
NXC Programming: RS-485 Communications Version 03/22/23
(Modifications of labXl320-nxcProgramming-rs485Communications-122619a.docx)

© Copyright Paul Oh

Hands-on Lab

NXC Programming – RS-485 Communications

The Lego NXT Brick can communicate with other peripherals via RS-485 serial communications.
Port 4 on the Brick provides this high-speed full-duplex capability. Many peripherals like
scanners, joysticks, and keypads use this serial communication protocol. RS-485 can also
connect the NXT Brick to other micro-processors and computers that have this port. This lab
introduces RS-485 NXC programming.

Concept 1 Master-Slave Leader-Follower Communications

An NXT cable is connected on Port 4 of two NXT Bricks. This allows the two Bricks to
communicate via RS-485; one will be called the Master Leader and the other, a Slave Follower.

// FILE: 485Master1_0.nxc - Works!
// DATE: 09/26/16 12:45
// AUTH: P.Oh
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485 communications)
// This code runs on Master brick. 485Slave1_0.nxc runs on Slave brick.
// As long as Slave is on and sending messages, Master iterates and displays number

inline void WaitForMessageToBeSent()
{
 while(RS485SendingData())
 Wait(MS_1);
}

task main() {
 UseRS485(); // (1) Port S4 configured for RS485
 RS485Enable(); // (2) turn on RS485
 RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values
 Wait(MS_1); // (4) wait a bit so all's activated

 int i;
 byte buffer[];
 string msg;
 byte cnt;

 while (true) {
 msg = "Master " + NumToStr(i);
 TextOut(0, LCD_LINE1, msg);
 // send the # of bytes (5 bytes)
 cnt = ArrayLen(msg);
 SendRS485Number(cnt);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 // now send the message
 SendRS485String(msg);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 i++;
 }

 // disable RS485 (not usually needed)
 RS485Disable();
} // end of main

Figure 1A: Listing for 485Master1_0.nxc

NXC Programming: RS-485 Communications Version 03/22/23
(Modifications of labXl320-nxcProgramming-rs485Communications-122619a.docx)

© Copyright Paul Oh

The first Brick will be deemed Master Leader and will execute 485Master1_0.nxc. The NXC
program begins by configure Port 4 for RS485 communications at the Brick’s default settings.
The NXC constant HS_BAUD_DEFAULT represents 921,600 BPS, the fastest rate available.

An endless while loop increments a variable (i). The string msg contains the characters
“Master “ plus the value of the variable (i). The NXC function ArrayLen calculates the
number of bytes for the resulting string (msg) and stores it in the variable cnt.
SendRS485Number transmits this number to the Slave Follower.

To confirm that the Slave Follower received the transmission, the NXC function
RS485DataAvailable is called. Once confirmed, the Master Leader sends msg via a call to
SendRS485String.

// FILE: 485Slave1_0.nxc - Works!
// DATE: 09/26/16 12:47
// AUTH: P.Oh
// DESC: Two NXT bricks connected together on their Port S4 (i.e. RS-485
communications)
// This code runs on Slave brick. 485Master1_0.nxc runs on Master brick.
// When Slave is off, then Master stops. When Slave is on, the Master iterates

inline void WaitForMessageToBeSent()
{
 while(RS485SendingData())
 Wait(MS_1);
}

task main() {
 UseRS485(); // (1) Port S4 configured for RS485
 RS485Enable(); // (2) turn on RS485
 RS485Uart(HS_BAUD_DEFAULT, HS_MODE_DEFAULT); // (3) initialize UART to default values
 Wait(MS_1); // (4) wait a bit so all's activated

 int i;
 byte buffer[];
 string msg;
 byte cnt;

 while (true) {
 msg = "Slave " + NumToStr(i);
 TextOut(0, LCD_LINE1, msg);
 // send the # of bytes (5 bytes)
 cnt = ArrayLen(msg);
 SendRS485Number(cnt);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 // now send the message
 SendRS485String(msg);
 WaitForMessageToBeSent();

 // wait for ACK from recipient
 until(RS485DataAvailable());
 RS485Read(buffer);

 i++;
 }

 // disable RS485 (not usually needed)
 RS485Disable();
} // end of main

Figure 1B: Listing for 485Slave1_0.nxc

NXC Programming: RS-485 Communications Version 03/22/23
(Modifications of labXl320-nxcProgramming-rs485Communications-122619a.docx)

© Copyright Paul Oh

A second Brick runs 485Slave1_0.nxc given in Figure 1B and acts as a Slave Follower.
Here, the program begins by configure Port 4 for RS-485 communications at default settings.
Like Figure 1A, an endless while loop sends to the Master Leader, the number of bytes for the
string it will send, waits for acknowledgement from the Master Leader, and then transmits strings.

Congratulations! You can program the NXT Brick for RS-485 communications.

Exercises

1.1 Write the following NXC program. The Master Leader Brick iterates incrementally by 1, from 1 to

20 (e.g. using a for-loop) and displays this value on its screen. At each iteration this Brick also
transmits via RS-485, the value to the Slave Follower Brick. The Slave Follower Brick upon
receiving this value displays the corresponding value squared.

