
Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

   
Hands-on Lab 

 
Lego Communications – I2C Basics 

 
The Lego NXT has 4 sensor ports.  Each port is capable of I2C communications.  The PCF8574 
is an I2C chip that provides 8-bit digital lines.   These lines can be configured to serve as outputs 
or inputs.  The net effect is that I2C and the PCF8574 increase the NXT’s capabilities to interface 
and communicate with devices. 
 
Preamble – NXT and the PCF8574 
 
A high or low signal represents a binary system.  Electronically, these signal states are 
represented by voltages.  In TTL (transistor-to-transistor logic) chips, +5V is HI and GND is LO.  
The ability to control HI and LO states is important; when interfaced to devices, these states allow 
a computer to turn on/off actuators (like lights, relays and transistors) or read the closed/open 
state of sensors (like switches). 
 
The wires that connect a computer to a device are called digital lines.  These lines are often 
bundled together and called a port.  Quite common is an 8-bit port where eight lines form a port.  
In part, this is historical because 8-bits (called a byte) yield 2଼ െ 1 ൌ 255 unique states.  In ASCII, 
which is the standard to represent alphanumeric characters, 255 states could capture all English 
letters, digits and symbols.   
 
PCF8574 Motivation: Suppose one wants their NXT Brick to turn on an off-the-shelf relay or read 
a standard 12-key keypad.  Since such devices are rarely I2C-compatiable, one has to resort to 
using digital lines. The PCF8574 provides such lines.  It is I2C-compatiable and yields eight 
digital lines.  Each line can be configured to be either an output or input one.  Conceivably, the 
PCF8574 can control up to eight relays or other on/off actuator (like a DC motor or lamp).  It can 
also read up to eight separate switches.  The eight lines can be configured into a single 8-bit port 
which is useful if one wants to interface the Brick to a separate LCD display. 
 
Concept 1 – NXT and the PCF8574 Digital Outputs 
 
Step 1: Using the following schematic (Fig. 1A), construct the PCF8574 circuit on a solderless 
breadboard.  Advice: Insert DIP devices (e.g. PCF8574, Resistor network and Bar Graph) into 
sockets.  Then insert sockets into the breadboard (Fig. 1B).  Use (rainbow ribbon) jumpers 
between PCF8574 and the Resistor network.  Reduce wiring; take advantage of common lines 
e.g. +5V bus on the breadboard (Fig.1B right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 1A: NXT-to-PCF8574 circuit diagram.  Takes advantage of DIP resistor and LED DIP 
packages.  PCF8574A’s digital lines (D0-D7) are configured for output and sink current. 



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

NB: The pin labels and numbers in schematics often do not reflect their physical position in the 
real DIP device.  Real DIP devices enumerate counter-clockwise.  Pin 1 on the real DIP device is 
the first top left pin.  Pin 2 is the next pin and so forth.  A physical marking (e.g. notch) on the DIP 
device denotes which side is top. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Compose, compile and run the following NXC program called dioOutput2_0.nxc 
(code listing follows on next page). 
 
Code Explanation: The NXC statement SetSensorLowSpeed(I2Cport)sets Port S1 for I2C 
communications with an I2C device.  The PCF8574 is the I2C device.  The NXT needs to know 
the device’s address.  Fig.1A ties the PCF8574’s address pins (A0, A1, and A2) to GND.   
 
The circuit (and code) uses the PCF8574A specifically.  The datasheet for this particular version 
of the PCF8574 states that A2-A1-A0 (i.e. 0-0-0) corresponds to address 0x70 (i.e. 70 
hexadecimal).  Hence, the statement WriteBuf[0] = I2CAddr8574. 
 
The PCF8574A datasheet states that to set the digital lines as outputs, one must write 0x00 to 
the address.  Hence, the statement  WriteBuf[1] = 0x00. 
 
Next, the statement I2CBytes(S1, WriteBuf, RdCnt, ReadBuf)is used to send the array 
(containing the address and setting) through the NXT Brick.   
 
