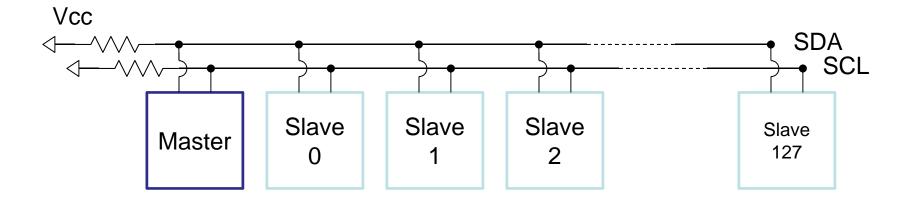
Communications

© Copyright Paul Oh, 2007, Rich Vallett 2011; Updated 2016

Overview of Serial Communication


- Transmission of data by bits
 - Data is transferred as a series of high/low digital signals
 - Clock signal/preset timing used to control data transmission
 - Popularly used as DB-9 device (e.g. modems, mouse), RS-232 (aka COM Port)
 - 9600 Baud (bits per second) rate (but ranges from 75 to 115200)
 - Typically set as 8N1 (8-bit, no parity, 1 stop bit)
 - Legacy equipment use USB-to-Serial adapter (with PC's virtual COM port)
- Serial vs. Parallel
 - Sending one bit vs. multiple bits at a time
 - Advantages? Disadvantages?

Common Protocols

•	I2C (Inter-Integrated Circuit) ~100 Kbits/sec	
	 Low-speed, half-duplex data transfer between ICs 	
•	SPI (Serial Peripheral Interface)	300 bps
	 Low-speed, full-duplex data transfer between ICs 	
•	TTL (Transistor-Transistor Logic)	9600 bps
	 Low-speed, full duplex data transfer between ICs and microcontrollers 	
•	RS-232 (Recommended Standard 232)	
	 Low-speed, full duplex data transfer between PCs and peripherals 	0.1Mbps
•	RS-485 (Recommended Standard 485) ~35 Mbits/sec (Networks, lower voltage)	1.0Mbps
	 High-speed, half-duplex data transfer between PCs and peripherals 	
•	USB (Universal Serial Bus)	480Mbps
	 High-speed, half-duplex data transfer between PCs and peripherals 	
•	Ethernet	1Gbps
	 High-speed, full-duplex data transfer between PCs 	
•	SATA (Serial Advanced Technology Attachment)	
	 High-speed, full-duplex data transfer between mass-storage devices 	6Gbps

Overview of I2C Communication

- Serial ports are asynchronous
 - Con: No clock data is transmitted; devices must agree to clock rate a priori
 - Con: Only 2 devices (thus can't be networked easily)
- I2C low-speed serial communication protocol
 - Pro: Master-slave configuration (single master, single slave; single master, multiple slaves; and multiple masters, multiple slaves)
 - Pro: 2-wire interface
 - Data (SDA) (SDAta line) data bits transferred
 - Clock (SCL) (SCLock line) pulses which signify data availability
 - 7-bit address of slaves means $2^7 1 = 128$ slave devices (0 to 127)

© Copyright Paul Oh, 2007, Rich Vallett 2011; Updated 2016

NXT I2C Communication

- Maximum 4 I2C buses (S1 S4 on NXT Brick)
 - NXT connects as the master
 - Use SetSensorLowspeed command to declare port as an I2C bus
 - Use of I2CBytes command to communicate with slave peripherals
 - Serial sensors connect as slaves
 - Sensors return information when prompted by the NXT master device
 - PCF9574 is an I2C-based I/O expander
 - This chip has a 3-bit address (hence 8 unique addresses)
 - Has 8-bit digital port (bi-directional = either input or output lines)
 - Thus can ultimately control/read eight 8-bit devices with a single chip

Overview of RS-485 Serial Communication

- High-speed serial communication protocol
 - Long-distance communication between two devices
 - Supports data transfer rates over 1Mbps thru thousands of feet of cable
 - 2-wire interface
 - Data+ (B) non-inverting data pin
 - Reference voltage
 - Data– (A) inverting data pin
 - Voltage changes sign to indicate high or low bit
- NXT: One RS-485 port (S4)
 - Can be used for NXT-to-NXT communication or communication to high-speed devices
 - Use UseRS485 to set port S4 as an RS-485 port
 - Use RS485Enable to activate the port
 - Use RS485Uart to initialize port to default values (communication is asynchronous receive/transmit)