Intro to BricxCC Programming

Hands-on Lab

Lego Data Logging and Actuation

We’ve explored the Lego NXT’s input port and ADC to measure resistances and voltages. This lab will turn the NXT into a data logger. Also, the lab will explore using the output port as a voltage source.

Concept 1 – NXT File Saving Review:

As a quick review, the NXT’s ability to save data will be explored.

The program displaySquareAndSquareRoot1_0.nxc displayed an integer, its square and square root on the Brick’s LCD. This program used the for-loop to iterate the integer from 1 to 10. Building on this example, a program is written to save the values to a file. The file will then be imported into an Excel worksheet. Once one has a worksheet, the data can be manipulated and/or plotted.

Step 1: Click File – Open and load displaySquareAndSquareRoot1_0.nxc. Click File – Save As with the name “displaySquareAndSquareRoot2_0.nxc”.

Step 2: Define global variables that serve for file handling. Add the following code to above your task main routine.

// File: displaySquareAndSquareRoot2_0.nxc
// Date: 10/01/12 15:43
// Desc: Display number, its square and square root save to file
// Vers: 2.0
// Refs: displaySquareAndSquareRoot1_0.nxc

// Global variables (for file writing)
unsigned int result; // flag returned when handling files
byte fileHandle; // handle to the data file
short bytesWritten; // number of bytes written to the file
string fileHeader; // column header for data in the file
int fileNumber, filePart; // integers to split up data file names
string fileName; // name of the file
string strFileNumber; // file number e.g myDataFile 1, 2, 3
string strFilePart; // file part e.g. myDataFile1-1, 1-2, 1-3
string text; // string to be written to file i.e. data values

task main ()

Step 3: Compose a function to initiate a file. Add the following code above task main:

string strFilePart; // file part e.g. myDataFile1-1, 1-2, 1-3
string text; // string to be written to file i.e. data values

// Create and initialize a file
void InitWriteToFile() {
 fileNumber = 0; // set first data file to be zero
 filePart = 0; // set first part of first data file to zero
 fileName = "squareData.csv" ; // name of data file
 result=CreateFile(fileName, 1024, fileHandle);
 // NXT Guide Section 9.100 pg. 1812 and Section 6.59.2.2 pg. 535
 // returns file handle (unsigned int)

 // check if the file already exists
 while (result==LDR_FILEEXISTS) // LDR_FILEEXISTS returns if file pre-exists
 {
 CloseFile(fileHandle);
 fileNumber = fileNumber + 1; // create new file if already exists
 fileName=NumToStr(fileNumber);
 fileName=StrCat("squareData" , fileName, ".csv");
 result=CreateFile(fileName, 1024, fileHandle);
 } // end while

 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 fileHeader = "x, x^2, sqrt(x)" ; // header for myData file
 WriteLnString(fileHandle, fileHeader, bytesWritten);
 // NXT Guide Section 6.59.2.43 pg. 554
 // Write string and new line to a file
 // bytesWritten is an unsigned int. Its value is # of bytes written

} // end InitWriteToFile

task main ()

Step 4: Compose a function to write to file. Add the following code above task main:
} // end InitWriteToFile

void WriteToFile(string strTempText) {
 // strTempText stores the text (i.e. ticks and motorRpm to be written to file
 // write string to file
 result=WriteLnString(fileHandle, strTempText, bytesWritten);
 // if the end of file is reached, close the file and create a new part
 if (result==LDR_EOFEXPECTED) // LDR_EOFEXPECTED is flagged when end-of-file
 { // close the current file
 CloseFile(fileHandle); // NXT Guide Section 6.59.2.1 pg. 535
 // Closes file associated with file handle

 // create the next file name
 filePart = filePart + 1;
 strFileNumber = NumToStr(fileNumber);
 strFilePart = NumToStr(filePart);
 fileName = StrCat("squareData" , strFileNumber,"-", strFilePart ,".csv");

 // delete the file if it exists
 DeleteFile(fileName); // NXT Guide Section 6.59.2.5 pg. 537
 // Delete the file specified by the string input

 // create a new file
 CreateFile(fileName, 1024, fileHandle);
 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 WriteLnString(fileHandle, strTempText, bytesWritten);
 } // end if
} // end WriteToFile

task main ()

Step 5: Next, compose a function that closes the file. Add the following code above task main:

} // end WriteToFile

// Close the file
void StopWriteToFile() {
 // close the file
 CloseFile(fileHandle);
} // end StopWriteToFile

task main ()

Add this function

At this point, save your NxC program. To recap, Step 2 declared the variables needed for file handling and Steps 3 to 5 created functions to respectively initialize (i.e. create), write string data and close a file.