Before the code enters a do-while loop, all LEDs are turned on by setting the eight digital lines 
(D0-D7) LO.  The do-while loop then iterates decimalNumber from 0 to 255.  The statements 
send the decimal number across the digital lines and lights up the corresponding LEDs.  The 
pattern of LEDs reflects the binary equivalent of the decimal number: 
 
 
 
 
 
 
 
The if-statements just add some fun to the program.  Major decimal numbers are just powers of 
two such as 0, 2, 4, 8…128.  In these instances, only one of the LEDs in the bar-graph display 
will be dark while the remaining seven will be lit.  The Brick beeps when this happens. 
 
The NXT is quite fast, hence a Wait(250) statement is inserted in the do-while loop.  This 
allows one to actually see the individual LEDs light up or go dark. 

 
 
Fig. 1B: An 8-wire ribbon cable connects the PCF8574 chip to a 10-segment DIP display (left).  
Since only 8 LEDs are needed, black electrical tape covers two of them (right).  To reduce 
wiring, one side of the 20-pin socket is used to connect the +5V bus.  Some pins on this side are 
bend and wirewrapped to the other pins.  Demo video: https://youtu.be/AJlvYtODjlg  

WriteBuf[1] = decimalNumber; 
WriteBuf[0] = I2CAddr8574; 
I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// FILE: dioOutput2_0.nxc - Works! 
// AUTH: P.Oh 
// DATE: 07/20/16 10:32 
// VERS: 2.0 Uses I2CBytes and my understanding of registers 
// DESC: Connect to Port S1.  LEDs configured to sink i.e. when bit is "O" then LED lights up 
// NOTE: Uses PCF8574A chip (hence address A2-A1-A0 set to 0-0-0 hence 0x70 
 
#define I2Cport S1 // Port number 
#define I2CAddr8574 0x70 // I2C address x040 8574 or 0x70 for 8574A 
 
task main() { 
 
 // array variables (since NXC's I2C functions take array variables) 
 byte WriteBuf[2]; // data written to PCF8574A.  Declares a two one-byte variables 
 byte ReadBuf[]; // data received from PCF8574A.  We won't be reading any data but we need this for I2CBytes 
 int RdCnt = 1; // number of bytes to read 
 
 // button and counting variables 
 bool orangeButtonPushed, rightArrowButtonPushed, overflowFlag; 
 int decimalNumber; // values from 0 to 255 
 
 SetSensorLowspeed (I2Cport); // PCF8574A connect to NXT on S1 
 // Prompt user to begin 
 // First, set address with first I2CWrite.  Recall, WriteBuf[1] has address 0xF0 0x00 
 WriteBuf[1] = 0x00; // i.e. write zeros to port sets up PCF8574A for writing 
 WriteBuf[0] = I2CAddr8574; // i.e. address is 0x70 
 I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 
 
 // Lets start with all LEDs on.  This means making the port LO 
 WriteBuf[1] = 0x00; // Port lines are LO; LEDs should be on 
 WriteBuf[0] = I2CAddr8574; // i.e. address is 0x70 
 I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 
 
 TextOut (0, LCD_LINE1, "Right Btn starts"); 
 do { 
    rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE); 
 } while(!rightArrowButtonPushed); 
 
 TextOut(0, LCD_LINE1, "Orange BTN quits"); 
 decimalNumber = 0; 
 do { 
   orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE); 
   // If pressed, then orange button becomes TRUE.  If not pressed, then orange button is FALSE 
   WriteBuf[1] = decimalNumber; 
   WriteBuf[0] = I2CAddr8574; 
   I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 
 
