
NXC Programming: RS

The Lego NXT Brick can communicate with other peripherals via RS
Port 4 on the Brick provides this high
scanners,
485 can also connect the NXT Brick to other micro
This lab explores RS

Preliminary:

Most laptops today feature USB ports for serial communications. As such, a USB
dongle can plug into the laptop.
labeled to indicate the function of each screw terminal line.
was then inserted into the dongl

Blah: RJ

Figure A:
(right) connects into the laptop.

Figure B:
(right)

NXC Programming: RS

The Lego NXT Brick can communicate with other peripherals via RS
Port 4 on the Brick provides this high
scanners, joysticks, keypads, and the XL
485 can also connect the NXT Brick to other micro
This lab explores RS

liminary: NXT and Laptop Setup

Most laptops today feature USB ports for serial communications. As such, a USB
dongle can plug into the laptop.
labeled to indicate the function of each screw terminal line.
was then inserted into the dongl

Blah: RJ-45 connectors?

Figure A: NXT communicating to a Windows
(right) connects into the laptop.

Figure B: NXC Cable pinout (left). NXC cabled spliced and inserted into USB
(right)

NXC Programming: RS-485 Communications

NXC Programming

The Lego NXT Brick can communicate with other peripherals via RS
Port 4 on the Brick provides this high

joysticks, keypads, and the XL
485 can also connect the NXT Brick to other micro
This lab explores RS-485 NXC programming to send and receive packets.

NXT and Laptop Setup

Most laptops today feature USB ports for serial communications. As such, a USB
dongle can plug into the laptop.
labeled to indicate the function of each screw terminal line.
was then inserted into the dongl

45 connectors?

NXT communicating to a Windows
(right) connects into the laptop.

NXC Cable pinout (left). NXC cabled spliced and inserted into USB

485 Communications

Hands

NXC Programming –

The Lego NXT Brick can communicate with other peripherals via RS
Port 4 on the Brick provides this high-speed full

joysticks, keypads, and the XL-320 servo use this serial communication protocol. RS
485 can also connect the NXT Brick to other micro

485 NXC programming to send and receive packets.

NXT and Laptop Setup

Most laptops today feature USB ports for serial communications. As such, a USB
dongle can plug into the laptop. Figure A (right) shows one purchased from
labeled to indicate the function of each screw terminal line.
was then inserted into the dongle (Figure B right

NXT communicating to a Windows
(right) connects into the laptop.

NXC Cable pinout (left). NXC cabled spliced and inserted into USB

485 Communications

Hands-on Lab

– RS-485 Communications

The Lego NXT Brick can communicate with other peripherals via RS
speed full-duplex capability. Many peripherals like

320 servo use this serial communication protocol. RS
485 can also connect the NXT Brick to other micro-processors and computers that have this port.

485 NXC programming to send and receive packets.

Most laptops today feature USB ports for serial communications. As such, a USB
(right) shows one purchased from

labeled to indicate the function of each screw terminal line.
Figure B right).

NXT communicating to a Windows-based laptop via RS

NXC Cable pinout (left). NXC cabled spliced and inserted into USB

on Lab

485 Communications

The Lego NXT Brick can communicate with other peripherals via RS-485 serial communications.
duplex capability. Many peripherals like

320 servo use this serial communication protocol. RS
processors and computers that have this port.

485 NXC programming to send and receive packets.

Most laptops today feature USB ports for serial communications. As such, a USB
(right) shows one purchased from

labeled to indicate the function of each screw terminal line. A spliced NXT cable (

based laptop via RS-485 (left). A USB

NXC Cable pinout (left). NXC cabled spliced and inserted into USB

© Copyright Paul Oh

485 Communications

-485 serial communications.
duplex capability. Many peripherals like

320 servo use this serial communication protocol. RS
processors and computers that have this port.

485 NXC programming to send and receive packets.

Most laptops today feature USB ports for serial communications. As such, a USB
(right) shows one purchased from Amazon.com

A spliced NXT cable (

485 (left). A USB

NXC Cable pinout (left). NXC cabled spliced and inserted into USB-to-

© Copyright Paul Oh

485 serial communications.
duplex capability. Many peripherals like

320 servo use this serial communication protocol. RS
processors and computers that have this port.

