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 PID controller
• Proportional–Integral–Derivative controller.

• 𝐷 𝑠 = 𝑘𝑃 +
𝑘𝐼

𝑠
+ 𝑘𝐷𝑠

• The PID controller is broadly applicable, since it relies only on the response of the measured process 
variable, not on knowledge or a model of the underlying process.

• The PID gain tuning is a difficult problem.
• There are several methods for tuning the gains: manual tuning, Ziegler-Nichols method, etc.
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 PID controller - Integrator antiwindup

• Suppose a given reference step is more than large enough to cause the actuator to saturate at 𝑢𝑚𝑎𝑥.
• The integrator continues integrating the error 𝑒, and the signal 𝑢𝑐 keeps growing. 
• However, the input to the plant is stuck at its maximum value, namely 𝑢 = 𝑢𝑚𝑎𝑥, so the error remains 

large until the plant output exceeds the reference and the error changes sign. 
• The solution to this problem is an integrator antiwindup, which “turns off” the integral action when the 

actuator saturates.

• In this scheme, as soon as the actuator saturates, the feedback loop around the integrator becomes active 
and acts to keep the input to the integrator at 𝑒1 small. 
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 Pole-placement method
• To place the closed-loop poles of a plant in pre-determined locations (desired poles) in the s-plane.

• If the closed-loop dynamics can be represented by the state space equation with output equation,
ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈, 𝑌 = 𝐶𝑋

then the poles of the system transfer function are the roots of the characteristic equation given by
det 𝑠𝐼 − 𝐴 = 0

Consider an input proportional to the state vector,
𝑈 = −𝐾𝑋

Substituting into the state space equations above,
ሶ𝑋 = (𝐴 − 𝐵𝐾)𝑋

Therefore, the poles of the full state feedback system are given by det[𝑠𝐼 − 𝐴 − 𝐵𝐾 ] = 0.
• Determine feedback gain, 𝐾,  through comparing the poles of the full state feedback system with desired 

poles.
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 Pole-placement method – continued
• For example, there is a control system given by the following state space equations

ሶ𝑋 =
0 1
−2 −3

𝑋 +
0
1
𝑈

• Desire poles: 𝑠 = −1, 𝑎𝑛𝑑 𝑠 = −5
 The desired character equation is s + 1 s + 5 = 𝑠2 + 6𝑠 + 5 = 0.

• Let 𝐾 = [𝑘1 𝑘2],

𝑠𝐼 − 𝐴 − 𝐵𝐾 = det
𝑠 −1

2 + 𝑘1 𝑠 + 3 + 𝑘2
= 𝑠2 + 3 + 𝑘2 𝑠 + (2 + 𝑘1)

• Comparing two equations,
𝑠2 + 6𝑠 + 5 = 𝑠2 + 3 + 𝑘2 𝑠 + (2 + 𝑘1)

• Therefore, 𝑘1 = 3, 𝑎𝑛𝑑 𝑘2 = 3.
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 Inverted pendulum model (IPM)
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• For IPM, the kinetic and potential energies are

𝐾 = Τ1 2𝑚𝐿2 ሶ𝜃2

𝑃 = 𝑚𝑔𝐿 cos 𝜃
• The Lagrangian

𝐿 = 𝐾 + 𝑃 = Τ1 2𝑚𝐿2 ሶ𝜃2 +𝑚𝑔𝐿 cos 𝜃
• Lagrangian’s equation
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 Inverted pendulum model (IPM) – continued

PID and Linear Control

• Linearization:
Assume that 𝜃 is small. Then, sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈ 1.
After linearizing Lagrangian’s equation,

∴ 𝜏 = 𝑚𝐿2 ሷ𝜃 − 𝑚𝑔𝐿𝜃

• State-space representation:
Rewrite the linearized equation,
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Set state as 𝑋 = 𝜃 ሶ𝜃
𝑇, input 𝑢 as the joint torque 𝜏, 
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, and 𝐶 = 1 0 .
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 Inverted pendulum model (IPM) – continued
• PID controller: D(s)

• Pole-placement method 
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