Step 6: File data is stored as strings. As such, strings must be declared for each integer and float. Also, to create a file, one must initialize one. Add the following within task main:

task main ()
{
 int x; // integers from 1 to 10
 int xSquared; // square of x
 float xSquareRoot; // square root of x

 string strX;
 string strXSquared;
 string strXSquareRoot;

 // Create a new file that captures time and motor speed
 InitWriteToFile();

 for (x = 1; x <=10; x++) {
 xSquared = x*x;
 xSquareRoot = sqrt(x);

Declare string versions of integers and floats. Also, create a file.

Step 7: In the for-loop, the program iterates from 1 to 10, calculating the square and square root. We can use the FormatNum function to create a string version of numbers (i.e. integers and floats). Add the following within the for-loop:

 TextOut (10, LCD_LINE4, FormatNum("x = %d" , x));
 TextOut (10, LCD_LINE5, FormatNum("xSquared = %d" , xSquared));
 TextOut (10, LCD_LINE6, FormatNum("sqrt(x) = %3.3f" , xSquareRoot));
 Wait (SEC_2);

 // Create string version of calculated values
 strX = FormatNum("%d" , x);
 strXSquared = FormatNum("%d" , xSquared);
 strXSquareRoot = FormatNum("%3.3f" , xSquareRoot);

 } // end of for loop

} // end of main

FormatNum is akin to ANSI-C’s sprintf() function. It creates strings from numbers.

Step 8: Finally, one should write the 3 strings (strX, strXSquared and strXSquareRoot) to the file. To do so efficiently, one can employ the ANSI-C strcat function which concatenates multiple strings into a single one. Finally, write the string to file. Add the following code within the for-loop

// Create string version of calculated values
 strX = FormatNum("%d" , x);
 strXSquared = FormatNum("%d" , xSquared);
 strXSquareRoot = FormatNum("%3.3f" , xSquareRoot);

 // Concatenate the 3 strings into a single one.
 // Write resulting string to file. The text will be end with a EOL
 text=StrCat(strX, "," , strXSquared, "," , strXSquareRoot, ",");
 WriteToFile(text);

 } // end of for loop

} // end of main

Use strcat to combine strings. Write resulting string to file

Step 9: After the program has generated the data (i.e. completed the for-loop), one terminates the program gracefully by closing the file. One can also add an LCD message and beep to let the user know the program is done. Add the following after the for-loop and before the end of main.

 // Concatenate the 3 strings into a single one.
 // Write resulting string to file. The text will be end with a EOL
 text=StrCat(strX, "," , strXSquared, "," , strXSquareRoot, ",");
 WriteToFile(text);
 } // end of for loop

 // Finished computing square and square root, so clean up and quit
 ClearScreen();
 TextOut(0, LCD_LINE2, "Quitting", false);
 StopWriteToFile();
 PlaySound(SOUND_LOW_BEEP); // Beep to signal quitting
 Wait(SEC_2);

} // end of main

Add this alert user of termination and close file

Step 10: Save, compile and execute the resulting program. The program should iterate from 1 to 10, displaying the integers, its square and square root. Additionally, in the background, the Brick stores the data to file named: squareData.csv.

To view this data file, after the program completes, select Tools – NXT Explorer (see Figure 1A). A pop-up box should display the files stored within your NXT Brick (as shown in Figure 1B). Click-and-drag the file squareData.csv from the left pane (i.e. Brick’s directory) to the right one (your PC’s drive).

[image:]

Figure 1B: Click-and-drag the data file squareData.csv to your PC.

