propri-
oception necessary to estimate and control their own
physical state. On the other hand, recovering the state
of the world from sensor data is usually a much larger
and more complex problem.

Early work on computational perception for
robotics assumed that one could recover a complete
general-purpose model of the environment, use such
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a model to make decisions, and subsequently act on
them, as for example presented by [5.1]. More re-
cently it has become apparent that such an approach
is not realistic. Indeed, considering that sensor-based
robots now appear in diverse applications such as mo-
bile surveillance, high-performance manipulation, and
medical interventions, it is clear that appropriate sens-
ing and estimation for a given system must be highly
task dependent. Consequently, the discussion here is
organized along the lines of task-oriented sensing and
estimation of the external world.

Sensing and estimation together can be viewed as
the process of transforming a physical quantity into
a computer representation that can be used for further
processing. Sensing is thus closely tied to transducers
that transform some physical entity into a signal that
can be processed by a computer. Sensing is also inti-
mately tied to perception, the process of representing
the sensory information in an task-oriented model of the
world. However, sensor data is usually corrupted in var-

ious ways that complicate this process. Statistical noise
arises from the transducer, discretization is introduced
in the digitization process, and ambiguity is introduced
by poor sensor selectivity to name a few examples.
Estimation methods are thus introduced to support ap-
propriate integration of information into models of the
environment and for improvement of the signal-to-noise
ratio.

In this chapter the general characteristics of sensing
and estimation are introduced, while more in-depth pre-
sentations of select topics are provided in Part C of the
handbook. In Sect. 5.2 the overall sensing/perception
process is introduced. In Sect. 5.3 different kinds of
sensors are introduced and some key characteristics
are presented. Estimation of world representations can
utilize a number of different methods involving both
parametric and nonparametric techniques as discussed
in Sect. 5.4. For model-based integration a variety of
different representations can be used, as described in
Sect. 5.5.

5.2 The Perception Process

The input to the perception process is typically twofold:
(1) digital data from a number of sensors/transducers,
and (2) a partial model of the environment (a world
model) that includes information about the state of the
robot and other relevant entities in the external world.
The sensor data itself can take on a number of dif-
ferent forms such as a scalar or vector value x.˛; ˇ/
acquired over a time series x.t/, a scan xt.�i/, a vec-
tor field x or a three-dimensional volume x.	; �; �/: In
many cases, a system must integrate data from several
disparate sensors, for example, an estimate of the po-
sition of a mobile robot may integrate data from axis
encoders, vision, global positioning system (GPS) data,
and inertial sensors.

To further structure the discussion in this chapter,
we adopt a general model of the perception process

Feature
extraction

Matching
(association) Updating

Prediction

Model
integration Model

Fig. 5.1 Example of a perception process as discussed in this chapter

as shown in Fig. 5.1. In this model, we have included
the most common operations applied to integrate sen-
sor data with a world model. Depending on the task in
question, some of the included modules may be miss-
ing, and others may themselves take on a complicated
structure. However, the supplied model suffices to illus-
trate many of the issues in sensing and estimation. In the
remainder of this section, we discuss an example from
mobile localization to illustrate this model.

The initial problem in sensory processing is data
preprocessing and feature extraction. The role of pre-
processing is to reduce noise from the transducer, to
remove any systematic errors, and to enhance relevant
aspects of the data. In some cases, sensory information
might also have to be temporally or spatially aligned
for subsequent integration. There are innumerable ways
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Fig. 5.2 An example of feature extraction from a laser
scan (after [5.2])

that data can be preprocessed to enhance or extract
features that are used in the integration. One common
approach is model fitting, as illustrated for a laser scan-
ner in Fig. 5.2. Once sensor information is available,
it is often necessary to match the data with an exist-
ing model (Fig. 5.3). This model may be based on
a priori known structure (e.g., a computer-aided de-
sign (CAD) model of the environment), or may have
been built up from previously acquired data. Data as-
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Fig. 5.3 An example environmental model for mobile
robot localization (after [5.2])

Fig. 5.4 Estimation of position and orientation for the ex-
ample mobile robot (after [5.2])

sociation methods are commonly employed to estimate
the relationship between sensor data and the model of
the environment. In our mobile robot localization ex-
ample, the extracted line features are matched against
a polygonal world model. This matching process can
be performed in several different ways, but in general
it is an optimization that maximizes the alignment of
features to the model.

Once sensory data has been matched against the
world model it is possible to update the model with
new information contained in the sensor data. In the ex-
ample, the orientation and position of the robot relative
to the world model can be updated (Fig. 5.4) from the
matched line segments.

Finally, it may be possible to develop a dynamical
system model of the underlying state being estimated.
Using such a system model, it is possible to predict
how the world changes over time until new sensory
data is acquired. This can be used within a feed-forward
prediction process, which in turn simplifies data associ-
ation for new sensory readings, as shown in Fig. 5.1.

With this as a prologue, we now turn to discuss each
step of the perception process in greater detail.
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5.3 Sensors

There are a variety of ways to classify sensors depend-
ing on what they measure, and how they measure it.
As noted previously, proprioceptive sensors are used
to measure the internal state of a robot, which might
include position of different degrees of freedom, tem-
perature, voltage on key components, motor current,
force applied to an effector, and so forth. Exterocep-
tive sensors, on the other hand, generate information
about the external environment in terms of distance
to an object, interaction forces, tissue density, and so
forth.

Sensors may also be differentiated based on whether
they are passive or active. In general, an active sen-
sor is one that emits energy into the environment, and
measures properties of the environment based on the re-
sponse. A passive sensor is one that is not active. Active
sensors are generally more robust than passive sensors
since they exert some control over the measured sig-
nal. For example, a passive stereo camera system must
rely on the appearance of viewed surfaces when per-
forming feature matching for triangulation (Chap. 31),
whereas structured light systems project a pattern onto
the scene and are thus less sensitive to scene character-
istics. Even so, absorbtion, scattering or interference of
the emitted signal can affect the performance of active
sensors.

Proprioceptive sensors are typically passive and
usually measure physical properties of the robot such
as joint position, velocity, or acceleration, motor torque,
and so forth. Exteroceptive sensors, on the other hand,
can be further divided into contact and noncontact
sensing. The contact sensors are typically the same
modalities as used for proprioception, while noncontact
sensor sensors involve most of the modalities that can
be used for estimation of physical properties at a dis-
tance including intensity, range, direction, size, and so
forth.

A classification of typical sensors according to
method and typical application is shown in Table 5.1.
More detail on methods of sensing, characterization of
sensors, and general applications can for example be

State Ch A Ch B

S1 High Low

S2 High High

S3 Low High

S4 Low Low

I

A

B

1 32 4

Fig. 5.5 Sketch of the quadrature encoder disc, and output from
photodetectors placed over each of the two pattern. The correspond-
ing state changes are shown on the right

found in the Handbook of Modern Sensors [5.3] and in
Part C of this handbook.

Estimation of rotational motion is fundamental to
control of robot manipulators and also for estimation
of ego-motion for mobile systems. The most common
sensor for measurement of rotation is the quadrature
encoder. It is composed of a transparent disc, with
two periodic patterns that are out of phase, as shown
in Fig. 5.5. Through the use of counters it is possible

Table 5.1 Classification of sensors frequently used in
robotics according to sensing objective (proprioception
(PC)/exteroception (EC)) and method (active/passive)

Classification Sensor type Sens A/P
Tactile sensors Switches/bumpers EC P

Optical barriers EC A
Proximity EC P/A

Haptic sensors Contact arrays EC P
Force/torque PC/EC P
Resistive EC P

Motor/axis sensors Brush encoders PC P
Potentiometers PC P
Resolvers PC A
Optical encoders PC A
Magnetic encoders PC A
Inductive encoders PC A
Capacity encoders EC A

Heading sensors Compass EC P
Gyroscopes PC P
Inclinometers EC A/P

Beacon based GPS EC A
(postion wrt Active optical EC A
an inertial Radio frequency

(RF) beacons
EC A

frame) Ultrasound beacon EC A
Reflective beacons EC A

Ranging Capacitive sensor EC P
Magnetic sensors EC P/A
Camera EC P/A
Sonar EC A
Laser range EC A
Structured light EC A

Speed/motion Doppler radar EC A
Doppler sound EC A
Camera EC P
Accelerometer EC P

Identification Camera EC P
Radio frequency
identification RFID

EC A

Laser ranging EC A
Radar EC A
Ultrasound EC A
Sound EC P
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to directly compute the motion and its direction (the
phasing between sensors A and B in Fig. 5.5). In addi-
tion the disc is frequently fitted with a single dot on the
outer rim for indexing (specification of a zero index).
The density of the pattern determines the resolution of
the measurements. When fitting the sensor to a motor
before a reduction gear it is easy to achieve accuracies
beyond 1=1000ı.