   TextOut (0, LCD_LINE3, FormatNum("Value Out: %3d" , decimalNumber)); 
   // Play beep for major bits being lit up 
    if( (decimalNumber == 0) || (decimalNumber == 2) || (decimalNumber == 4) || 
        (decimalNumber == 8) || (decimalNumber == 16) || (decimalNumber == 32) || 
        (decimalNumber == 64) || (decimalNumber == 128) ){ 
      PlaySound(SOUND_LOW_BEEP); 
      Wait(1000); 
    }; // end if 
    if(decimalNumber == 255) { 
      overflowFlag = TRUE; 
    } else { 
      overflowFlag = FALSE; 
      decimalNumber++; 
      WriteBuf[1] = decimalNumber; 
    } 
    Wait(250); // wait 250 millsec 
  } while(!orangeButtonPushed && !overflowFlag); 
 
  TextOut(0, LCD_LINE5, "Finished!"); 
  PlaySound(SOUND_DOUBLE_BEEP); 
} // end main 



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Concept 2 – NXT and the PCF8574 Digital Inputs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 1: Add the DIP switch component to your original circuit (Fig. 1A).  Use a socket for the DIP 
switch and take advantage of the GND line that runs along your solderless breadboard (Fig. 2B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1A also shows that +5V drives into the eight LEDs, through their corresponding resistors, and 
into the PCF8574A’s eight digital lines (D0-D7).  In other words, the PCF8574A is sinking current. 
This means that when a digital line is LO (i.e. 0V), the LED lights up.  This is because the current 
from the NXT Brick’s Pin 4 (+5V) can flow through the LED and its resistor.  If the digital line is HI 
(i.e. 5V), then current cannot flow, and the LED remains dark.  Sinking current is often preferred 
(albeit somewhat counter-intuitive).  This is because devices can often sink more current than it 
can source.  The PCF8574 datasheet says it can sink about 25 mA, but only source 20 mA. 

Exercise 1: In NxC create programs for the following: 
 
1-1 Modify your circuit and modify dioOutput2_0.nxt (call the new program 

dioOutput2_1.nxc) so that the PCF8574A sources current.  Here, when the digital lines 
D0-D7 are HI, then the corresponding LED should light. 
 

 
Fig. 2A: NXT-to-PCF8574 circuit diagram.  Takes advantage of DIP switch package.  PCF8574A’s 
digital lines (D0-D7) are configured for input. 

 
 
Fig. 2B: 8-wire ribbon cable connects 8-position DIP switch to PCF8574A’s digital input lines (left).  To 
reduce wiring, one side of the 16-pin socket is connected to GND (right).  Demo Video: 
https://youtu.be/rHXL8an3Kfs  



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

Step 2: Write and execute an NxC program called dioInput2_0.nxc 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// FILE: dioInput2_0.nxc - Works! 
// AUTH: P.Oh 
// DATE: 07/20/16 17:32 
// VERS: 2.0 - PCF8574A digital input.  Read DIP switch and display decimal value 
// DESC: DIP switch configured with pull-ups.  Closed switch (i.e. ON) means 0 Volts going into bit 
// NOTE: Uses PCF8574A chip (hence address A2-A1-A0 set to 0-0-0 hence 0x70 
 
#define I2CAddr8574 0x70 // 0x40 8574 or 0x70 for 8574A.  NB: 0x70 = 0111 0000 
 
task main(){ 
 
  // PCF8574 read/write variables 
  byte WriteBuf[2]; // set up two one-byte variables 
  byte ReadBuf[]; // Byte received from PCF8574 
  int RdCnt = 1; // number of bytes to read 
 
  // button variables 
  bool orangeButtonPushed, rightArrowButtonPushed; 
  // Counting variables 
  int decimalNumber; // values from 0 to 255 
 
  SetSensorLowspeed(S1); // PCF8574A connect to NXT on S1 
  // (1) First, set up PCF8574A for reading. 
  WriteBuf[0] = I2CAddr8574; // this is the address 0x70 
  WriteBuf[1] = 0xFF; // writing ones to the port sets up chip for reading 
  I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); // OK, now port set up for reading 
   