[image:]

Figure 1A: Launch the NXT Explorer to view Brick’s files

Step 11: Double-click on the version of squareData.csv that is saved on your PC. Excel should already be configured to open CSV (comma-separated files), resulting in Figure 1C. Figure 1D shows the resulting scatter plot of the first 2 columns.

[image:]

Figure 1D: Scatter plot of first 2 columns of data reveal the expected parabolic curve resulting from computing the square of values.

[image:]

Figure 1C: Excel opens the resulting squareData.csv file. One can then select data for a scatter plot.

Code Explanation: displaySquareAndSquareRoot2_0.nxc iterates from 1 to 10 using a for-loop. Within this loop, the square and square root is also computed. To save any values to a file, one must first declare (Step 2) and initialize (Step 3) one. File data is stored as strings (i.e. a collection of alphanumeric characters). As such, string versions of any computation are needed and the strcat function is used (Steps 6 and 7) along with the file writing function created in Step 4. After computations are finished (i.e. for-loop terminates), the file should be closed (Step 9) using the function created in Step 5. Steps 10 and 11 show the instructions for using NXT Explorer within the BricxCC IDE to export any files saved on the Brick’s memory, to one’s PC.

Exercise 1: In NxC create programs for the following:

1-1: Iterate integers from -10 to +10 incrementally by 1. Compute the square and cube and save to a file named “squareAndCube.csv”. Export the data file and plot the curves in Excel.

1-2: Capture all file handling functions into a header file named fileSavingFunctions.h. Rewrite a new program called displaySquareAndSquareRoot3_0.nxc that includes this header file. This new program should run like displaySquareAndSquareRoot2_0.nxc – and just serves as a sanity check that file saving works.

1-3: Prove that you know how to name data files and save data in desired formats, and can import these into Excel.

Concept 2 – NXT Timing Review:

As a quick review, the NXT’s timer capabilities will be explored. Here, the open-loop step response of an NXT motor, connected to Port A, will be captured.

Step 1: Open BricxCC, click File – New and save your program as nxtMotorOlsr1_0.nxc. Write the following code.
// File: nxtMotorOlsr1_0.nxc
// Auth: P.Oh
// Date: 10/14/12 15:33 - works!
// Vers: 1.0: Uses MotorRotationCount which reports encoder count in degrees
// and program calculates difference over delta tic counts
// Desc: NXT motor on Port A, save open-loop step response data to file

#include "fileSavingFunctions.h"

#define MOTOR OUT_A // set constant MOTOR for Port A
#define FULL_SPEED 75 // 75 percent of possible motor speed
#define DEG2RPM 166.667 // deg/msec to RPM
#define RPM2RADPERSEC 0.105; // RPM to rad/sec

task main() {

 // Motor related variables
 long prevAngleInDegrees; // placeholder for degree read by motor encoder
 long curAngleInDegrees; // current motor angle [DEG]
 long deltaAngleInDegrees; // change in motor angle [DEG]
 string strDeltaAngleInDegrees; // string form of deltaAngleInDegrees
 float motorRpm; // motor speed [RPM]
 string strMotorRpm; // store integer value of motorRpm as string
 float motorRadPerSec; // motor speed [rad/s]
 string strMotorRadPerSec; // string form of motorRadPerSec

// Timing related variables
 long prevTick;
 long curTick; // current timer value
 long deltaT; // For calculating time between ticks
 string strDeltaT; // string form of deltaT
 float elapsedTimeInSeconds; // time in seconds
 string strElapsedTimeInSeconds; // string form of elapsed time

Code description: task main begins by declaring motor related variables. As one will see later, the NxC function MotorRotationCount(MOTOR) will be used. This function reports the position (not the velocity) of the motor connected to the Brick’s MOTOR port (which happens to be Port A). Also, time related variables are declared. As one will encounter later, the NxC function CurrentTick() will be used to poll the Brick’s current clock (called a tick counter). Like a stopwatch, variables curTick and prevTick are used to calculate the time that has elapsed and store the resulting difference in the variable elapsedTimeInSeconds.