For the estimation of force and torque at an end-
effector it is possible to use piezoelectric elements.
These elements generate a voltage that is proportional
to the introduced deformation. Through careful place-
ment it is possible to measure both force and torque.
The sensors are used in robotic manipulation as part
of assembly systems, deburring, etc. and also in medi-
cal applications for the estimation of stress and contact.
Force/torque sensors are widely available in a range of
sizes and dynamic ranges, including new flexible ar-
rays that can be mounted on a variety of end-effectors
(Fig. 5.6). These arrays are more commonly referred
to as tactile sensors as they begin to simulate the hu-
man tactile sense. See Chap. 19 and [5.4, 5] for recent
reviews of the state of the art in tactile sensing. Poten-
tial problems with force sensors are a dead band on
initial contact, and noisy data from the basic sensing
elements, which calls for signal processing to clean up
the data.

Ego-motion estimation is an important part of al-
most all robotic systems. To this end it is possible to use
inertial measurement units (IMU). An IMU typically in-
cludes both accelerometers and gyros. Accelerometers
are sensitive to all types of acceleration, which implies
that both translation motion and rotation (centripetal
forces) are measured in combination. Joint IMU units
allow the estimation of rotation and translation, and al-
low for double integration to estimation the velocity,
orientation, and position of a system, as for example re-
ported in [5.6]. One of the problems associated with the
use of an IMU is the need for double integration. Small
biases and noise can result in significant divergence in
the final estimate, which calls for use of detailed mod-
els and careful calibration and identification of sensor
characteristics. An example of data from a cross-bow
DMU-6x unit for a car driving on an unpaved road is
shown in Fig. 5.7.

Much early work on mobile robotics, underwater
robots, and some medical robotics relies on ultrasonic
ranging. The general class of sensors are often termed
sound navigation and ranging (sonars). The general
principle is that the system emits a sound pulse and
awaits the return of echoes that have bounced off ob-
jects in the environment. Knowing the transmission
speed in the medium and the time of flight it is possible
to compute the distance. The method was widely used

a)

b)

Fig. 5.6 (a) TactArray, a flexible capacitive array tactile
sensor from Pressure Profile Systems, Inc., is appropri-
ate for sensing contact locations and areas under sliding
conditions. (b) Conformable TactArray sensors can fit on
a human or robotic hand (courtesy Pressure Profile Sys-
tems, Inc.)
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Fig. 5.7 Example data from an IMU unit for driving on an
unpaved road

in early robotics due to the availability of low-cost sen-
sors with adequate performance. In underwater robotics
this is still a primary sensor. Sonar is discussed in detail
in Chap. 30.
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Fig. 5.8 Example laser ranging sensor (SICK LMS291)
that is widely used in mobile robotics

Recent progress on environmental modeling and
navigation has, in many respects, been due to the emer-
gence of low-cost high-fidelity laser scanning systems.
The SICK series of laser scanners are time-of-flight
scanners. The scanner sends out a pulse of light and
measures the time to return. The standard scanner en-
ables estimation of distances up to 80m at centimeter or
millimeter accuracy. The scanner measures distances in
a plane with an angular resolution of 0:5�1ı. The field
of view is 180ı resulting in 181�361 range measure-
ments. The sensor data are contaminated by uniformly
distributed noise, which must be considered in the de-
tection of features or integration of data into a raw
sensor map (Fig. 5.8).

Imaging sensors are a rich source of information
for sensing and estimation. Imaging sensors come in
a wide variety of configurations, varying according to
imaging geometry, image resolution, sensor technology
and the range of sensed spectral bands. Most readers
are no doubt familiar with the traditional three-CCD,
perspective color camera. In this case, there are three
charge-coupled detector (CCD) arrays, each receiving
a portion of the visible spectrum corresponding roughly
to the human perception of red, green, and blue colors.
A common and less expensive alternative is a so-called
single-chip CCD camera. In this case, a special spatial
array of color filters, usually referred to as a Bayer filter
after its inventor Bryce Bayer, is employed. The result-
ing spatial array is subsequently processed (a process
referred to as demosaicing) to provide color informa-
tion for each pixel.

In the United States, image sensors traditionally
contained 480 rows of 640 pixels according to the
National Television System Committee (NTSC) stan-
dard created for analog transmission of television
signals. The corresponding European standard, PAL,
has 576 lines of 768 pixels. More recently, the ad-
vent of digital interfaces such as IEEE 1394 and

Y
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Image plane
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υ

u

Fig. 5.9 The pinhole camera model

Fig. 5.10 Catadioptric image and the same image mapped
to a cylindrical surface

USB 2.0 have allowed camera systems to be de-
veloped with significantly improved resolution rang-
ing into the millions of pixels. At the same time,
cost-effective infrared (IR) and ultraviolet (UV) cam-
eras have become available, allowing the develop-
ment of advanced multispectral image interpretation
systems.

A traditional imaging sensor contains an optical
system that focuses light on a planar imaging array. In
most cases, this system can be modeled using the clas-
sical pinhole camera model (shown in Fig. 5.9). Given
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a point .x; y; z/T in Euclidean space, the corresponding
camera pixel coordinates .u; v/T are given by

.u� uc/D f

sx

x

z
;

.v � vc/D f

sy

y

z
; (5.1)

where f is the focal length of the lens system, uc and vc
are the pixel coordinates of the center of projection,
and sx and sy are the size of a single pixel on the imag-
ing array. In practice, these models are also augmented
with low-order models of image distortion. The val-
ues of these parameters for a given camera system can
be determined experimentally using a variety of meth-
ods [5.7].

By combining a traditional perspective camera with
a mirror, creating a so-called catadioptric system, it is
possible to create imaging geometries that map fields of
view as large as a hemisphere into a single image. Such
systems are useful, for example, for surveillance, and
their geometric properties provide for stable position
referencing for mobile navigation [5.8]. An example
image is shown in Fig. 5.10 together with the corre-
sponding image when mapped to a cylindrical surface.

Active ranging cameras, which combine images
from an optical camera with a dense range map, are now
also widely available and quite cost effective. These
systems perform triangulation between a light projec-
tor that throws a pattern with known structure into the
scene, and a camera that views the scene and detects
the pattern. By matching or correlating the pattern ele-
ments between the projector and the camera, and using
the known relationship between them, it is possible
to recover depth using standard methods. The cam-
era/projector pair for depth recovery typically operate
in the infrared to avoid the pattern being visible to
the human eye. Thus, these systems typically include
a third visible light camera to acquire a corresponding
color image. Hence the name RGB-D (red–green–blue–
depth) cameras. Fig. 5.11 shows two recent low-cost
RGB-D products. In Fig. 5.12 is show the fused output
for a tabletop scene.

The discussion above has touched on the most
commonly employed robotic sensing devices. Many
special-purpose sensors are employed for specific ap-
plications. In medicine (Chap. 63), ultrasound, X-ray,

Fig. 5.11 Picture of proxim and kinect RGB-D sensors

Fig. 5.12 Example of fused range images from RGB-D
camera and the same scene as an intensity textured mesh

computed tomography, and magnetic resonance imag-
ing are commonly employed. Underground mapping
makes use of ground-penetrating radar [5.9]. Underwa-
ter robotics makes use of many variations on acoustical
sensors. Further discussions of these more task-specific
sensingmodalities can be found in the application chap-
ters in Part C of this handbook.
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5.4 Estimation Processes

As discussed in the introduction, there are many differ-
ent techniques for combining information from sensors.
The appropriate set of techniques depends, to a great de-
gree, on what is known a priori about the environment,
what information is necessary for the task at hand,
and what models for the sensing system are appro-
priate. Common methodologies include simple voting-
based methods, parametric and nonparametric statisti-
cal estimation techniques, fuzzy logic-based systems,
and Dempster–Shafer theory.