Most laptops today feature USB ports for serial communications. As such, a USB-to-RS485
Amazon.com; it is

A spliced NXT cable (Figure B left

485 (left). A USB-to-RS485

-RS485 dongle

© Copyright Paul Oh

485 serial communications.
duplex capability. Many peripherals like

320 servo use this serial communication protocol. RS-
processors and computers that have this port.

RS485
; it is

Figure B left)

RS485

RS485 dongle

NXC Programming: RS-485 Communications

© Copyright Paul Oh

Lastly, a terminal emulator is needed to establish serial communications. Hercules is an example
of a free Windows-based emulator. Installing this executable allows one to choose settings like
baud rate and parity.

Concept 1 ASCII Character Transmission: Read from PC

RS-232 and its descendent RS-485 employ HI and LO voltages to represent ON and OFF binary
states. In RS-232, the voltages are -12V to +12V values. RS-485 uses lower values, but more
importantly, use voltage differences in order to offer more robust transmission. Most micro-
processor based systems employ TTL (transistor-to-transistor logic) voltages where LO and HI
are respectively 0 to +5V. As such, a converter is employed to transform RS-232 or RS-485
states to TTL.

Step 1: In BricxCC open and compile nxtReadFromPC1_0b.nxc

Figure 1A depicts an NXC program that transmits ASCII characters from the PC to an NXT Brick.
After declaring variables, the four steps involve (see yellow highlight): (1) configuring Port 4 on
the Brick, for RS-485 communications; (2) activating RS-485 protocol; (3) setting the baud rate
and parity; and (4) waiting at least 1 millisecond for these calls to be established.

Figure 1A: Listing for nxtReadFromPC1_0b.nxc for transmitting from the PC to the Brick

// FILE: nxtReadFromPC1_0b.nxc - Works!
// DATE: 06/08/19 15:01
// AUTH: P.Oh
// DESC: PC terminal program sents ASCII string to NXT. NXT displays string
// REFS: ME425 notes 485Master1_0.nxc nd 485Slave1_0.nxc
// Hercules terminal PC program:
// https://www.hw-group.com/software/hercules-setup-utility
// NOTE: Serial setup Baud 115200, no parity, no handshaking

task main() {

 byte readBuffer[]; // array to store bytes received from PC
 string charsRead; // string of ASCII characters read from PC

 UseRS485(); // (1) Configure S4 for RS-485
 RS485Enable(); // (2) Activate RS-485
 RS485Uart(HS_BAUD_4800, HS_MODE_DEFAULT); // (3) Baud 4800 and default parity

 Wait(MS_1); // (4) Wait briefly for port settings to be ready

 while(true) { // keep reading and displaying strings received from PC until abort
 while(!RS485DataAvailable()) {
 // if no ASCII chars available, then do nothing
 };
 // Bytes ready, so now them
 RS485Read(readBuffer);
 // Convert bytes into ASCII string
 charsRead = ByteArrayToStr(readBuffer);
 // Display on middle of Brick's screen
 ClearScreen();
 TextOut(0, LCD_LINE4, charsRead);
 // Clear buffer
 readBuffer = 0;
 // Wait briefly
 Wait(100);
 }; // end while
} // end main

NXC Programming: RS

A while
(RS485DataAvailable
data into the array
the Brick. The array is then reset to 0 and the program loops.

Step 2:

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
PC and any serially connected devices.
The right pull
Manager to see port names for any serially connected devices. In this particular example, The
NXT Brick was connected to COM4. Next,
This is because the listing in
parity, and 1 stop bit. This is a common setting where 8
asynchron

Step 3:

Once the Brick runs the NXT program, it waits for a connection. Clicking the
Hercules confirms this connec
Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in
uses the NXC functions
These string characters are displayed on the Brick using

Step 4:

NXC Programming: RS

while-loop checks for any transmitted data with an NXC function call
RS485DataAvailable

data into the array
the Brick. The array is then reset to 0 and the program loops.

Step 2: Configure Hercules

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
PC and any serially connected devices.
The right pull-down fields show that that
Manager to see port names for any serially connected devices. In this particular example, The
NXT Brick was connected to COM4. Next,
This is because the listing in
parity, and 1 stop bit. This is a common setting where 8
asynchronously, and a stop bit is used to flag the end of transmission.

