# ME729 Advanced Robotics -Actuators and Sensors 3/5/2018 Sangsin Park, Ph.D.

DC and BLDC Motors

- In robotics as well as control field, DC motors are used for incremental motion servo systems.
- The function of the motor in serving as the actuating component for the system is to provide the torque needed to accomplish the system's incremental motion demands.
- To make reliability increase, brushless DC (BLDC) motors are applied to the actuators.
- The BLDC motors are a special class which uses the same technology as the brush-type DC motors.
- But the BLDC motors' commutation is performed by electronic rather than mechanical means.

DC Motors

• From YouTube : <u>https://youtu.be/LAtPHANEfQo</u>



www.LearnEngineering.org

#### BLDC Motors

• From YouTube : <u>https://youtu.be/bCEiOnuODac</u>



#### Comparison with DC and BLDC motors

| DC motors                                | BLDC motors                                                                          |
|------------------------------------------|--------------------------------------------------------------------------------------|
| It uses brushed commutation.             | It uses electronic commutation based on hall position sensors because of no brushes. |
| It requires periodic maintenance.        | It requires less maintenance due to the absence of the brushes.                      |
| It has shorter life.                     | It has longer life.                                                                  |
| It has moderate efficiency.              | It has higher efficiency. Hence, there is no voltage drop across brushes.            |
| Rotor inertia is higher.                 | Rotor inertia is low. Because it has permanent magnets on the rotor.                 |
| The speed range is lower.                | The speed range is higher.                                                           |
| The cost of building is lower.           | The cost of building is higher.                                                      |
| Motor control is simple and inexpensive. | Motor control is complex and expensive.                                              |

#### DC motor inverter configuration

• The schematic







## Sensors

Potentiometers

- Potentiometers are used to measure linear or rotational displacement.
- When a voltage is applied across the fixed terminals of the potentiometer, the output voltage across the variable terminal and reference is proportional to the shaft displacement of it.
- The input voltage V, the output voltage e(t), the shaft position θ<sub>c</sub>(t), a proportional constant K<sub>s</sub> and for an N-turn potentiometer,

$$e(t) = K_s \theta_c(t)$$
  
 $K_s = V/2\pi N$  volts/rad



## Sensors

□ Rotary incremental encoders

- The rotary incremental encoders are defined as a device which produces electrical pulses at equal angular increments of shaft displacement.
- Most rotary encoders are composed of a glass or plastic slotted disk.
- As radial lines in each track interrupt the beam between a photoemitter-detector pair, digital pulses are produced.



## Sensors

□ Rotary incremental encoders - continued

- A dual-channel encoder with two sets of output pulses is necessary for direction sensing.
- There is a phase difference of 90° between two output pulses.
- When the phasing of the two output pulse trains is 90° apart electrically, the two signals are said to be in quadrature.