To illustrate this point, consider the robot localiza-
tion problem introduced in Sect. 5.2. At the outset, if
nothing is known about the environment, the robot may
acquire a laser scan and try to produce an initial model
of the environment using line segments. Since nothing
is known a priori, the system must estimate:

1. The number of line segments
2. The data association between line segments and ob-

served data values
3. The parameters of the line segments themselves.

This is a challenging problem that can be at-
tacked by simple voting techniques such as the
Hough transform [5.10] or random sample consensus
(RANSAC) [5.11] or more sophisticated unsupervised
clustering methods such as k-means [5.12], expecta-
tion maximization (EM) [5.13], or generalized principal
component analysis (GPCA) [5.14]. In many cases, this
is a computationally intensive, iterative process.

Conversely, if a prior CAD model for the environ-
ment is known, then the problem is to produce a small
set of parameters (translation and rotation) of the
model to match the data. This problem can be solved,
using feature matching by aligning observed points
to the model with iterative closest-point algorithms
(ICP) [5.15] or other efficient combinatorial matching
algorithms such as Monte Carlo methods [5.16]. The
best method to apply again depends to a great degree
on the structure of the environment and what is known
a priori.

Once an initial registration is known, new data can
take advantage of the fact that strong prior knowl-
edge is available. In particular, as the robot moves,
the sensor data should change in a predictable fash-
ion. Thus is it possible to make use of predictor–
corrector methods such as the Kalman filter [5.17,
18] or sequential importance sampling [5.19], provided
appropriate statistical characterizations of the sensing
system are available. The data association problem, if
present, can be addressed using a variety of general
techniques such as EM [5.12] or more specialized mod-

ifications to the previously cited predictor–corrector
methods [5.20].

It is often the case that sensor data is corrupted by
occasional nonsensical values. For example, the laser
range finder in our example may occasionally return
a spurious range value due to a reflection. Many com-
monly used estimation techniques are not robust to such
so-called data outliers. Techniques from robust statis-
tics [5.21] can be used to improve the performance of
sensing and estimation systems in such cases.

Finally, we may want to consider what information
is actually important for the task at hand. Most of the
techniques above presume that the goal is to produce
an accurate estimate of a set of continuous parame-
ters closely related to the underlying data. However, in
some tasks, the parameter values themselves may not
be what is of interest. For example, suppose that the
goal of our robot is to drive through a doorway. Al-
though this clearly depends on an ability to estimate the
width of the door (a continuous parameter), the decision
is ultimately binary. This problem can be codified as
a decision problem. Decision problems can be modeled
using concepts from decision theory [5.22] including
zero–one loss functions, likelihood ratios, or probabil-
ity ratios. For example, in the case of fitting through
a door, for a low-priority task there may be a low
cost associated with not attempting to move through
this particular door (necessitating replanning to find
an alternative route) relative to attempting to navigate
through an opening that is too small (risking damage to
the robot or the door, or both). Conversely, if the task is
urgent, more risky behavior may be warranted.

For any given task (or decision), the amount of in-
formation necessary to reach the decision may vary, for
example, if the doorway is quite wide, it may require
relatively little information to safely navigate through
it. Conversely, a tight fit may require close inspec-
tion before a decision can be reached. The problem of
determining the type and/or amount of information nec-
essary to reach a decision is referred to variously as the
sequential sampling problem [5.22], the sensor control
problem, or the sensor planning problem [5.23–25].

5.4.1 Point Estimation

In our robot localization example we saw several cases
where the key problem was to estimate an unknown
quantity that can be represented as a point in a vector
space. Examples include the location of a two-dimen-
sional (2-D) or three-dimensional (3-D) point or the
location of a robot. We also saw examples where the
problem was to locate the pose (position and orien-
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tation) of the robot, or parameters of a line segment.
The latter differ in that the underlying parameter space
is not a vector space. This introduces some additional
unique problems. We refer the reader to [5.26, 27] for
further discussion, and in the remainder of this chapter
restrict our attention to point estimation problems on
vector spaces. In our discussion, we assume the reader
is familiar with multivariate Gaussian distributions as
described in [5.28] and basic linear algebra [5.29].

In the remainder of this section, we consider the fol-
lowing general problem.

Given: an observation model

yD f .x; �/ : (5.2)

Estimate: x 2 Re.n/ from observations y 2 Re.m/
where � is an unknown disturbance taking values
in Re.k/ and f is a known mapping from Re.kC n/
to Re.m/.

We divide our discussion into two topical areas:

� Methods for performing estimation on batch and se-
quential data when f is linear,� Methods for performing estimation on sequential
data when f is nonlinear.

Estimation Techniques for Batch
and Sequential Data with Linear Models

In this section, we discuss linear and linearized es-
timation techniques for sequential data, including the
Kalman filter and extensions thereof. Our goal is to pro-
vide an overview of techniques available. The reader
may also wish to consult more in-depth references such
as [5.18, 30, 31] and (Chap. 35) for additional informa-
tion.

We first consider the case when f in (5.2) is linear
in its arguments. In this case, we can write

yD FxCB� ; (5.3)

where F 2 Re.m� n/ defines the (linear) relationship
between the unknown x and the observation y and B 2
Re.m�m/. For the moment, we will drop B and assume
that � represents the complete disturbance model of the
system.

The least-squares method of estimating x from y
proceeds by solving the optimization problem

min
x
kFx� yk2 : (5.4)

This optimization has a unique solution Ox if and only
if the matrix F has full column rank. In this case, the so-
lution can be computed by solving the following linear

system

FTFOxD FTy : (5.5)

In some cases, there may be reason to believe that some
observed elements are more reliable than others, and
hence should contribute more to the final estimate. This
information can be incorporated by modifying (5.4) to
include a diagonal positive-definite weightingmatrix W
as

min
x
.Fx� y/TW.Fx� y/ : (5.6)

The solution is then given by solving

.FTWF/OxD FTWy : (5.7)

Although (5.3) included a disturbance component
(in the form of �), the parameter estimates computed
in (5.5) or (5.7) made no explicit use of this quantity.
However, we can often model the noise characteristics
of the underlying sensor using a statistical model and
recast our original estimation problem to incorporate
this information. One common method is to com-
pute the maximum-likelihood estimate (MLE), which is
a value Ox such that

p.yjOx/Dmax
x

p.yjx/ : (5.8)

For the linear additive model of (5.3), the likelihood
function can be expressed in a particularly simple form.
Suppose that � is described by a fixed, known probabil-
ity density function D. The likelihood function is then
given by

p.yjx/DD.y�Fx/ : (5.9)

The MLE can be related to the previous least-
squares method as follows. Suppose that �� N.0;ƒ/,
where N denotes a multivariate Gaussian density func-
tion with (mean) 0 and covariance ƒ. Upon observing
that the maximizing the value of the likelihood function
is equivalent to minimizing the negative log of the like-
lihood function, a short series of calculations shows that
the optimal maximum-likelihood estimate is computed
by weighted least squares with WDƒ�1.

Finally, there is often a reason to include the idea
that some parameters are more likely a priori to occur
as others. For example, when observing a car driving
on an expressway, a velocity of 60mph is much more
likely than either 20 or 300mph. This information can
be captured in prior statistics on the unknown value x.
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Given a prior probably density on x; p.x/,Bayes the-
orem states that

p.xjy/D p.yjx/p.x/
p.y/

D p.yjx/p.x/R
p.yjx/p.x/dx : (5.10)

The maximum a posteriori probability (MAP) estimate
is the value Ox such that

p.Oxjy/Dmax
x

p.xjy/ : (5.11)

In general, the solution to this optimization problem can
be quite complex. Rather than pursue this course fur-
ther, we consider another alternative. Namely, provided
the second moments of p.xjy/ exist, it is possible to pro-
duce a least-squares estimate, in a statistical sense, by
solving the following optimization problem over an un-
known function ı

min
ı

E kı.y/� xk2 : (5.12)

That is, the best function ı is one that produces an es-
timate of x from y with minimum mean-square error
(MMSE). Thus, the estimator ı is often referred to as
an MMSE estimator.

