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Lastly, a terminal emulator is needed to establish serial communications.  Hercules is an example 
of a free Windows-based emulator.  Installing this executable allows one to choose settings like 
baud rate and parity. 
 
Concept 1 ASCII Character Transmission: Read from PC 
 
RS-232 and its descendent RS-485 employ HI and LO voltages to represent ON and OFF binary 
states.  In RS-232, the voltages are -12V to +12V values.  RS-485 uses lower values, but more 
importantly, use voltage differences in order to offer more robust transmission.  Most micro-
processor based systems employ TTL (transistor-to-transistor logic) voltages where LO and HI 
are respectively 0 to +5V.  As such, a converter is employed to transform RS-232 or RS-485 
states to TTL.  
 
Step 1: In BricxCC open and compile nxtReadFromPC1_0b.nxc  
 
Figure 1A depicts an NXC program that transmits ASCII characters from the PC to an NXT Brick.  
After declaring variables, the four steps involve (see yellow highlight): (1) configuring Port 4 on 
the Brick, for RS-485 communications; (2) activating RS-485 protocol; (3) setting the baud rate 
and parity; and (4) waiting at least 1 millisecond for these calls to be established. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1A: Listing for nxtReadFromPC1_0b.nxc for transmitting from the PC to the Brick 
 

// FILE: nxtReadFromPC1_0b.nxc - Works! 
// DATE: 06/08/19 15:01 
// AUTH: P.Oh 
// DESC: PC terminal program sents ASCII string to NXT.  NXT displays string 
// REFS: ME425 notes 485Master1_0.nxc nd 485Slave1_0.nxc 
//       Hercules terminal PC program: 
//       https://www.hw-group.com/software/hercules-setup-utility 
// NOTE: Serial setup Baud 115200, no parity, no handshaking 
 
task main() { 
 
  byte readBuffer[];         // array to store bytes received from PC 
  string charsRead;          // string of ASCII characters read from PC 
   
  UseRS485();                             // (1) Configure S4 for RS-485 
  RS485Enable();                         // (2) Activate RS-485 
  RS485Uart(HS_BAUD_4800, HS_MODE_DEFAULT);  // (3) Baud 4800 and default parity 
 
  Wait(MS_1);               // (4) Wait briefly for port settings to be ready 
 
  while(true) { // keep reading and displaying strings received from PC until abort 
    while(!RS485DataAvailable()) { 
      // if no ASCII chars available, then do nothing 
    }; 
    // Bytes ready, so now them 
    RS485Read(readBuffer); 
    // Convert bytes into ASCII string 
    charsRead = ByteArrayToStr(readBuffer); 
    // Display on middle of Brick's screen 
    ClearScreen(); 
    TextOut(0, LCD_LINE4, charsRead); 
    // Clear buffer 
    readBuffer = 0; 
    // Wait briefly 
    Wait(100); 
  }; // end while 
} // end main 
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Concept 2 ASCII Transmission – Read from PC 
 
The previous concept allowed the NXT Brick to read characters transmitted by a PC.  Vice-versa, 
this concept allows on the PC to read characters transmitted by the NXT. 
 
Step 1: Open and compile SendByButton.nxc file 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2A implements the 4-step process for establishing the NXT Brick’s Port 4 for RS-485 
communications at 8N1 and 4800 baud. 
 
Step 2: Execute Hercules 
 
Like in Concept 1, configure Hercules for the appropriate serial port (e.g. COM4) and settings 
(e.g. 4800 baud, 8-bits, no parity, 1 stop bit). 
 
Step 3: Execute SendByButton.nxc and open port on Hercules 
 
Unlike a PC, the NXT Brick only has 4 buttons.  As such, strings to be transmitted are associated 
with these buttons.  Figure 2A shows that pushing the left arrow button uses the NXT function 
SendRS485String to transmit the string “ Left “ (note the white space before and after the word).  
Similarly, “ Right “ is transmitted for the right arrow button. 
 
 
 
 
 
 
 
 
 

//  
 
task main() { 
  bool Rbutton, Lbutton, Mbutton; 
  UseRS485();      // (1) Port S4 configured for RS485 
  RS485Enable();     // (2) turn on RS485 
  RS485Uart(HS_BAUD_57600, HS_MODE_DEFAULT); // (3) initialize UART 57600 
  Wait(100);     // (4) Wait at least 1 msec 
  TextOut(0, LCD_LINE1, "  NXT <> laptop"); 
  while (true) { 
     if(ButtonPressed(BTNRIGHT, FALSE)){        // if Right Button is pressed 
         while(ButtonPressed(BTNRIGHT, FALSE)); // Wait for Button is released 
         SendRS485String(" Right "); // then send string 
     }else 
     if(ButtonPressed(BTNLEFT, FALSE)){ 
         while(ButtonPressed(BTNLEFT, FALSE)); 
         SendRS485String(" Left "); 
     }else 
     if(ButtonPressed(BTNCENTER, FALSE)){ 
         while(ButtonPressed(BTNCENTER, FALSE)); 
         SendRS485String(" Center "); 
     } 
  } 
} 