  TextOut (0, LCD_LINE1, "Right Btn starts"); 
  do { 
     rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE); 
  } while(!rightArrowButtonPushed); 
  TextOut(0, LCD_LINE1, "Orange BTN quits"); 
 
  do { 
    orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE); 
    // If pressed, then orange button becomes TRUE.  If not pressed, then orange button is FALSE 
 
    // (2) Read the port 
    I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 
    decimalNumber = ReadBuf[0]; // value read from PCF8574 
    TextOut (0, LCD_LINE3, FormatNum("Value Read: %3d" , decimalNumber)); 
    // Play beep for major switch being closed 
    if( (decimalNumber == 0) || (decimalNumber == 2) || (decimalNumber == 4) || 
        (decimalNumber == 8) || (decimalNumber == 16) || (decimalNumber == 32) || 
        (decimalNumber ==64) || (decimalNumber == 128) ){ 
      PlaySound(SOUND_LOW_BEEP); 
      Wait(1000); 
    }; // end if 
 
    Wait(10); 
     
  } while(!orangeButtonPushed); // end do 
 
  TextOut(0, LCD_LINE5, "Finished!"); 
  PlaySound(SOUND_DOUBLE_BEEP); 
} // end main 

 



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

Code Explanation: Like in Concept 1, the Brick establishes I2C communications using the 
PCF8574’s address.  As seen in Fig. 2A (as well as Fig. 1A), the PCF8574A’s address (A2-A1-
A0) are tied to GND and hence has a decimal address of 0x70 (70 Hexadecimal).  The 
PCF8574’s datasheet says to write 0xFF to the port so that the digital lines (D0-D7) are 
configured for input.  The address is established and lines are configured by this code snippet: 
 

SetSensorLowspeed(S1); // PCF8574A connect to NXT on S1 
// (1) First, set up PCF8574A for reading. 

   WriteBuf[0] = I2CAddr8574; // this is the address 0x70 
WriteBuf[1] = 0xFF; // writing ones to the port sets up chip for reading 
I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); // OK, now port set up for reading 
 

The first do-while loop just waits for the user to press the Brick’s right arrow button.  Once 
pressed the second do-while loop reads the digital lines until the user quits the program by 
pushing the orange button.  Inside this loop is the snippet: 
 

// (2) Read the port 
I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 
decimalNumber = ReadBuf[0]; // value read from PCF8574 
TextOut (0, LCD_LINE3, FormatNum("Value Read: %3d" , decimalNumber)); 

 
Since each digital line is connected to a switch, the above simply reads the state (HI or LO) of the 
8 digital lines and displays the resulting decimal number.  One uses the DIP switch to configure 
the state of each digital input.  The next effect is binary (from the DIP switch) to decimal 
(displayed on the Brick) conversion. 
 
 
 
 
 
 
 
 
 
 
Concept 3 – NXT and the PCF8574 Digital Input and Digital Output 
 
The PCF8574’s digital lines are bi-directional; they can be used for both input and output (but not 
at the same time).  However, the lines roles can be switched between the two as needed.   
 
Step 1: Use Fig. 3A to connect two 8-wire ribbon cables to DIP switch and DIP LED  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercise 2:  
 
2-1: When a DIP switch in Fig. 2A is closed, then the corresponding digital line is pulled to GND.  

What happens to the digital line when the switch is open? 
 
2-2: Modify Fig. 2A with a schematic so that when a DIP switch is closed, the corresponding digital 

line is pulled to GND, but when the switch is open, is forced to read +5V?   