It can be shown that, in the general case, the optimal
decision rule ı� is the conditional mean [5.22]

ı�.y/D E Œx j y� : (5.13)

Unfortunately, this expression, as with the MAP esti-
mate defined above, can be extremely difficult to com-
pute for the general case. Later we consider methods
for computing approximations to (5.13). For now, we
again consider our previous linear observation model
(5.3) (without B). Additionally, we suppose that x and �
are independent random variables with finite second
moments, and both are zero-mean random variables.
Note that the latter is not really a restriction since it
can be accomplished by simply defining a new variable
x0 D x�EŒx�. Finally, we will consider only linear func-
tions ı, that is, we can write OxD ı.y/DKy.

With this, (5.12) can be expanded as

E kı.y/� xk2 D E kKy� xk2
D E kK.FxC �/� xk2
D E k.KF� I/xk2CE kK�k2
D tr

�
.KF� I/ƒ.KF� I/TCK†KT

	
:

(5.14)

Here, the independence of x and � and the fact that they
are both zero mean has eliminated several terms. The
final step makes use of the fact that kxk2 D tr.xxT/.

Taking derivatives with respect to K and setting
them equal to zero yields the solution

KDƒFT.FƒFTC†/�1 : (5.15)

Thus, in this case the optimal estimate is given by a lin-
ear function of the observation, where the linear term
depends only on the variance of the underlying random
variables and the linear term defining the observation
system.

If x is not zero-mean, but has mean 
, it is not hard
to show that the optimal estimate is

OxDKyC .I�KF/
 ; (5.16)

and that the variance of the estimate�C is

ƒC D .I�KF/ƒ : (5.17)

The interested reader may wish to work this out for
a few simple cases, for example, if ƒD† and FD I,
KD 1=2I and thus OxD yC
 – a simple average – with
variance ƒC D 1=2ƒ:

When both the observation noise and prior statistics
are Gaussian distributions, then it can be shown that the
solution we have derived is also the MAP estimate for
the unknown x [5.22].

The Kalman Filter
With this as background, we are now in a position
to define the discrete-time Kalman–Bucy filter [5.32]
for linear systems. Consider the following time-series
model

xtC1 DGxtCwt ; (5.18)

yt D FxtC �t ; (5.19)

where G is an n� n matrix describing the system time
evolution and x0 is distributed according to a Gaussian
distribution with mean Ox0 and variance ƒ0. In addi-
tion wt and �t are zero-mean Gaussian independent
random variables for all t, wt is independent of wt0

for all t¤ t0, and likewise �t is independent of �t0 for
all t¤ t0. Finally, �t has variance † t and wt has vari-
ance
t.

Given an observation y1 it is possible, using the
derivation of the previous section, to compute an up-
dated estimate Ox1 with variance ƒ1. Note, that the
solution is a linear combination of two Gaussian ran-
dom variables: the observation value y1 and the prior
estimate Ox0. As any linear combination of Gaussian ran-
dom variables is also a Gaussian random variable, it
follows that the updated estimate is also Gaussian.
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Fig. 5.13 A summary of the Kalman filter

Now, we add one additional step: projection through
the dynamics model. To describe this, superscripts mi-
nus and plus will denote before and after the estimation
step, respectively. Thus, given an estimate OxC

t with vari-
anceƒC

t , the projection ahead one time step produces

Ox�

tC1 DGxC

t ; (5.20)

ƒ�

tC1 DGƒC

t GTC˝t : (5.21)

At this point, a new observation ytC1 is acquired and
the cycle repeats. The summarization of the complete
Kalman filtering algorithm for linear systems is shown
in Fig. 5.13.

It is possible to show that the Kalman filter is the op-
timal filter, under the stated assumptions, in the mean-
square sense. It is also the optimal linear filter when
either or both Gaussian assumptions do not hold.

Nonlinear Estimation Techniques
for Sequential Data

The results of the previous subsection presume a linear
form for the relationship between the observation and
system state, additive noise, and a linear relationship
describing the state evolution. Furthermore, the stated
results are globally optimal for systems with Gaussian
observation and driving noise, but are only the best lin-
ear estimator if the noise sources are non-Gaussian.

As noted at the outset, the more general nonlinear
(discrete-time) system description is

xtC1 D gt.xt/Cwt ;

yt D ft.xt/C �t ; (5.22)

where, for the moment, the noise model continues to be
additive.

Although this model contains nonlinear elements, it
is still possible to apply a variant of the Kalman filter,

the extended Kalman filter (EKF) by making use of the
Taylor-series expansion of the nonlinear elements about
the current estimates. Let Jf (resp. Jg) denote the Jaco-
bian matrix of the function f (resp. g). Supposing that
an estimate at time step t� 1 exists, the first-order ex-
pansion of (5.22) about this point yields

xtC1 D gt.Oxt�1/C Jg.Oxt�1/.xt � OxtC1/Cwt ; (5.23)

yt D ft.Ox�1/C Jf .Oxt�1/.xt � Oxt�1/C �t : (5.24)

Rearranging yields a linear form appropriate for the
previously defined Kalman filter

QxtC1 D xtC1 � gt.Oxt�1/C Jgt Oxt�1 D Jgt xtCwt ;
(5.25)

Qyt D yt � ft.Oxt�1/C Jft Oxt�1 D Jft xtC �t :
(5.26)

In this form, Qx and Qy are new synthetic state and observa-
tion variables, Jg.Oxt�1/ plays the role ofG, and Jf .Oxt�1/
plays the role of F.

It is worth noting that the EKF iterations are es-
sentially a form of weighted Newton iterations (i. e., an
iterative nonlinear estimation method). As a result, it is
often useful to iterate more than once on the same ob-
servation while holding the variance terms fixed. This
allows the estimator to converge to a solution in the
presence of large disturbances or significant nonlinear-
ities. Only after convergence are the variance terms
updated. This version of the Kalman filter is referred
to as the iterated extended Kalman filter (IEKF).

5.4.2 Other Approaches to Estimation

In the previous section, we reviewed a common and
widely used estimation method. However, there are sev-
eral alternative methodologies for solving parameter
estimation problems. Here we briefly introduce two: se-
quential importance sampling and graphical models.

Sequential Importance Sampling
Much of the discussion heretofore has centered around
the notion of approximating everything known about
the system state using an estimated mean and covari-
ance. An alternative presents itself by simply going
back to Bayes theorem which states, in general, that

p.xnjy1; y2 : : : yn/D p.y1; y2 : : : ynjxn/p.xn/
p.y1; y2 : : : yn/

: (5.27)

Assuming that yn is independent of all prior observa-
tions and states given xn, and that xn is independent
of xn�k for k > 1 given xn�1, this expression simplifies
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to

p.xnjxn�1; yn/D p.ynjxn/p.xn j xn�1/

p.yn j xn�1/
: (5.28)

Recall that the optimal mean-square estimate is
given by the conditional mean which, in this case, is

ı�.yn/D E Œxn j yn� : (5.29)

In fact, we essentially showed that the Kalman filter is
a special case of this result for linear systems corrupted
by Gaussian noise.

The difficulty in implementing this procedure in the
general case ultimately comes down to the problem
of representing and computing with the distributions
that arise in the nonlinear, non-Gaussian case. However,
suppose that the heretofore continuous variable xn only
took on a discrete set of values. In this case, computing
Bayes theorem and other associated statistical quanti-
ties reduces to a straightforward set of computations on
this discrete set of variables. This can be simply done
for any distribution and any set of transformations.