Step 3: Run nxtReadFromPC1_0b.nxc

Once the Brick runs the NXT program, it waits for a connection. Clicking the
Hercules confirms this connec
Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in
uses the NXC functions

se string characters are displayed on the Brick using

Step 4: Connect Oscilloscope

Figure 1B:

NXC Programming: RS-485 Communications

loop checks for any transmitted data with an NXC function call
RS485DataAvailable). When data is available, the NXC function

data into the array readBuffer
the Brick. The array is then reset to 0 and the program loops.

Configure Hercules

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
PC and any serially connected devices.

down fields show that that
Manager to see port names for any serially connected devices. In this particular example, The
NXT Brick was connected to COM4. Next,
This is because the listing in Figure 1A
parity, and 1 stop bit. This is a common setting where 8

ously, and a stop bit is used to flag the end of transmission.

nxtReadFromPC1_0b.nxc

Once the Brick runs the NXT program, it waits for a connection. Clicking the
Hercules confirms this connection. At the bottom of
Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in
uses the NXC functions ByteArrayToStr

se string characters are displayed on the Brick using

Connect Oscilloscope

Figure 1B: Hercules Terminal Emulator with Baud set to 4800 BPS and 8N1

485 Communications

loop checks for any transmitted data with an NXC function call
). When data is available, the NXC function

readBuffer. This data is converted into a character string and displayed on
the Brick. The array is then reset to 0 and the program loops.

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
PC and any serially connected devices. Figure 1B

down fields show that that COM4
Manager to see port names for any serially connected devices. In this particular example, The
NXT Brick was connected to COM4. Next, a 4800 BPS (bits

Figure 1A established
parity, and 1 stop bit. This is a common setting where 8

ously, and a stop bit is used to flag the end of transmission.

nxtReadFromPC1_0b.nxc and Open the Port in Hercules

Once the Brick runs the NXT program, it waits for a connection. Clicking the
tion. At the bottom of

Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in
ByteArrayToStr

se string characters are displayed on the Brick using

Hercules Terminal Emulator with Baud set to 4800 BPS and 8N1

485 Communications

loop checks for any transmitted data with an NXC function call
). When data is available, the NXC function

. This data is converted into a character string and displayed on
the Brick. The array is then reset to 0 and the program loops.

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
Figure 1B shows the
COM4 is selected. In Windows, one can use Device

Manager to see port names for any serially connected devices. In this particular example, The
a 4800 BPS (bits

established RS485Uart
parity, and 1 stop bit. This is a common setting where 8

ously, and a stop bit is used to flag the end of transmission.

and Open the Port in Hercules

Once the Brick runs the NXT program, it waits for a connection. Clicking the
tion. At the bottom of Figure 1B

Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in
 to convert any received bytes into string characters.

se string characters are displayed on the Brick using TextOut

Hercules Terminal Emulator with Baud set to 4800 BPS and 8N1

loop checks for any transmitted data with an NXC function call
). When data is available, the NXC function

. This data is converted into a character string and displayed on
the Brick. The array is then reset to 0 and the program loops.

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
shows the Serial

is selected. In Windows, one can use Device
Manager to see port names for any serially connected devices. In this particular example, The

a 4800 BPS (bits-per-second) baud rate was chosen.
RS485Uart at 4800. 8N1 refers to 8

parity, and 1 stop bit. This is a common setting where 8-bits represents data, the data is sent
ously, and a stop bit is used to flag the end of transmission.

and Open the Port in Hercules

Once the Brick runs the NXT program, it waits for a connection. Clicking the
Figure 1B, one can enter text and clicking

Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in
to convert any received bytes into string characters.

TextOut.

Hercules Terminal Emulator with Baud set to 4800 BPS and 8N1

© Copyright Paul Oh

loop checks for any transmitted data with an NXC function call
). When data is available, the NXC function RS485Read

. This data is converted into a character string and displayed on

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
Serial tab selected (red circle).

is selected. In Windows, one can use Device
Manager to see port names for any serially connected devices. In this particular example, The

second) baud rate was chosen.
at 4800. 8N1 refers to 8

bits represents data, the data is sent

and Open the Port in Hercules

Once the Brick runs the NXT program, it waits for a connection. Clicking the Open
, one can enter text and clicking

Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in
to convert any received bytes into string characters.