 
 
Fig. 3A: Two eight-wire ribbon cables connect the circuits from Concepts 1 and 2.  Demo video: 
https://youtu.be/5GbvA6NnL7M  



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

Step 2: Compose an NXC program called dioDipLed2_0.nxc that reads the DIP switch and 
displays the corresponding LED 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// FILE: dioDipLed2_0.nxc - Works! Hardware (DIP read, LED glows) and Software (Brick displays number) 
// AUTH: P.Oh 
// DATE: 07/20/16 17:47 
// VERS: 1.1a - PCF8574A read DIP switch and light LED.  Uses bitwise shift 
//       1.1b - same but doesn't use bitwise shift; I want to confirm my understanding 
//       2.0 - same but refer to dioOutput2_0 and dioInput2_0 
// DESC: LEDs configured to sink i.e. when bit is "O" then LED lights up 
//       DIP switch configured with pull-up resistors 
// NOTE: Uses PCF8574A chip (hence address A2-A1-A0 set to 0-0-0 hence 0x70 
 
#define I2CAddr8574 0x70 // 0x40 8574 or 0x70 for 8574A.  NB: 0x70 = 0111 0000 
 
task main(){ 
 
  // array variables (since NXC's I2C functions take array variables 
  byte WriteBuf[2]; // Declare two one-byte variables 
  byte ReadBuf[]; // Byte received from PCF8574 
  int RdCnt = 1; // number of bytes to read 
 
  // button variables 
  bool orangeButtonPushed, rightArrowButtonPushed; 
  // Counting variables 
  int decimalNumber; // values from 0 to 255 
  int nbytes; 
  byte value = 0; 
 
  SetSensorLowspeed(S1); // PCF8574A connect to NXT on S1 
  // (1) Set address of PCF8574A (i.e. 0x70) and memory register 
  WriteBuf[0] = I2CAddr8574; 
  WriteBuf[1] = 0xFF; // WriteBuf[1] is the register; filling it with ones, sets the port for reading 
  I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); // OK, now port is set for reading 
 
  TextOut (0, LCD_LINE1, "Right Btn starts"); 
  do { 
     rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE); 
  } while(!rightArrowButtonPushed); 
  TextOut(0, LCD_LINE1, "Orange BTN quits"); 
 
  do { 
    orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE); 
    // If pressed, then orange button becomes TRUE.  If not pressed, then orange button is FALSE 
 
    // (2) Set up to read the PCF8574A port. 
    WriteBuf[0] = I2CAddr8574; 
    WriteBuf[1] = 0xFF; // set up to read port 
    I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 
    // (3) ReadBuf[0] should now have data that was read from port 
    decimalNumber = ReadBuf[0]; // value read from PCF8574 
    TextOut (0, LCD_LINE3, FormatNum("Value Read: %3d" , decimalNumber)); 
    // (4) Now write to port, thus lighting up corresponding LEDs by writing zeros to port 
    WriteBuf[0] = I2CAddr8574; 
    WriteBuf[1] = decimalNumber; 
    I2CBytes(S1, WriteBuf, RdCnt, ReadBuf); 
 
    // Play beep for major bits being lit up 
    if( (decimalNumber == 0) || (decimalNumber == 2) || (decimalNumber == 4) || 
        (decimalNumber == 8) || (decimalNumber == 16) || (decimalNumber == 32) || 
        (decimalNumber == 64) || (decimalNumber == 128) ){ 
      PlaySound(SOUND_LOW_BEEP); 
      Wait(1000); 
    }; 
 
    Wait(250); // wait 250 millsec 
  } while(!orangeButtonPushed); 
 
  TextOut(0, LCD_LINE5, "Finished!"); 
  PlaySound(SOUND_DOUBLE_BEEP); 
} // end main 



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

Code Explanation: dioDipLed2_0.nxc essentially is a combination of dioOutput2_0.nxc 
(from Concept 1) and dioInput2_0.nxc (from Concept 2).  The highlighted lines in the code 
show the sequence.  0xFF is written to the PCF8574 to set up the digital lines for input.  The 
value read is stored in the byte array ReadBuf and stored in decimalNumber.  After displaying 
the number on the Brick, decimalNumber is stored in byte array WriteBuf and outputted to 
digital lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercise 3:  
 
3-1: Set the DIP switches to the following positions to complete the table 
 
 
 
 
 
 
 