Sequential important sampling (also known as parti-
cle filtering, condensation, and a variety of other names)
is a way of applying this approach to continuous vari-
ables in a statistically soundmanner. In order to perform
sequential importance sampling, it is assumed that:

1. It is possible to sample from the likelihood function
P.yn j xn/, and

2. It is possible to sample from the dynamical model
P.xn j xn�1/.

Note the emphasis on sampling – there is no need to
explicitly exhibit an analytical form of the likelihood
function or of the dynamical model.

Given this, sequential important sampling, in its
simplest form, can be written as follows:

1. Let �n�1 D fhxkn�1;w
k
n�1i; kD 1; 2; : : :Ng repre-

sent a set of sample points xkn�1 together with a set
of weights w k

n�1 with
P

w k
n�1 D 1.

2. Compute a new set of N samples ��

n�1 Dfhxkn; 1=Ni; kD 1;2; : : :Ng as:
a) Choose a sample point xk�1

n�1 with probability
proportional to its weight w k�1;

b) Sample from P.xn j xkn�1/ given xkn with
weight 1=N;

3. Compute �n D fhxkn;P.yn j xkn/i; kD 1; 2; : : :Ng.

It is easy to see that this set of steps is now in the form of
a recursive filter. Furthermore, at any time any statistic
of the associated distribution can be approximated from
the set of samples and associated weights.

Sampling-based filters of this form have found wide
applicability in a variety of challenging areas where
linear estimation techniques do not suffice. These tech-
niques have been particularly successful, for problems
with low state dimension (typically n	 3) and well-
constrained dynamics. For higher-dimensional prob-
lems or systems exhibiting high dynamic variability,
the number of particles necessary to obtain good ap-
proximations can become prohibitively large. How-
ever, even in these cases, sampling-based systems can
sometimes be engineered to produce acceptably good
results.

Graphical Models
Graphical models are a class of models that repre-
sent dependence and independence relationships among
a set of variables. Common examples of graphical mod-
els include Bayes nets, influence diagrams, and neural
nets. Graphical models are quite general – indeed much
of this chapter could have been written by first defin-
ing graphical models, and exploring specializations that
lead to the Kalman Filter, for example. Here, for reasons
of space, we focus on Bayes nets as a specific example
of graphical models.

A Bayesian network is a directed acyclic graph con-
sisting of nodes representing random variables, and
directed arcs representing probabilistic relationships
between pairs of random variables. Let parents.X/ de-
note the set of nodes which have arcs terminating at X,
and let X1;X2; : : : ;XN be the N random variables in the
graph. Then we can write

P.X1;X2; : : : ;XN/D
NY

iD1

P.Xi j parents.Xi// :

(5.30)

For example, a Bayesian network representing a mo-
bile robot performing localization is shown in Fig. 5.14.
This graphical model encodes the sequential form of the
problem and is thus an example of a so-called recurrent

υt –1

Xt

ut

υt –1

Xt –1

ut –1

υt –1

Xt +1

ut –1

Fig. 5.14 An example of robot localization expressed as
a graphical model
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network. More discussion of such models can be found
in [5.33].

The structure of a Bayesian network encodes var-
ious independence relationships among variables. By
exploiting these independence relationships, it is pos-
sible to design efficient inference algorithms. In partic-
ular, graphs which are acyclic even in their undirected
form (referred to as polytrees) admit linear time infer-
ence algorithms. More general graphs can be solved
using various types of iterative methods. In particular,
if the distributions in the network are of a continu-
ous type, variations on sequential importance sampling
can be used to solve problems in an approximate
sense [5.34].

Conditional Random Fields
In many cases of interest, including many of the ex-
amples in this chapter, the end goal is to infer or
predict a value or label from observed data. We might
then frame the problem by exploring the joint distri-
bution P.X; Y/ where X represents some data that is
observed and Y is what we would like to infer. Recall
that

P.X; Y/D P.YjX/P.X/ :

If we take X D x for some observed values x,
then we see that P.X/ becomes constant, and infer-
ring a value for Y depends only on P.YjX/. If we
were to apply a Bayes Net to this problem, the model
would represent the complete joint probability distribu-
tion on X and Y , what is referred to as a generative
model. But, if we know X is always observed, then
much of this structure is irrelevant to our problem – we
don’t care about the probabilistic structure of X. This
observation has given rise to a specialization of graph-
ical models referred to as Conditional Random Fields,
or CRFs for short.

The immediate value of CRFs is their economy and
expressivity compared to graphical models. This has
immediate positive implications for the complexity of
both learning and inference. Traditionally CRF models
are learned using maximum likelihood-based methods
using gradient descent or other unconstrained optimiza-
tion techniques. However, recent methods like Cutting
Planes [5.35] and Block Coordinate Frank Wolfe [5.36]
pose it as a constrained optimization problem in the
form of a Structural Support Vector Machine. These
techniques tend to be more computationally efficient
and are often more accurate.

CRFs have proven to be very general, and are
now extremely widely used for image processing, nat-
ural language processing, video processing – nearly
any problem where there is a series of data elements
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Fig. 5.15 (a) A skip chain CRF for inferring symbolic labels (Y)
from robot kinematic and video data (X) acquired while a user
performed a surgical training task. (b) The change in classification
accuracy as a function of the skip length (images courtesy of Colin
Lea)

from which some prediction is to be performed. For
example, Fig. 5.15 shows the graphical structure of
a skip-chain CRF designed to compute gesture labels
from kinematic and video data acquired from a surgi-
cal robot [5.37]. This can be viewed as a discriminative
generalization of a Hidden Markov Model (a genera-
tive model) that is designed to capture dependencies
over a specified period of time (the skip). The right side
shows the change in labeling performance as a function
of the skip length which is now a tunable parameter of
the model.

An in-depth discussion of CRFs goes well beyond
this chapter. The interested reader is referred to [5.38,
39] to learn more about the underlying theory and appli-
cation of CRFs. Because of their high interest, there are
a number of open-source packages for developing and
applying CRFs including PyStruct [5.40] for Python
and CRF++ for C++.

5.4.3 Robust Estimation Methods

In our previous discussions, we generally assumed that
all of the data was good, meaning that it was perhaps
corrupted by noise but ultimately carried information
about the problem at hand. However, in many cases,
the data may contain so-called outliers – data points
that are either much more highly corrupted than typical
data, or which are completely spurious. For example,
in our mapping application we might occasionally ob-
tain range data throughmultiple reflections. Thus, while
scanning a straight wall, most of the points would lie on
a straight line, but occasionally we would have a data
point that has a completely inconsistent range value.

Many common estimation methods are quite sen-
sitive to data outliers. Consider a very simple case:
estimating a single scalar value x by averaging a series
of observations X1;X2; : : :XN . Then we can write our
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estimate Ox as

OxD
NX

iD1

Xi=N : (5.31)

Now, without loss of generality, suppose that XN is an
outlier. We can rewrite the above as

OxD
N�1X
iD1

Xi=nCXN=n : (5.32)

It is now easy to see that we can produce any value of Ox
by manipulating Xn. In short, a single outlier can create
an arbitrarily poor estimate. More generally, the solu-
tion to any least-squares problem, e.g., estimating a line
from laser range data, takes the general form OxDMy.
By the same argument as above, it is easy to show
that any least-squares solution is likewise susceptible
to outliers.

The field of robust statistics studies the problem of
estimation or decisionmaking when the underlying data
are contaminated by outliers. In robust statistics, there
are two important concepts: the breakdown point and
influence function. The breakdown point is the propor-
tion of outliers (i. e., data with arbitrarily large errors)
that an estimator can tolerate before producing arbitrar-
ily large errors in an estimate. We argued above that
least-squares methods have a breakdown point of 0%
since the estimate can be perturbed arbitrarily far by
a single observation. By comparison, we might com-
pute an estimate by taking the median of the data, which
has a breakdown point of 50% – up to half of the data
can be outliers and meaningful results may still be pro-
duced.

