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Inverse Kinematics
q Mappings between kinematic descriptions
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Forward kinematics

Inverse kinematics

o Joint space: A set of / joint variables is referred to as the /×1 joint vector. 
The space of all such joint vectors is referred to as joint space.

o Cartesian space: The term is used when position is measured along orthogonal axes, 
and orientation is measured to any of the conventions said before.
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Inverse Kinematics
q Existence of solutions

• Workspace: volume of space which the end-effector of the manipulator can reach.
• Dextrous workspace: volume of space which the robot end-effector can reach with all orientation.
• Reachable workspace: volume of space which the robot can reach in at least one orientation.
• For example, consider the two-link planar manipulator when !" = !$ and !" ≠ !$.
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Inverse Kinematics
q Multiple solutions

• When solving kinematic equations, we encounter multiple solutions.
• Let’s see the two-link planar manipulator.
• To reach a point !, the robot can have two configurations: elbow up and down.
• In the present of the obstacle, the elbow up configuration would be chosen.
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Inverse Kinematics
q Method of solution

• Closed form methods: based on analytic expressions.
• Numerical methods: based on iterative procedures.
• We consider two methods: algebraic and Jacobi method.

Solving kinematic equations

Closed form methods Numerical methods

Algebraic method Geometric method Jacobi method
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Kinematic Equations
q The two-link planar manipulator
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1) DH parameters table

2) Link transformation matrices

3) The single transformation matrix that relates frame 2 from frame O
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Algebraic Method

!"#
$%&$ + "($)&$ + 2"#"(%&)& = ,$$%$$ + ,&$ + 2,&,$%$

"#$)&$ + "($%&$ − 2"#"(%&)& = ,$$)$$

"#$ + "($ = ,$$ + ,&$ + 2,&,$%$
∴ %$ =

"#$ + "($ − ,$$ − ,&$
2,&,$

• Square both equations and add them.

• From kinematic equations, /&	1
2& 3$	1 = /$	&
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Algebraic Method

∴ "# = %&%'2(*#, ,#)

./0/1,# + /1
3*# = /1(43,3 + 4#)

−/03*# + /0/1,# = /043*3
/03 + /13 *# = /1(43,3 + 4#) − /043*3
∴ *# =

/1 43,3 + 4# − /043*3
/03 + /13

./0
3,# + /0/1*# = /0(43,3 + 4#)
−/0/1*# + /13,# = /143*3

/03 + /13 ,# = /0(43,3 + 4#) + /143*3
∴ ,# =

/0 43,3 + 4# + /143*3
/03 + /13

*3 = 	± 1 − ,33

§ The choice of *3 signs corresponds to the multiple solution in which we can choose  the ‘elbow-down’ or the ‘elbow-
up’ solution.

• We write an expression for *3 as

./0,# + /1*# = 43,3 + 4#
−/0*# + /1,# = 43*3• Remind these equations,

• Expressions for *# and ,# are obtained by solving the equations.

∴ "3 = %&%'2(*3, ,3)
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Jacobi Method
q Derive the Jacobian

• From kinematic equations, 

• Differentiate the kinematic equations.
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∴ !̇ = / & &̇
• Define the matrix of partial derivatives as the Jacobian, / & .

• If / & is invertible, we can calculate joint velocities given Cartesian velocities. 
&̇ = / & 0'!̇

! = %(&),
3' = %' (', (*,⋯ , (,
3* = %* (', (*,⋯ , (,

⋮  
3, = %, (', (*,⋯ , (, where ! is a Cartesian space vector and & is a joint space vector.

vector notation
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Jacobi Method
q A way to find a solution of inverse kinematics

• By Newton-Rhapson method, we can find the solution (i.e. the joint angles) satisfied with !".

• When the desired Cartesian space, !", the kinematic equation are rewritten as
! − !" = % & − !"

• Let ! − !" = ' and % & − !" = ( & .	Then ' = ( & .
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Jacobi Method
q A way to find a solution of inverse kinematics
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• To remember easily, we rewrite the joint rates equation, &̇ = 4 & 18!̇ as
Δ&
Δ: = 4 & 1- Δ&

Δ: Δ& = 4 & 1-Δ!

&;,8 − &; = 4 &; 1-(!< − !;)
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Jacobi Method
q Iteration flow

• Set initial guess !" and # = 0.

• Compute &" and '"().

• Check the error, i.e. &* − &" is less than a tolerance.

• If the error is less than the tolerance, terminate the iteration.

• If it isn’t, compute !, = -"(, &* − &" + !".

• Increase # = 1, and update !0 = 1,.

• Keep iteration until the condition is satisfied.