 
3-2: Capture a video of 3-1 in operation.  The Brick should display the value set by the 8-position 

DIP switch and light up the corresponding LEDs  
 

DIP Position Brick Value LEDs ON LEDs OFF 
11110000    
00001111    
01110001    
10000010    



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

Concept 4 – NXT and RS-485 Communications 
 
Port S4 of the NXT Brick contains a UART (universal asynchronous receiver/transmitter) which 
allows for RS-485 communications.  This opens up even more possibilities for the NXT Brick.  
Many devices, like laser range finders and robots contain serial ports.  If these ports are USB-
based, then USB-to-Serial adapters can be employed.  Otherwise, if these ports are traditional 
serial-based ones (using DB-9 connectors), then cables to connect to the NXT can be made. 
 
Step 1: Compose 485Master1_0.nxc on the Master NXT 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// FILE: 485Master1_0.nxc - Works! 
// DATE: 09/26/16 12:45 
// AUTH: P.Oh 
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485 communications) 
//       This code runs on Master brick.  485Slave1_0.nxc runs on Slave brick. 
//       As long as Slave is on and sending messages, Master iterates and displays number 
 
inline void WaitForMessageToBeSent() 
{ 
  while(RS485SendingData()) 
  Wait(MS_1); 
} 
 
task main() { 
  UseRS485(); // (1) Port S4 configured for RS485 
  RS485Enable(); // (2) turn on RS485 
  RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values 
  Wait(MS_1); // (4) wait a bit so all's activated 
 
  int i; 
  byte buffer[]; 
  string msg; 
  byte cnt; 
   
  while (true) { 
    msg = "Master " + NumToStr(i); 
    TextOut(0, LCD_LINE1, msg); 
    // send the # of bytes (5 bytes) 
    cnt = ArrayLen(msg); 
    SendRS485Number(cnt); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
 
    // now send the message 
    SendRS485String(msg); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
     
    i++; 
  } 
   
  // disable RS485 (not usually needed) 
  RS485Disable(); 
} // end of main 



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

Step 2: Edit 485Master1_0.nxc and save as 485Slave1_0.nxc on the Slave NXT.  The 
highlighted statements show the minor edits to make 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3: Connect the Master and Slave Bricks with a standard NXT cable – on Port S4 of 
each Brick.  Run 485Master1_0.nxc and 485Slave1_0.nxc on the Master and Slave 
respectively.  Whenever the Slave stops (e.g. abort) then the Master will stop counting. 
 
 
 
 
 
 
 
 

// FILE: 485Slave1_0.nxc - Works! 
// DATE: 09/26/16 12:47 
// AUTH: P.Oh 
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485 communications) 
//       This code runs on Slave brick.  485Master1_0.nxc runs on Master brick. 
//       When Slave is off, then Master stops.  When Slave is on, the Master iterates 
 
inline void WaitForMessageToBeSent() 
{ 
  while(RS485SendingData()) 
  Wait(MS_1); 
} 
 
task main() { 
  UseRS485(); // (1) Port S4 configured for RS485 
  RS485Enable(); // (2) turn on RS485 
  RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values 
  Wait(MS_1); // (4) wait a bit so all's activated 
 
  int i; 
  byte buffer[]; 
  string msg; 
  byte cnt; 
   
  while (true) { 
    msg = "Slave " + NumToStr(i); 
    TextOut(0, LCD_LINE1, msg); 
    // send the # of bytes (5 bytes) 
    cnt = ArrayLen(msg); 
    SendRS485Number(cnt); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
 
    // now send the message 
    SendRS485String(msg); 
    WaitForMessageToBeSent(); 
 
    // wait for ACK from recipient 
    until(RS485DataAvailable()); 
    RS485Read(buffer); 
     
    i++; 
  } 
   
  // disable RS485 (not usually needed) 
  RS485Disable(); 
} // end of main 



Lego Communications – I2C Basics 
 

© Copyright Paul Oh 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