Step 2: Continue adding code to your program nxtMotorOlsr1_0.nxc

// Button related variables
 bool orangeButtonPushed, rightArrowButtonPushed;

 // Create a new file that captures time and motor speed
 InitWriteToFile();

 // Initialize variables
 elapsedTimeInSeconds = 0.0; // set elapsed time to zero
 prevAngleInDegrees = 0; // motor initially motionless so set angle to zero

 // Prompt user to begin step input
 TextOut (0, LCD_LINE1, "Right Btn starts");
 do { // wait until user hits right button
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);

// Begin step response
 prevTick = CurrentTick();
 TextOut (0, LCD_LINE1, "Orange Btn quits");
 // Command motor to move i.e. step input
 OnFwd(MOTOR, FULL_SPEED); // turn on motor at 100% full speed

Code description: The program declares two button related Boolean variables: rightArrowButtonPushed and orangeButtonPushed. These variables are used to detect which buttons the user pushes on the Brick. The code above then initializes a new file by calling the InitWriteToFile() function where data (like time and motor velocity) will be saved.

We will perform a step response on the NXT motor. As such, we initialize the motor’s position at 0 degrees (prevAngleInDegrees = 0;) and say that 0 seconds has elapsed (elapsedTimeInSeconds = 0.0;).

The program then displays a message on the Brick’s LCD and enters a do-while loop that simply polls for the right button to be pressed with NxC’s ButtonPressed function.

Once the user pushed the right arrow button, the Brick’s internal counter is polled (i.e. the stopwatch is pushed to start) with the prevTick = CurrentTick(); statement. The LCD displays a message to prompt the user to hit the orange button to terminate the program. The program then commands the NXT motor with the NxC function OnFwd(MOTOR, FULL_SPEED);

Step 3: Continue adding code to calculate motor velocity and elapsed time
do {
 // Read change in motor angle
 curAngleInDegrees = MotorRotationCount(MOTOR); // get relative position
 deltaAngleInDegrees = curAngleInDegrees - prevAngleInDegrees;
 strDeltaAngleInDegrees = FormatNum("deltaAngle = %ld", deltaAngleInDegrees);

 // Measure elapsed time and hence motor RPM
 curTick = CurrentTick(); // read timer value
 deltaT = curTick - prevTick; // measure time elapsed between angle reads
 motorRpm = deltaAngleInDegrees * DEG2RPM / deltaT;
 strMotorRpm = FormatNum("%5.2f" , motorRpm);
 motorRadPerSec = motorRpm * RPM2RADPERSEC;
 strMotorRadPerSec = FormatNum("%5.3f" , motorRadPerSec);
 elapsedTimeInSeconds = elapsedTimeInSeconds + (deltaT/1000.0); // in sec
 strElapsedTimeInSeconds = FormatNum("%5.3f" , elapsedTimeInSeconds);

 // Display motor actual speed and elapsed time
 TextOut(0, LCD_LINE4, FormatNum("RPM = %5.2f" , motorRpm));
 TextOut(0, LCD_LINE6, FormatNum("Time = %5.3f s" , elapsedTimeInSeconds));

 // Write text data to file. The text will be end with a EOL
 text=StrCat(strElapsedTimeInSeconds, "," , strMotorRadPerSec, "," , strMotorRpm,",");
 WriteToFile(text);

 // Update current tic value and angle
 prevTick = curTick;
 prevAngleInDegrees = curAngleInDegrees;
 Wait(100); // update loop every 100 milliseconds

 // Check if user wants to quit
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed && (FreeMemory()>=2000));

Code description: The program begins a do-while loop which exits when the user pushed the Brick’s orange button or when the Brick’s memory storage runs out.

The statement curAngleInDegrees = MotorRotationCount(MOTOR); polls the motor’s internal encoder hardware. The encoder reports values from 0 to 360 degrees and saves the value in the variable curAngleInDegrees. Because the encoder reports relative changes, the change in angle needs to be subtracted from the previously polled value. This is achieved through the deltaAngleInDegrees = curAngleInDegrees - prevAngleInDegrees; statement. For file saving purposes, the numeric data is converted into a string of alphanumeric characters using NxC’s FormatNum function.