Whereas the breakdown point quantifies how many
outliers can be tolerated, the influence function quan-
tifies how much an outlier affects an estimate. In the
case of least squares, the influence function is linear.
One way of creating new estimators with better robust-
ness is the method of M-estimators [5.21]. To produce
an M-estimate, we consider the following minimization
problem

min
Ox

NX
iD1

	.Ox; yi/ : (5.33)

Note that defining 	.a;b/D .a� b/2 leads to a least-
squares solution. However, we can now choose other
functions with better resistance to outliers. Fig. 5.16
shows three common examples.

Note that, in general, the optimization of (5.33)
is nonlinear and the result will often not exist in
closed form. Interestingly, it is often possible to
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Fig. 5.16 (a) Three common robust M-estimation func-
tions: the square function, the absolute value, and the
Tukey biweight function. (b) The corresponding influence
functions

solve this problem using the method of iteratively
reweighted least squares (IRLS) [5.30, 41]. The idea
behind IRLS is quite simple. Recall that in (5.7) we in-
troduced a weighting matrix W. Suppose that, through
some means, we knew which data points were out-
liers. In this case, we could simply set the weights
for those points to zero, and the result would be
the least-squares estimate on the remaining (good)
data.

In IRLS, we alternate between hypothesizing out-
liers (through reweighting) and solving to produce a so-
lution (through least squares). Typically, the weight for
a point depends on the residual error of the estimate.
That is, suppose we compute

rD y�FOx : (5.34)

Let  .y/D d	=dx j
Ox; then we can set Wi;i D  .y/=ri.

It can be shown that in many cases this form of
weighting will lead to convergence. An example of
using IRLS techniques for video tracking is shown
in Fig. 5.17.

Voting-Based Methods
Another common method for dealing with outliers is to
choose a set of data and let it vote for a result. We dis-
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a) b) c)

Fig.5.17a–c An example of using an M-estimate imple-
mented via IRLS for visual tracking (after [5.42]). (a) Re-
sults of a face tracker in a single frame of video. The black
frame corresponds to a tracking algorithm without outlier
rejection and the white frame corresponds to the algorithm
with outlier rejection. (b) Magnified view of the region in
the white frame; (c) the corresponding weighting matrix in
which darker areas mark outliers

cuss two common methods: RANSAC [5.11] and least
median of squares (LMedS) [5.43].

In both cases, we start with the idea that, amidst
all of the data (including outliers), there is an estimate
that is consistent with the good data. The problem is to
choose that estimate. Consider, however, our problem
of estimating a line from laser data, and suppose we
have 100 laser points. All we really need is to choose
two points correctly, fit a line, and then count howmany
other points are consistent with this line. If we (conser-
vatively) estimate that 3=4 of the data is good, then the
odds of choosing two good points is 9=16, or equiv-
alently, the odds of one or both points being outliers
is 7=16. If we now repeat this process a few (e.g., ten)
times, then the odds that all of our choices are bad
is .7=16/10D 0:025%. To put it in other terms, there
is a 99:975% chance we have chosen a good pair of
points.

How dowe decide to accept a sample? In RANSAC,
we vote by counting the number of samples that are
consistent with an estimate to within a given distance
threshold. For example, we would choose points that
are within a fixed distance to the line we estimated. We
choose the candidate estimate with the largest number
of votes. In LMedS, we instead compute the median dis-
tance of all of the samples to the line. We then choose
the estimate with the least median value.

It is not hard to see that LMedS has a breakdown
point of 50% of the data. RANSAC, on the other hand,
can have a breakdown point that is potentially larger,
but it requires the choice of a threshold. RANSAC also
has the advantage that, once the inliers are identified,
it is possible to compute a least-squares estimate from
them, thus reducing the noise in the estimate.

Both RANSAC and LMedS can also provide good
starting solutions for a robust iterative method such as
IRLS.

5.4.4 Data Association Techniques

The previous section considered the case where there is
a known relationship between observations and a quan-
tity to be estimated. However, as was illustrated in our
initial mobile robot mapping problem, it may be the
case that we also have to compute this correspondence
in conjunction with estimation. In this case, an essen-
tial step in estimation is the data association problem:
producing a correspondence between the observed data
and quantities to be estimated.

The literature on this problem is enormous; here we
will focus on a few specific methods that have found
wide use. We will also separate our discussion into
causal (or sequential) association methods commonly
used when filtering time-series data and noncausal (or
batch) methods that can be used when the complete data
set is available for processing. The latter is typically
treated with methods for data clustering.

In both cases, we can extend our previous models
and notation to include uncertainty as to the underlying
source of the data. To this end, we will use a superscript
on quantities to denote the observationmodel. Thus, our
observation model becomes

xktC1 D gk.xkt /Cw k
t ; (5.35)

ykt D f kt .x
k
t /C �kt ; (5.36)

where kD 1 : : :M.

Clustering on Batch Data
Following the same course as our previous discussion
on point estimation, let us first consider the case where
we do not make any statistical assumptions about the
data, and we have no system dynamics. Thus, we are
simply given the observations y1; y2; : : : ; yM . We have
unknown underlying parameters x1; x2; : : : ; xN (for the
moment, we take N as known). Our goal it to compute
an association mapping� such that �.j/D k if and only
if yj arose from the model parameters xk .

k-Means Clustering
The k-means algorithm for clustering and data asso-
ciation is simple, well established, and forms a good
starting point for our discussion. Here, we assume that
f .x/D x – that is, we are provided with noisy obser-
vations of the underlying state vectors. The k-means
algorithm then proceeds as follows:

1. Pick N cluster centers fOxig.
2. For each observation yj, associate it with the closest

cluster center, that is, set �.j/D i, where

d.Oxi; yj/Dmin
k

d.Oxk; yj/ (5.37)
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for some distance function d (typically the Eu-
clidean distance).

3. Estimate the mean of the observation associated
with each cluster center as

Oxi D
X

j;�.j/Di

yj : (5.38)

4. Repeat steps 2 and 3.

In many cases and with good initialization, k-means
works quite well. However, it can also fail to produce
good clusters, and there is no guarantee that it will even
converge to a solution. It is common to repeat the algo-
rithm several times from different initial conditions and
take the result that has the best outcome. Note also that
the extension to linear observation models is straight-
forward by including F in (5.3) by defining

d.Oxi; yj/D kFOxi � yjk (5.39)

and replacing (5.38) with the corresponding least-
squares estimator. Going a step further, if we have a sta-
tistical model for observed data, then we could make
use of the likelihood function introduced earlier and
define d.Oxi; yj/D p.yjjOxi/ and make use of the MLE in
(5.38).

One disadvantage of the k-means algorithm is that,
even when we have known statistical models, it is not
guaranteed to converge. However, a variation, known as
expectation maximization, can be shown to converge.

Expectation Maximization for Data Association
and Modeling

The expectation-maximization (EM) algorithm [5.44] is
a general statistical technique for dealing with missing
data. In previous discussion, we made use of maxi-
mum-likelihood estimation to maximize the conditional
probability of observed data given a set of unknown
parameters. However, our use of MLE presumed that
we had complete knowledge of the data. In particular,
we knew the association between the data elements and
models.

Let use now assume that some of our data is miss-
ing. To this end, define YO and YU as the observed and
unobserved data, respectively. We then note that we can
write

p.YO;YUjx/D p.YUjYO; x/p.YOjx/ : (5.40)

Suppose now that we make a guess for Ox, and we
have a distribution over the unknown data YU (where
this comes from we will discuss in a minute). It follows
that we could compute the expected value of the log-

likelihood function (recall that maximizing the log like-
lihood is equivalent to maximizing the likelihood) as

Q.x; Ox/D EYU Œlog p.YO;YUjx/jYO; Ox� : (5.41)

Note that we differentiate between the fixed value Ox that
is usually needed to define the distribution over the un-
known data and the unknown x of the log-likelihood
function.

Ideally, we would then like to choose values for x
that make Q large. Thus, we can choose a new value
according to the iterative rule

Oxi D argmax
x

Q.x; Oxi�1/ : (5.42)

What can be shown is that this iteration will converge
to some local maximum of the objective function Q. It
is important to note that there is no guarantee that this
is, however, the globalmaximum.