Hercules Terminal Emulator with Baud set to 4800 BPS and 8N1

© Copyright Paul Oh

loop checks for any transmitted data with an NXC function call
RS485Read collects that

. This data is converted into a character string and displayed on

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
tab selected (red circle).

is selected. In Windows, one can use Device
Manager to see port names for any serially connected devices. In this particular example, The

second) baud rate was chosen.
at 4800. 8N1 refers to 8-bits, no

bits represents data, the data is sent

Open button in
, one can enter text and clicking

Send, transmits their byte equivalents to the NXT Brick. Recall the NXT program in Figure 1A
to convert any received bytes into string characters.

Hercules Terminal Emulator with Baud set to 4800 BPS and 8N1

© Copyright Paul Oh

loop checks for any transmitted data with an NXC function call
collects that

. This data is converted into a character string and displayed on

A Terminal Emulator, like Hercules, allows one to establish serial communications between the
tab selected (red circle).

is selected. In Windows, one can use Device
Manager to see port names for any serially connected devices. In this particular example, The

second) baud rate was chosen.
bits, no

bits represents data, the data is sent

button in
, one can enter text and clicking

Figure 1A
to convert any received bytes into string characters.

NXC Programming: RS

ASCII
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can
visually see how G is represented in binary by computers, using an oscillos

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit.
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should
set the oscilloscope to trigger when voltages are a
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

The two vertical lines are the scope’s time cursors and show a
first transition from HI to LO is the start bits (represented by the left
Figure 1C
levels (represented by 4 red and 4 blue colored texts). Finally, there is HI
are the stop bits (right

Recall that G has binary value 0100
bit (right

Exercises

1.1 What is the ASCII binary value for the uppercase character U? Sketch

on
display when U is transmitted.

NXC Programming: RS

ASCII is the international standard to represent alpha
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can
visually see how G is represented in binary by computers, using an oscillos

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit.
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should
set the oscilloscope to trigger when voltages are a
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

The two vertical lines are the scope’s time cursors and show a
first transition from HI to LO is the start bits (represented by the left
Figure 1C). What follows are
levels (represented by 4 red and 4 blue colored texts). Finally, there is HI
are the stop bits (right

Recall that G has binary value 0100
bit (right-most) is transmitted first. In other words, G is transmitted as 1110 0010.

Exercises

What is the ASCII binary value for the uppercase character U? Sketch
on the scope when U is transmitted. Confirm your sketch with a photo of the oscilloscope
display when U is transmitted.

NXC Programming: RS-485 Communications

is the international standard to represent alpha
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can
visually see how G is represented in binary by computers, using an oscillos

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit.
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should
set the oscilloscope to trigger when voltages are a
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

The two vertical lines are the scope’s time cursors and show a
first transition from HI to LO is the start bits (represented by the left

). What follows are eight 220 microsecond slices at HI
levels (represented by 4 red and 4 blue colored texts). Finally, there is HI
are the stop bits (right-most yellow highlighted text).

Recall that G has binary value 0100
most) is transmitted first. In other words, G is transmitted as 1110 0010.

Figure 1C:

What is the ASCII binary value for the uppercase character U? Sketch
the scope when U is transmitted. Confirm your sketch with a photo of the oscilloscope

display when U is transmitted.

485 Communications

is the international standard to represent alpha
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can
visually see how G is represented in binary by computers, using an oscillos

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit.
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should
set the oscilloscope to trigger when voltages are a
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

The two vertical lines are the scope’s time cursors and show a
first transition from HI to LO is the start bits (represented by the left

eight 220 microsecond slices at HI
levels (represented by 4 red and 4 blue colored texts). Finally, there is HI

most yellow highlighted text).

Recall that G has binary value 0100 0111. Thus, the scope shows that the least
most) is transmitted first. In other words, G is transmitted as 1110 0010.

Figure 1C: Oscilloscope display of the uppercase letter G

 10 1 1 1 0

What is the ASCII binary value for the uppercase character U? Sketch
the scope when U is transmitted. Confirm your sketch with a photo of the oscilloscope

display when U is transmitted.

485 Communications

is the international standard to represent alpha-numeric characters. For example, the
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can
visually see how G is represented in binary by computers, using an oscillos

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit.
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should
set the oscilloscope to trigger when voltages are above 0 Volts (e.g. 100 mV).
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

The two vertical lines are the scope’s time cursors and show a
first transition from HI to LO is the start bits (represented by the left

eight 220 microsecond slices at HI
levels (represented by 4 red and 4 blue colored texts). Finally, there is HI

most yellow highlighted text).

