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Inverse Kinematics

U Mappings between kinematic descriptions

Forward kinematics
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o Joint space: A set of n joint variables is referred to as the nX1 joint vector.
The space of all such joint vectors is referred to as joint space.

o Cartesian space: The term is used when position is measured along orthogonal axes,
and orientation is measured to any of the conventions said before.
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Inverse Kinematics

( Existence of solutions
* Workspace: volume of space which the end-effector of the manipulator can reach.
* Dextrous workspace: volume of space which the robot end-effector can reach with all orientation.
* Reachable workspace: volume of space which the robot can reach in at least one orientation.
* For example, consider the two-link planar manipulator when Ly = L, and Ly # L,.
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Inverse Kinematics

O Multiple solutions
 When solving kinematic equations, we encounter multiple solutions.
* Let’s see the two-link planar manipulator.
* To reach a point p, the robot can have two configurations: elbow up and down.
* Inthe present of the obstacle, the elbow up configuration would be chosen.

elbow-up -«

\
v

Yo
Obstacle

0 Xo ~- elbow-down



Sangsin Park, Ph. D.

Inverse Kinematics

1 Method of solution
* Closed form methods: based on analytic expressions.
* Numerical methods: based on iterative procedures.
 We consider two methods: algebraic and Jacobi method.

{ Solving kinematic equations }

\ 4 \ 4

{ Closed form methods J { Numerical methods J

\ 4 A 4 A\ 4

{ Algebraic method J { Geometric method J { Jacobi method J
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Kinematic Equations

U The two-link planar manipulator

1) DH parameters table

*cos(6;) = ¢;,sin(6;) = s;, cos(@i + 9]-) = Cjj , sin(@i + 9]-) = Sjj
3) The single transformation matrix that relates frame 2 from frame O

L 0; a; a; d; |cos(a;) |sin(a;)
1 04 0’ L, 0 1 0
2 6 0’ L, 0 1 0
2) Link transformation matrices
-Cl —S1 0 L1C1- -CZ —S2 0 LZCZ-
04, — S$1 ¢ 0 Lis 14, — S €2 0 Lys,
1710 0o 1 o |” 7|0 0 1 o0
0 0O o0 1 | 0 0 0 1 |

[C1C2 — S1S2 —C1S2 — 8162 0 Lycg + Lycicy — Lysysy| [€12 —S12 0| Licy + Lycqp]

o S1C3 +€1S2 €1Cp —S1S2 0 Lys; +L,sycy + LyciSo| _|S12 €12 0| Lys; + Lysqy
2 0 0 1 0 |0 0 1 0
0 0 0 1 | 0 0 0 1
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Algebraic Method

. . . ~1
From kinematic equations, °4; " °T, = 14,

€1 S1 0 —Li]fnx Ox Qyx ||Dx (C; =Sz 0 |Lycy]
—1—S1 (1 0 0 ny Oy Cly py | So Co 0 LZSZ

0 071 0 |fnz oz az |[pf[[ [O O 1 0

0 0|0 1 It0 0 0 1 0 0 0 1 .

|
PxC1 t PyS1 = Lacy + Lq
> —DPxS1 +Pyc1 = Lys;

* Square both equations and add them.

pxci + pyst + 2pepyciS1 = Lscs + L5 + 2L4L,c,
p3st +pyci — 2pxpycis1 = L3s;
px +py =15+ L5 + 2L, L,c,
BB 5
2L,L,
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Algebraic Method

* We write an expression for s, as

s, = + /1—022

~ 0, = atan2(sy, c3)

= The choice of s, signs corresponds to the multiple solution in which we can choose the ‘elbow-down’ or the ‘elbow-
up’ solution.
PxC1 + PyS1 = Lacy + Ly

* Remind these equations,
: { —PxS1 T DyC1 = LS,

* Expressions for s; and ¢; are obtained by solving the equations.

{pxpycl +pgs; = py(Lycy + Lq) PxC1 + DxPyS1 = Px(Lacy + Ly)
—D%S1 + PxDyC1 = PxL2S; —DxPyS1 + P5C1 = PyL,s,
(p2 + P;zz)sl = Py (Lacy + L1) — pxL2s; (p2 + P;zz)q = px(La2Cy + L) + pyLys;
hsy = py (Lo, ‘|;L1) Z—PxLzsz hey = Px(LoCy ‘|‘2L1) ;"PyLzsz
DPx T+ Dy Dx + Dy

~ 01 = atan2(sq,¢1)
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Jacobi Method

(] Derive the Jacobian

* From kinematic equations,

f
x1 = f1(01,6,,,0,) ‘ tati
xz — fZ(H]_; 02,"',8”) VeC Or nO a |On , X _ f(e)

x, = [,(04,05,+,6,) where X is a Cartesian space vector and 0 is a joint space vector.

A

» Differentiate the kinematic equations.
f1/01 fi/02 - f1/0]
X = ﬂe _ f2/61  12/0; f2/6n 0
00 : : : :
fn/01 fa/O2 0 fu/On
» Define the matrix of partial derivatives as the Jacobian, J(0).
L X =08
« If J(@) is invertible, we can calculate joint velocities given Cartesian velocities.
0=J(0)"'X
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Jacobi Method

O A way to find a solution of inverse kinematics
* When the desired Cartesian space, X4, the kinematic equation are rewritten as
X—-X,=/(0)—-Xg4
 LletX—X;=Yand f(@) —X; =g(0@).ThenY = g(0).

* By Newton-Rhapson method, we can find the solution (i.e. the joint angles) satisfied with X ;.
—Y; dg  of

Y = =
A ,/'l 0i+1 - Bl ael 691
af
Yi =5 (0:—0i41)
l
9i+1=_a_0i Yi+9i:a_0i (Xq— X;) +6;

+ 041 =J(0) " (Xq — X)) + 6;
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Jacobi Method

O A way to find a solution of inverse kinematics
* When the desired Cartesian space, X4, the kinematic equation are rewritten as
X—Xg=f(0)—X,
e letX—-X;=Yand f(0) —X; =g(0).ThenY = g(0).

* By Newton-Rhapson method, we can find the solution (i.e. the joint angles) satisfied with X ;.

4 « To remember easily, we rewrite the joint rates equation, 8 = J(@)1X as

AQ AQ
— =) 1— > A0 = J(9)71AX
IAREASURY. Je

Oiv1—0; =J(0) ' (Xq— X))

+ 041 =J(0) " (Xq — X)) + 6;



Sangsin Park, Ph. D.

Jacobi Method

[ Iteration flow

* Setinitial guess 8y andi = 0.

« Compute X, and J5 1.

* Check the error, i.e. X; — X, is less than a tolerance.

* |fthe erroris less than the tolerance, terminate the iteration.
 Ifitisn’t, compute 8; = J;1 (X4 — X,) + 0,.

* Increasei = 1, and update 8; = 6,.

* Keep iteration until the condition is satisfied.