How do we connect this with clustering? We con-
sider the observed data to be just that, the data we
have observed. Let the unobserved data be the associa-
tion values �.j/; jD 1; 2; : : :M that determine which
model the observed data items originate from. Note
that this is a discrete random variable. Let us fur-
ther assume that N underlying clusters are distributed
according to a Gaussian distribution with mean xi
and covariance �i. Let the unconditional probabil-
ity that a particular data item yj comes from clus-
ter i be ˛i. The unknown parameters are then � D
fx1; x2; : : : ; xN ; �1; �2; : : : ; �N ; ˛1; ˛2; : : : ; ˛Ng:We
now use � and C to denote prior and updated parameter
estimates, respectively. For conciseness, we also define
wi;j D p.�j D ijyj; �/ and we use a superscript C to de-
note updated parameter estimates. Then, after a series
of calculations [5.44], the EM algorithm for data clus-
tering becomes

E-Step:

wi;j D p.yjj�.j/D i; �/˛iP
i p.yjj�.j/D i; �/˛i

: (5.43)

M-Step:

OxC

i D
P

j yjwi;jP
j wi;j

; (5.44)

�C

i D
P

j yj.yj/
twi;jP

j wi;j
; (5.45)

˛C

i D
P

j wi;jP
i

P
j wi;j

: (5.46)

From this, we can see that EM produces a type of
soft clustering, as opposed to k-means which produces
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Fig.5.18a–d An example of clustering using expectation maximization. The figures are the results at iterations (a) 1,
(b) 2, (c) 5, and (d) 10

specific decisions (in terms of wi;j) as to which cluster
an observation belongs. In fact, the result of estimation
is the maximum-likelihood estimate of a Gaussian mix-
ture model which has the form

p.yj�/D
X
j

j̨N.yjOxj;ƒj/ ; (5.47)

where N.�/ denotes a Gaussian density function.
Fig. 5.18 shows the results of executing the EM algo-
rithm on data sampled from a Gaussian mixture model.

Recursive Filtering
In the batch methods described above, we do not have
a priori information on state parameters. In the case
of recursive filtering, we have the advantage that prior
state estimates, Oxkt and �k

t , are available for process-
ing at time tC 1. As before, for data yit; iD 1 : : :N,
the problem is to determine a mapping � W f1 : : :Ng!
f1 : : :Mg which associates data element i to model
kD �.i/. In some cases, it is also useful to include
an outlier process to handle data that comes from no
known model. For this purpose, we can include 0 in the
range of the function, and use the mapping to zero as an
outlier.

Nearest-Neighbor Association
Analogous to k-mean clustering, a simple way of pro-
ducing a data association is to compute the data associ-
ation value as

�.i/D argmin
j

d.Fj Oxj; Oyi/ : (5.48)

However, nearest-neighbor methods do not take into
account what we know about either the sensor data or
the estimate. That is, we may have a very very good
estimate of some model i and a very very bad esti-
mate for some other model j. If a sensor observation
is equidistance between them, does it make sense to
flip a coin? Odds are that it is more likely to come
from j (with a larger variance) than i (with a smaller
variance).

A commonly used measure that can take this into
account is theMahalanobis distance [5.45]. The idea is
to weight each value by its variance as

m.y1; y2/D .y1�y2/.ƒ1Cƒ2/
�1.y1�y2/T : (5.49)

Thus, distances are scaled inversely with uncertainty. In
the case above, the observation with a higher variance
would produce the smaller distance, as desired.
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Even using this as a weighting method, it is still
possible that we will make an error in data asso-
ciation. From an estimation point of view, this will
introduce an outlier in the estimation process with, as
discussed above, potentially disastrous results. Another
approach, analogous to IRLS, is instead to weight the
data based on the distance to a model. This leads natu-
rally to the notion of a data association filter. We refer
the reader to [5.20] for extensive discussions of these
techniques.

5.4.5 Modeling Sensors

To this point, we have introduced several sensing
modalities, and we have discussed several methods
for estimation. However, the latter often rely on hav-
ing statistical models for the former. Thus, no chapter
on sensing and estimation would be complete without
a short discussion of modeling sensors.

Developing a sensor model potentially involves four
major elements:

1. Creating a physical model
2. Determining a sensor calibration
3. Determining an error model
4. Identifying failure conditions.

The physical model is the relationship f between
the underlying quantities of interest (x) and the avail-
able data (y). In many cases, this relationship is obvious,
e.g., the distance from a laser sensor to a surface in the
world. In others, it may be less so, e.g., what is the right
model relating intensities in multiple camera images to
the distance to an observed point? In some cases, it
may be necessary to include computational processes,
e.g., feature detection and correspondence, in the sen-
sor model.

Once a physical model is determined, there is often
a process of sensor calibration. Such procedures are
typically specific to the sensor in question, for ex-
ample, the imaging geometry of a perspective camera
system requires identification of two scale parame-
ters (governing image scale) and the location of the
optical center (two additional parameters). There are
also often lens distortion parameters. These parameters
can only be determined by a careful calibration proce-
dure [5.7].

Once a calibrated physical sensor model is avail-
able, determining an error model typically involves
performing an identification of the statistical parame-
ters. Ideally, the first step is to determine an empirical
distribution on errors. However, this can often be diffi-
cult, as it requires knowing accurate ground truth for the
underlying unknown parameters. This often requires

the development of a laboratory setup that can simulate
the expected sensing situation.

Given such an empirical distribution, there are sev-
eral important questions, including:

1. Are observations statistically independent?
2. Is the error distribution unimodal?
3. Can the essential aspects of the empirical error be

captured using common statistical quantities such
as the data variance?

We refer the reader to books on statistics and data
modeling [5.46] for further information on this topic.

Finally, it is important to understand when sen-
sors can and cannot provide reliable data, for example,
a laser sensormay be less accurate on dark surfaces than
on light ones, cameras do not produce meaningful data
if the lighting is too bright or too dark, and so forth.
In some cases, there are simple clues to these condi-
tions (e.g., simply looking at the intensity histogram of
a camera image can quickly determine if conditions are
suitable for processing). In some cases it is only pos-
sible to detect conditions in context (e.g., two range
sensors disagree on the distance to a surface). In some
cases failure is only detectable in retrospect, e.g., after
a 3-D surface model is built it is apparent that a hy-
pothesized surface would be occluded by another and
must therefore be a multiple reflection. In a truly robust
sensing system, all available possibilities for verifying
sensor operation should be exploited.

5.4.6 Other Uncertainty Management
Methods

Due to the limitations of space, we have necessarily
limited our discussion to cover the most commonly
used sensing and estimation methods. It is important
to note that many other alternative uncertainty manage-
ment methods have been proposed and employed with
success.

For example, if it is known that sensing error is
bounded, constraint-based methods can be quite ef-
fective at performing point estimation [5.47, 48]. Al-
ternatively, if only partial probability models can be
identified, Dempster–Shafer methods can be employed
to make judgments [5.49].

Fuzzy logic allows graded membership of a set.
With fuzzy set theory it is possible to have partial mem-
bership. As an example in classification of data it might
be difficult to select between two categories such as av-
erage and tall and gradual shifts may make sense. Such
methods have for example been used for situation as-
sessment and navigation as reported by [5.50] for the
DAMN architecture.
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5.5 Representations

Sensor data can be used directly for control but it is
also used for estimation of the state of the robot and/or
the world. The definition of state and the appropriate
methods for estimation are closely related to the repre-
sentation adopted for the application.

There are a rich variety of possible world represen-
tations including most typical geometric elements such
as points, curves, surfaces, and volumes. A fundamental
aspect in robotics is the concept of rigid-body pose. The
pose of a robot or an entity in the world is characterized
by position and orientation with respect to a reference
frame.

In general, pose is represented by the pair .R;H/.
Here R is the orientation of the object represented by
a rotation matrix with respect to a reference frame. Sim-
ilarly, H represents the translation of the object with
respect the reference frame. There is a rich set of po-
tential representations for the transformation between
reference frames as detailed in the chapter on Kinemat-
ics (Chap. 2) and in [5.51].