0111. Thus, the scope shows that the least
most) is transmitted first. In other words, G is transmitted as 1110 0010.

Oscilloscope display of the uppercase letter G

0 0 0 1 0 10

What is the ASCII binary value for the uppercase character U? Sketch
the scope when U is transmitted. Confirm your sketch with a photo of the oscilloscope

-numeric characters. For example, the
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can
visually see how G is represented in binary by computers, using an oscillos

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit.
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should

bove 0 Volts (e.g. 100 mV).
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

The two vertical lines are the scope’s time cursors and show a Delta
first transition from HI to LO is the start bits (represented by the left-most yellow highlighted text in

eight 220 microsecond slices at HI-HI-HI
levels (represented by 4 red and 4 blue colored texts). Finally, there is HI

0111. Thus, the scope shows that the least
most) is transmitted first. In other words, G is transmitted as 1110 0010.

Oscilloscope display of the uppercase letter G

What is the ASCII binary value for the uppercase character U? Sketch
the scope when U is transmitted. Confirm your sketch with a photo of the oscilloscope

© Copyright Paul Oh

numeric characters. For example, the
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can
visually see how G is represented in binary by computers, using an oscilloscope.

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit.
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should

bove 0 Volts (e.g. 100 mV). Figure 1C
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

Delta of 220 microseconds.
most yellow highlighted text in

HI-LO-LO-LO-
levels (represented by 4 red and 4 blue colored texts). Finally, there is HI-LO transmission which

0111. Thus, the scope shows that the least-most
most) is transmitted first. In other words, G is transmitted as 1110 0010.

Oscilloscope display of the uppercase letter G

What is the ASCII binary value for the uppercase character U? Sketch what should be seen
the scope when U is transmitted. Confirm your sketch with a photo of the oscilloscope

© Copyright Paul Oh

numeric characters. For example, the
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can

Recall that a 4800 bit/second baud rate was selected. This is 0.21 seconds/bit. Hence, setting
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should

Figure 1C shows
a capture of the oscilloscope’s display when Hercules transmits the letter G to the NXT Brick.

of 220 microseconds. The
most yellow highlighted text in

-HI-LO voltage
LO transmission which

most-significant

what should be seen
the scope when U is transmitted. Confirm your sketch with a photo of the oscilloscope

© Copyright Paul Oh

numeric characters. For example, the
uppercase letter G has the ASCII value of 71 Decimal (0x47) or 0100 0111 in binary. One can

Hence, setting
an oscilloscope at this rate will capture this transmission rate. The improve visibility one should

shows

The
most yellow highlighted text in

LO voltage
LO transmission which

significant

what should be seen

NXC Programming: RS-485 Communications

© Copyright Paul Oh

Concept 2 ASCII Transmission – Read from PC

The previous concept allowed the NXT Brick to read characters transmitted by a PC. Vice-versa,
this concept allows on the PC to read characters transmitted by the NXT.

Step 1: Open and compile SendByButton.nxc file

Figure 2A implements the 4-step process for establishing the NXT Brick’s Port 4 for RS-485
communications at 8N1 and 4800 baud.

Step 2: Execute Hercules

Like in Concept 1, configure Hercules for the appropriate serial port (e.g. COM4) and settings
(e.g. 4800 baud, 8-bits, no parity, 1 stop bit).

Step 3: Execute SendByButton.nxc and open port on Hercules

Unlike a PC, the NXT Brick only has 4 buttons. As such, strings to be transmitted are associated
with these buttons. Figure 2A shows that pushing the left arrow button uses the NXT function
SendRS485String to transmit the string “ Left “ (note the white space before and after the word).
Similarly, “ Right “ is transmitted for the right arrow button.

//

task main() {
 bool Rbutton, Lbutton, Mbutton;
 UseRS485(); // (1) Port S4 configured for RS485
 RS485Enable(); // (2) turn on RS485
 RS485Uart(HS_BAUD_57600, HS_MODE_DEFAULT); // (3) initialize UART 57600
 Wait(100); // (4) Wait at least 1 msec
 TextOut(0, LCD_LINE1, " NXT <> laptop");
 while (true) {
 if(ButtonPressed(BTNRIGHT, FALSE)){ // if Right Button is pressed
 while(ButtonPressed(BTNRIGHT, FALSE)); // Wait for Button is released
 SendRS485String(" Right "); // then send string
 }else
 if(ButtonPressed(BTNLEFT, FALSE)){
 while(ButtonPressed(BTNLEFT, FALSE));
 SendRS485String(" Left ");
 }else
 if(ButtonPressed(BTNCENTER, FALSE)){
 while(ButtonPressed(BTNCENTER, FALSE));
 SendRS485String(" Center ");
 }
 }
}

Figure 2A: Listing for SendByButton.nxc

NXC Programming: RS-485 Communications

© Copyright Paul Oh

Concept 3 Master-Slave Communications

An NXT cable is connected on Port 4 of two NXT Bricks. This allows the two Bricks to
communicate via RS-485; one will be called the Master and the other, a Slave.