Unfortunately NxC does not have a function that reports motor velocities directly. As such, velocity is calculated by polling sequential motor angles and dividing by the elapsed time. The motor velocity in both radians per second and RPM are calculated and saved to file.

Before the loop iterates, the Brick’s “stopwatch” and angle encoder are updated with their last polled values i.e. prevTick = curTick; prevAngleInDegrees = curAngleInDegrees;
Finally, the program invokes the Wait(100); statement. This essentially sets the sampling time of the program to 100 milliseconds. The program loops back unless it detected the user pushing the orange button (or the Brick’s free memory exceeds 2 KB).

Step 4: Continue adding code to complete the program

// Orange button pressed, so command 0 speed to motor and quit
	ClearScreen();
	TextOut(0, LCD_LINE2, "Quitting", false);
	// Stop motor
 OnFwd(MOTOR, 0);
 StopWriteToFile();
 PlaySound(SOUND_LOW_BEEP); // Beep to signal quitting
	Wait(SEC_2);
} // end of main

Step 5: Lastly, modify your header file fileSavingFunctions.h

In your InitWriteToFile() function define the file name to store data as well as the first row that labels your data:

void InitWriteToFile() {
 fileNumber = 0; // set first data file to be zero
 filePart = 0; // set first part of first data file to zero
 fileName = "nxtMotorData.csv" ; // name of data file
 result=CreateFile(fileName, 1024, fileHandle);
 // NXT Guide Section 9.100 pg. 1812 and Section 6.59.2.2 pg. 535
 // returns file handle (unsigned int)

// check if the file already exists
 while (result==LDR_FILEEXISTS) // LDR_FILEEXISTS returns if file pre-exists
 {
 CloseFile(fileHandle);
 fileNumber = fileNumber + 1; // create new file if already exists
 fileName=NumToStr(fileNumber);
 fileName=StrCat("nxtMotorData" , fileName, ".csv");
 result=CreateFile(fileName, 1024, fileHandle);
 } // end while

 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 fileHeader = "Time [s], Motor Speed [rad/s], Motor Speed [RPM]" ; // header
 WriteLnString(fileHandle, fileHeader, bytesWritten);
 // NXT Guide Section 6.59.2.43 pg. 554
 // Write string and new line to a file
 // bytesWritten is an unsigned int. Its value is # of bytes written

} // end InitWriteToFile

In your WriteToFile() function, edit code so that data is saved to the desired file

void WriteToFile(string strTempText) {
 // strTempText stores the text (i.e. ticks and motorRpm to be written to file
:
:
:
// create the next file name
 filePart = filePart + 1;
 strFileNumber = NumToStr(fileNumber);
 strFilePart = NumToStr(filePart);
 fileName = StrCat("nxtMotorData" , strFileNumber,"-", strFilePart ,".csv");
:
 } // end if
} // end WriteToFile

Step 6: Save both nxtMotorOlsr1_0.nxc and fileSavingFunctions.h files. Compile and execute. Once the program runs, hit the right arrow button to start the step response. After a few seconds (say 5 seconds), hit the orange button to terminate. Open NXT Explorer to retrieve your data file and plot in Excel.

In Excel, you should have a plot that resembles Figure 2A.

[image:]

Figure 2A: Excel plot of nxtMotorData.csv

Exercise 2: In NxC create programs for the following:

2-1: Write a program that performs an open-loop step response but acquires the NXT motor’s position from 0 to 5 seconds (use a 100 millisecond sample time). Plot the curve. Why does this curve loop like a ramp?

2-2: Prove that you can capture data for desired duration and at a desired sampling time.

Concept 3 – Aliasing

Shannon’s sampling theorem puts a limit on the minimum sampling time. Suppose the phenomena you wish to you sample has a frequency . Shannon says that you must sample at least twice as fast. Failing to do so will result in aliasing – or essentially data that does not capture the phenomena.

Step 1: Prepare a sine wave with a function generator. The peak-to-peak voltage should be less than 5 Volts. Also, adjust the sine wave so that voltages are all positive, that is, have a DC offset of 5 Volts. Thus, the minimum voltage would be 0 Volts, and maximum voltage is 5 Volts.