Sensory data is acquired in a local sensor reference
frame, for example, a sonar transducer, a laser scan-
ner, and a stereo imaging system would all measure
distances to surfaces in the world relative to their own
frame. However, if the goal is to combine this infor-
mation into a common world model, the data must be
transformed into a robot-centered reference frame, or
possibly into a fixed world (inertial) reference frame.
In particular, the world-centered reference frame enable
simple transfer across robot motions and communica-
tion to other robots and/or users.

For the purposes of discussion, most representations
for the integration of sensor data can be categorized into
four general classes of models:

� Raw sensor data models� Grid-based models� Feature-based models� Symbolic or graphical models.

Naturally, it is also possible to combine elements of
these four categories to achieve hybrid models of the
environment.

5.5.1 Raw Sensor Representations

For simple feedback control [5.52] it is common to inte-
grate raw sensory data directly into the control system,
as in many cases it is unnecessary to have a world model
for the control. For example, proprioceptive sensing
is often used in this manner: basic trajectory control
makes direct use of encoder information from joints,

and force control operates directly from force or torque
information from force sensors.

Raw sensor models are less common with extero-
ceptive sensing, but there are cases where it can be use-
ful. One example is mobile robot mapping from dense
point data. This approach has in particular been made
popular for laser range sensors, where scan alignment
is used for the generation of point-based world models.
The work by [5.53, 54] demonstrates how a number of
laser range scans can be combined into a joint model of
the environment. More formally a scan of the environ-
ment at time t is represented as a point set

Pt D fpi D .	i; �i/ji 2 1 : : :Ng : (5.50)

Two different scans Pt and PtC1 are then aligned
through a standard rigid body transformation. The es-
timation of the transformation is typically achieved
through use of the ICP algorithm [5.15]: assume
that HŒ0� is an initial estimate of the transformation be-
tween the two point sets and that jjpt � ptC1jj is the
Euclidean distance between a point from Pt and a point
from PtC1. If furthermore CP is a function to locate the
closest point from one set in the other set, then let C be
the set of point correspondences between the two sets.
Through iterations of the following algorithm,

1. Compute Ck D[N
iD1fpi;CPŒHŒk�1�.pi;PtC1/�g,

2. Estimate the HŒk� that minimizes the LSQ error be-
tween the points in Ck until the error has converged

an estimate of the scan alignment can be found and
a joint model of the environment can be constructed.

The model is simple to construct and well suited
for integration of sensor data from a single modal-
ity. Typically the model does not include information
about uncertainty and, as the model grows the complex-
ity, O.

P
t jPtj/ becomes an issue.

5.5.2 Grid-Based Representations

In a grid-based representation the world is tessellated
into a number cells. The cells can contain informa-
tion about environmental features such as temperature,
obstacles, force distribution, etc. The dimensionality
of the grid is typically two or three, depending on
the application. The tessellation can either be uni-
form or tree based using quad-tree or oct-trees [5.55].
The tree-based methods are in particular well suited
for handling of inhomogeneous and large-scale data
sets. In a grid model each cell contains a probability
over the parameter set. As an example, when using
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the grid model for representation of a physical envi-
ronment, the cell specifies occupied (O) or free (F)
and the cell encodes the probability P.occupied/. Ini-
tially where there is no information the grid is initial-
ized to P.O/D 0:5 to indicate unknown. It is further
assumed that sensor models are available that spec-
ify P.RjSij/, i. e., the probability of detection objects
for a given sensor and location. Using Bayes theo-
rem (5.10) it is now possible to update the grid model
according to

pij.tC 1/D
P.RjSij D O/pij.t/

P.RjSij D O/pij.t/CP.RjSij D F/.1� pij.t//
;

where pij is computed across the grid model whenever
new data are acquired.

The grid-based model has been widely used in mo-
bile robotics [5.56, 57] and in medical imaging where
image volumes are quite common [5.58]. Volume mod-
els can be relative large. As an example a millimeter-
resolution grid model of the human head requires 4GB
of storage, and thus demands significant computational
resources for maintenance.

5.5.3 Feature Representations

Both the raw sensor representation and the grid-based
models contain a minimum of abstraction for the sen-
sory data. In many cases there is an interest in extracting
features from the sensor data to reduce the storage
requirement and only preserve data that are invariant
across motion of the platform or external objects. Fea-
tures span most standard geometric entities such as
points (p), lines (l), planes (N; p), curves (p.s/), and
more general surfaces. For estimation of properties of
the external world there is a need for a hybrid model in
which collections of features are integrated into a uni-
fied model of state.

In general a point is represented in R.3/. Sensors
have associated noise and, consequently, in most cases
points have an associated uncertainty, typically mod-
eled as Gaussian with mean 
 and standard deviation � .
The estimation of the statistics is achieved using first-
and second-order moments.

Line features are more difficult to represent. The
mathematical line can be represented by the vector pair
(p; t), i. e., a point on the line and the tangent vector.
In many practical applications the line has a finite ex-
tent, and there is a need to encode the length of the line,
which can be achieved using end points, start point,
tangent, and length. In some cases it is advantageous
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Fig. 5.19 A topological map of a spatial environment

to have a redundant representation of the line model
to simplify updating and matching. The relation be-
tween end-point uncertainties and other line parameters
can be derived analytically, as described in [5.59]. The
estimation of line parameters is often based on the pre-
viously describe RANSAC method through the use of
the Hough transform [5.10], which is another voting-
based method.

For more complex feature models such as curves
or surfaces there is a corresponding need to utilize de-
tection methods that facilitate robust segmentation of
features, and estimation of the associated uncertainty.
A comprehensive description of such methods is avail-
able from [5.44].

5.5.4 Symbolic/Graph-Based Models

All of the representations presented in Sects. 5.5.1–
5.5.3 are parametric in nature with limited associated
semantics. Methods for the recognition of structures,
spaces, locations, and objects have seen major recent
progress in particular due to advances in statistical
learning theory [5.12, 60]. Consequently, today there
exist a variety of methods for the recognition of com-
plex structures in sensor data, such as landmarks, road
surfaces, body structures, etc. Given the availability
of recognized structures it is possible to represent the
environment using the previously discussed graphical
models. In general a graph is composed of a set of
nodes N and a set of edges E that connect nodes.
Both nodes and edges can have attributes associated
such as labels and distances. One example of a graph
structure is a topological map of the environment as
shown in Fig. 5.19. The graph representation could also
be a semantic model of the environment (objects and
places) or a representation of the composition of an ob-
ject to assembled.

In terms of model updating semantic/graph-based
representations can take advantage of recent advances
in Bayesian reasoning as presented by Pearl [5.61], and
exemplified in [5.62].
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5.6 Conclusions and Further Readings
Sensing and estimation continues to be a challenging
and very active area of robotics research. Several areas
of sensing such as computer vision and medical imag-
ing are themselves large and diverse research areas. At
the same time, new fundamental and applied techniques
in estimation continue to be developed. Indeed, it is fair
to say that perception continues to be one of the most
challenging areas of robotics research.

Given this wealth of activity, no single chapter can
hope to cover all of the material that can be useful
in the development of sensor-based robotics. However,
the methods that have been presented here are rep-
resentative of the most commonly used techniques in
robotics. In particular, linear techniques such as the
Kalman filter continue to form the backbone of percep-
tive robotics. Part C of the handbook provides more in-
depth coverage of several of the key topics in sensing
and estimation.

For the reader wishing to learn more, general dis-
cussion on the design, physics, and use of a rich
variety of sensors can be found in the Handbook of
Modern Sensors [5.3]. A discussion of sensors for mo-
bile robots can be found in [5.63], though significant
advances have been achieved since the book was pub-
lished more than a decade ago. Sensing and estimation
using computer vision is described in detail in [5.64]
and [5.65].

The basic estimation theory is covered in a num-
ber of excellent text books. Much of the detec-
tion and linear estimation theory is covered in depth
in [5.20] and [5.66]. General statistical estimation is
covered in [5.12] and [5.13] and the more recently
updated version [5.44]. Robust methods are described
in detail in [5.21, 43]. In-depth coverage of estima-
tion methods for mobile systems is also covered
in [5.33].
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