The first Brick will be deemed Master and will execute 485Master1_0.nxc. The NXC
program begins by configure Port 4 for RS485 communications at the Brick’s default settings.
The NXC constant HS_BAUD_DEFAULT represents 921,600 BPS, the fastest rate available.

An endless while loop increments a variable (i). The string msg contains the characters
“Master “ plus the value of the variable (i). The NXC function ArrayLen calculates the

// FILE: 485Master1_0.nxc - Works!
// DATE: 09/26/16 12:45
// AUTH: P.Oh
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485 communications)
// This code runs on Master brick. 485Slave1_0.nxc runs on Slave brick.
// As long as Slave is on and sending messages, Master iterates and displays number

inline void WaitForMessageToBeSent()
{
 while(RS485SendingData())
 Wait(MS_1);
}

task main() {
 UseRS485(); // (1) Port S4 configured for RS485
 RS485Enable(); // (2) turn on RS485
 RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values
 Wait(MS_1); // (4) wait a bit so all's activated

 int i;
 byte buffer[];
 string msg;
 byte cnt;

 while (true) {
 msg = "Master " + NumToStr(i);
 TextOut(0, LCD_LINE1, msg);
 // send the # of bytes (5 bytes)
 cnt = ArrayLen(msg);
 SendRS485Number(cnt);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 // now send the message
 SendRS485String(msg);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 i++;
 }

 // disable RS485 (not usually needed)
 RS485Disable();
} // end of main

Figure 3A: Listing for 485Master1_0.nxc

NXC Programming: RS-485 Communications

© Copyright Paul Oh

number of bytes for the resulting string (msg) and stores it in the variable cnt.
SendRS485Number transmits this number to the Slave.

To confirm that the Slave received the transmission, the NXC function RS485DataAvailable is
called. Once confirmed, the Master sends msg via a call to SendRS485String.

A second Brick runs 485Slave1_0.nxc given in Figure 3B and acts as a Slave. Here, the
program begins by configure Port 4 for RS-485 communications at default settings. Like Figure
3A, an endless while loop sends to the Master, the number of bytes for the string it will send,
waits for acknowledgement from the Master, and then transmits strings.

// FILE: 485Slave1_0.nxc - Works!
// DATE: 09/26/16 12:47
// AUTH: P.Oh
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485
communications)
// This code runs on Slave brick. 485Master1_0.nxc runs on Master brick.
// When Slave is off, then Master stops. When Slave is on, the Master iterates

inline void WaitForMessageToBeSent()
{
 while(RS485SendingData())
 Wait(MS_1);
}

task main() {
 UseRS485(); // (1) Port S4 configured for RS485
 RS485Enable(); // (2) turn on RS485
 RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values
 Wait(MS_1); // (4) wait a bit so all's activated

 int i;
 byte buffer[];
 string msg;
 byte cnt;

 while (true) {
 msg = "Slave " + NumToStr(i);
 TextOut(0, LCD_LINE1, msg);
 // send the # of bytes (5 bytes)
 cnt = ArrayLen(msg);
 SendRS485Number(cnt);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 // now send the message
 SendRS485String(msg);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 i++;
 }

 // disable RS485 (not usually needed)
 RS485Disable();
} // end of main

Figure 3B: Listing for 485Slave1_0.nxc

NXC Programming: RS-485 Communications

© Copyright Paul Oh

Congratulations! You can program the NXT Brick for RS-485 communications.

Exercises

2.1 Write an NXC program to guess a number between 1 and 21. The PC transmits the guessed

number to the Brick. The Brick’s user uses the left and arrow buttons to respectively transmit
“lower” and “higher” strings back to the PC. When the PC transmits the correct number, the
Brick’s user presses the Orange button to say “Correct!”