Step 2: Use the oscilloscope to measure the sine wave’s frequency. Calculate the minimum sampling time (based on Shannon’s Theorem).

Step 3: Write an NxC program to capture the voltages from the function generator. Use a fast sampling frequency (e.g. 10 times the minimum). Capture data for about 3-seconds. Confirm that a plot of the captured data in Excel, matches that function generator’s sine wave.

Step 4: Repeat Step 3 but use a sampling frequency slightly above the minimum (e.g. 1.5 times the minimum). Show the resulting plot

Step 5: Repeat Step 4 using a sampling frequency at the minimum value. Show the resulting plot.

Step 6: Repeat Step 5 using a sampling frequency below the minimum value and show the resulting plot.

Exercise 3:

3-1: Provide Excel plots of the sine wave captured in Steps 3, 4, 5, and 6. Explain which plots have aliasing and why this was the result.

Concept 4 – Data Logger – Temperature Sensing

Concept 5 – NXT Voltage Source

Motors, relays, and pneumatic valves are examples of actuators. As such, actuators are critical components in any robot. Actuators need a power source to adjust motor speed, relay rates, and valve displacements. The NXT Brick’s Ports A, B, and C can be programmed as an adjustable power source so that the actuator’s state can be controlled. Recall the following pin-out

[image:]

Step 1: Connect an NXT motor to Port A. Compose and run the following (sanity check) program

// FILE: voltOut1_0.nxc - WORKS!
// DATE: 08/18/16 19:33
// AUTH: P.Oh
// DESC: Port A (Motor port) WHITE (Line 1) is M1. BLACK (Line 2) is M2
// Can attach NXT motor (sanity check); piezo buzzer; and E10 7.5V lamp
// VERS: 1.0 - simple program: voltage output (0 to 9V)

task main() {

 // button variables
 bool orangeButtonPushed, rightArrowButtonPushed, leftArrowButtonPushed;
 bool greyButtonPushed;

 int powerLevel; // 0 to 100 will be sent to Port A for corresponding 0V to 9V

 // Prompt user to begin
 TextOut (0, LCD_LINE1, "Orange Btn starts");
 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 ClearScreen();
 TextOut(0, LCD_LINE1, "Grey Btn Stops");
 TextOut(0, LCD_LINE3, "<- keys ->");
 powerLevel = 50; // middle of range... this is about 3.9V
 // 10 = about 0.6V; 70 = about 5V; 90 = about 7V

 do {
 leftArrowButtonPushed = ButtonPressed(BTNLEFT, FALSE);
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 greyButtonPushed = ButtonPressed(BTNEXIT, FALSE);

 if(leftArrowButtonPushed) powerLevel = powerLevel - 10;
 if(rightArrowButtonPushed) powerLevel = powerLevel + 10;

 if(powerLevel <= 10) powerLevel = 10; // set saturation minimum
 if(powerLevel >= 90) powerLevel = 90; // set saturation maximum

 TextOut(0, LCD_LINE4, FormatNum("Power = %3d", powerLevel));
 OnFwd(OUT_A, powerLevel);
 Wait(250); // need some delay so that buttons can be read properly

 } while(!greyButtonPushed); // end do-while

 StopAllTasks();

} // end main

Code Explanation: The Brick’s keys are used to adjust the amount of power (i.e. voltage) being sourced out of Port A. Each time the left arrow button is pushed, the power level decrements by 10 and vice-versa for the right arrow button. This results in controlling the NXT motor’s rotational speed.

The power supply comes from the batteries inside the Brick. Thus, the amount of voltage the port can provide is determined by the voltage-levels of the Brick’s batteries. The maximum voltage would be 9 Volts (six 1.5 Volt AA batteries). But often, the batteries (especially rechargeable ones) will have lower voltages.

The NXT Brick uses pulse-width modulation (PWM) to adjust the voltage coming out of Ports A, B, and C. Brick specs say that the PWM cycle is 128 microseconds (or 7800 Hz). Port A can source 800 mA while Ports B and C can source 500 mA. PWM is the ratio of the times when a signal is on and off. This results in efficiency. Think about a bicyclist. The bike’s speed is a ratio of how the bicyclist pedals verses coasts. A bicyclist pedaling 100% of the time will likely get tired quickly. By contrast, pedaling 0% of the time, the bike won’t move.