Figure 2A: Listing for SendByButton.nxc 
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Concept 3 Master-Slave Communications 
 
An NXT cable is connected on Port 4 of two NXT Bricks.  This allows the two Bricks to 
communicate via RS-485; one will be called the Master and the other, a Slave. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first Brick will be deemed Master and will execute 485Master1_0.nxc.  The NXC 
program begins by configure Port 4 for RS485 communications at the Brick’s default settings.  
The NXC constant HS_BAUD_DEFAULT represents 921,600 BPS, the fastest rate available.  
 
An endless while loop increments a variable (i).  The string msg contains the characters 
“Master “ plus the value of the variable (i).  The NXC function ArrayLen calculates the 

// FILE: 485Master1_0.nxc - Works! 
// DATE: 09/26/16 12:45 
// AUTH: P.Oh 
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485 communications) 
//       This code runs on Master brick.  485Slave1_0.nxc runs on Slave brick. 
//       As long as Slave is on and sending messages, Master iterates and displays number 
 
inline void WaitForMessageToBeSent() 
{ 
  while(RS485SendingData()) 
  Wait(MS_1); 
} 
 
task main() { 
  UseRS485(); // (1) Port S4 configured for RS485 
  RS485Enable(); // (2) turn on RS485 
  RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values 
  Wait(MS_1); // (4) wait a bit so all's activated 
 
  int i; 
  byte buffer[]; 
  string msg; 
  byte cnt; 
   
  while (true) { 
    msg = "Master " + NumToStr(i); 
    TextOut(0, LCD_LINE1, msg); 
    // send the # of bytes (5 bytes) 
    cnt = ArrayLen(msg); 
    SendRS485Number(cnt); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
 
    // now send the message 
    SendRS485String(msg); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
     
    i++; 
  } 
   
  // disable RS485 (not usually needed) 
  RS485Disable(); 
} // end of main 
 

Figure 3A: Listing for 485Master1_0.nxc 
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number of bytes for the resulting string (msg) and stores it in the variable cnt.  
SendRS485Number transmits this number to the Slave. 
 
To confirm that the Slave received the transmission, the NXC function RS485DataAvailable is 
called.  Once confirmed, the Master sends msg via a call to SendRS485String. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A second Brick runs 485Slave1_0.nxc given in Figure 3B and acts as a Slave.  Here, the 
program begins by configure Port 4 for RS-485 communications at default settings.  Like Figure 
3A, an endless while loop sends to the Master, the number of bytes for the string it will send, 
waits for acknowledgement from the Master, and then transmits strings. 

// FILE: 485Slave1_0.nxc - Works! 
// DATE: 09/26/16 12:47 
// AUTH: P.Oh 
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485 
communications) 
//       This code runs on Slave brick.  485Master1_0.nxc runs on Master brick. 
//       When Slave is off, then Master stops.  When Slave is on, the Master iterates 
 
inline void WaitForMessageToBeSent() 
{ 
  while(RS485SendingData()) 
  Wait(MS_1); 
} 
 
task main() { 
  UseRS485(); // (1) Port S4 configured for RS485 
  RS485Enable(); // (2) turn on RS485 
  RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values 
  Wait(MS_1); // (4) wait a bit so all's activated 
 
  int i; 
  byte buffer[]; 
  string msg; 
  byte cnt; 
   
  while (true) { 
    msg = "Slave " + NumToStr(i); 
    TextOut(0, LCD_LINE1, msg); 
    // send the # of bytes (5 bytes) 
    cnt = ArrayLen(msg); 
    SendRS485Number(cnt); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
 
    // now send the message 
    SendRS485String(msg); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
     
    i++; 
  } 
   
  // disable RS485 (not usually needed) 
  RS485Disable(); 
} // end of main 
 

Figure 3B: Listing for 485Slave1_0.nxc 
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Congratulations!  You can program the NXT Brick for RS-485 communications.  

Exercises 
 
2.1 Write an NXC program to guess a number between 1 and 21.  The PC transmits the guessed 

number to the Brick.  The Brick’s user uses the left and arrow buttons to respectively transmit 
“lower” and “higher” strings back to the PC.  When the PC transmits the correct number, the 
Brick’s user presses the Orange button to say “Correct!” 