Exercise 5:

5-1: Replace the motor with a voltmeter. Connect the voltmeter’s positive cable to Pin 1 and negative cable to Pin 2 of Port A. Rerun your voltOut1_0.nxc program. What power level corresponds to +5V? What are the voltages at power levels 10 and 90?

5-2: Replace the voltmeter with a 7.2V lamp and/or a 3-28V piezo buzzer. What happens when you run voltOut1_0.nxc?

[bookmark: _GoBack]5-3: Replace the voltmeter with an oscilloscope and run voltOut1_0.nxc. What happens to the wave when you increment/decrement the power level? What is the frequency of the wave? What is the ratio of the on to off times when the power level is 10, 50, 90?

© Copyright Paul Oh
image2.png
[& oroccommand center e

Fie Edt Search Vew Compie |Took] Windon rep
D@ URE 5 & oo
@8 seEx &%

]

& Functons
€ Tasks
€ Procedues

& s Y ——
7. % Close Communication Shift4Ctl4°4 lor 1CD; +x goes rights, +y goes wp ‘
S e

k: s,)
[E— . Yo Confiure Toos. ared = san , xSquared));
rézOe = 55,567, xSquareRoot))

Debugaing

If statements

Loops et /7 Create string version of calculated values

Outputs StrX = Formatuz ("id” , x);

Timing strXSquared = Formatliur ("3d” , xSquared);

Sensors strKSquareRoot = Formatliuz (733357 , xSquareRoot);

Sensar ypes ‘

Sensor mode /7 Concatenate the 3 strings into & single one.

Sensor mjﬂ 77 Hrite resulting string to file. The text will be end with & EOL
»

e | =

G|

image3.png
oBR

vt Fomat | 0 @ o @ =
+ [
Change Savehs | Swich Select | Quick - . 2| move
Chart Type Template | Row/Column Data | Layout~ =|| chat
Type Data Chart Layouts| Chart styes Location
Chart3 & v
c 1 [e T * e [w] [[T o Twm
1 x sqrt{x)
2 1 x"2
3 1414
4 1732 120
5 2 |0 -
5 223
7 2449 20
s 2646
60 *
B 2828 . .
10 3 w0
+
1 3162
12 20 - *
13 -
o+
1
2 s s s 10 1
15
16
B v
145 411 squarebata ¥ M4l m)

Ready |

Average:22 Count22 sum:440 [EOM w00% O 0 &)

image4.png
[rall= I AN squareData - Microsoft Excel =@

L. m R e c@oan

@ shapes - i ine + M Avea - — NPHE
Is 88 2 o e |2 | B o
TRt coum et

nes Siicer

Hypertink

symbals
T & saeensnot- Broor | sctr ool v
e ustations o 1o eter | unks Tt

a ge 7| x sl o

ﬂm CTo
LA

b anchart iypes.

12
13
1
15

16

41| squarepata /ET T4

image5.png
| —
8 R 8 8 9 8 8 2 ° g

image6.jpg
pin Name/Color Input Role Output Role
i ANA (WHITE) Analoginterface | Motor Power1
F] ‘GND (BLACK) Ground Motor Power2
3 GND (RED) Ground Ground
a PWR (GREEN) +4.3V supply +4.3V supply
B DIGIO (YELLOW) | 12C clock Encoder Signal 1
6 DIGI1 (BLUE) 12c data Encoder Signal 2

image1.png
(=[5
Fie Edt View Help
AXFN a0 I 8

Bifies (- = P
= 0 Weouses

B
e | LiE J
Sl WEenlp s rablonl nengs

G

m g | T
Q%m

PMotorDls. ritMotaDlst.. mtblotorOls,

pendulum sineWave dsplaySaua.

© M

mMotorDls.. miMotordls... sneWavel_.

W

sineave... squareData.

i

displaySaua... displaySaua... displaySaua

i

displaySaua... displaySaua... displaySaua

[
&
I

