
Lego Sensing – Analog-to-Digital Basics

© Copyright Paul Oh

Hands-on Lab

Lego Sensing – Analog-to-Digital Basics

The Lego NXT contains a 10-bit analog-to-digital (ADC) convertor. This lab will develop sensors.
This is important because sensors are a critical component for any robot.

Concept 1 – NXT ADC: Homemade touch sensor

Ports 1 to 4 on an NXT Brick are connected to 10-bit ADC. First, the port’s connector uses a 6-
line ribbon cable. The cable can used to connect sensors (i.e. input) or actuators (i.e. output).
Since we are interested in the ADC, each wire’s role is defined in Figure 1A.

Ports 1 to 4 each are connected to a 10 kilo-ohm resistor and 5 Volt supply which go into a 10-bit
ADC (see Figure 1B).

Step 1: Create a circuit that reflects Figure 1B (right).

A solderless breadboard is perhaps the easiest method to construct the circuit. The switch can
be simply made with some wire.

Figure 1A: An NXT cable has six wires with roles assigned above

Figure 1B: When Pins 1 and 2 are open, then, the ADC will read +5V (left). If the switch closes
(right), then Pins 1 and 2 are shorted; the path of least resistance forces the ADC to read 0V.

Lego Sensing – Analog-to-Digital Basics

© Copyright Paul Oh

Step 2: Write the following NxC program and execute

Code Explanation: The NxC statement SetSensorTouch(IN_1)prepares Port 1 for inputs –
by setting Pins 1 (White) and 2 (Black) for reading. The Sensor(IN_1) statement then reads
Port 1 and returns a value. This value is stored in the variable touchSensorValue. If the
value is 1, in means Pins 1 and 2 are shorted (i.e. switch is closed). If the value is 0, then the two
pins are not connected (i.e. switch is open).

Exercise 1: In NxC create programs for the following:

1-1 Brick displays “”Touch sensor is: “, with “ON = 1” when the switch is closed and “OFF = 0”

when the switch is open. If the switch is closed, then play a tone. Use statements like
TextOut and PlayTone. Call this program touch1_1.nxc.

// FILE: touch1_0.nxc
// DATE: 08/18/16 01:17
// AUTH: P.Oh
// DESC: Homemade touch sensor; sensor port 1
// VERS: 1.0

task main() {

 int touchSensorValue;
 string strTouchSensorValue; // store integer value of touch sensor as string
 string strMessageAndValue; // To display touch sensor value

 SetSensorTouch(IN_1); // homemade touch sensor on Brick Port 1
 do {
 touchSensorValue = Sensor(IN_1);
 strTouchSensorValue = NumToStr(touchSensorValue);
 strMessageAndValue = StrCat("Touch reads:", strTouchSensorValue);
 TextOut(10, LCD_LINE4, strMessageAndValue);
 Wait(100);
 } while(true); // endless do-while loop

 StopAllTasks();

} // end main

Lego Sensing – Analog-to-Digital Basics

© Copyright Paul Oh

Concept 2 – Voltage Divider: Homemade ohmmeter

Expanding upon Figure 1B, one can create insert a resistor between Pins 1 and 2. This is shown
in Figure 2A.

Recall, Figure 2A is a voltage divider where we have the voltage across the resistor ܴas:

ோܸ ൌ
ோ

ଵ	ஐାோ ேܸ

Step 1: Build the circuit given in Figure 2A.

Step 2: Write and execute the following NxC program

// FILE: ohm1_0.nxc
// DATE: 08/18/16 02:07
// AUTH: P.Oh
// DESC: Homemade ohm sensor; sensor port 1
// Uses Brick's Port 1's WHITE (AN) and BLACK (GND) lines
// Display value of unknown resistor connected between WHITE and BLACK lines
// Treats WHITE and BLACK lines as input into Brick's internal 10-bit ADC
// VERS: 1.0 - simple program

task main() {

 int touchSensorRawValue; // a number between 0 and 1023 (10-bit ADC)
 float ohmValue;

 SetSensorTouch(IN_1); // homemade touch sensor on Brick Port 1
 do {
 TextOut(0, LCD_LINE1, "Raw value:");
 touchSensorRawValue = SensorRaw(IN_1); // read raw value at port
 TextOut(0, LCD_LINE2, FormatNum("%d", touchSensorRawValue));
 ohmValue = ((10000)*touchSensorRawValue) / (1023-touchSensorRawValue);
 TextOut(0, LCD_LINE3, "Ohm value is:");
 TextOut(0, LCD_LINE4, FormatNum("%3.3f", ohmValue));
 Wait(100);
 ClearScreen();
 } while(true); // endless do-while loop

 StopAllTasks();

} // end main

Figure 2A: Insert a random resistor ܴin between Pins 1 and 2.

(1)

Lego Sensing – Analog-to-Digital Basics

© Copyright Paul Oh

Code Explanation: To read the actual ADC value (called ݓܽݎ), one uses the NxC statement
touchSensorRawValue = SensorRaw(IN_1). Recall that we have a 10-bit ADC, so the raw
value will range from 0 to 2ଵ െ 1 ൌ 1023. Thus, we can calculate the unknown resistor that lies
between Pins 1 and 2 with the formula

ܴ ൌ
10000

1023 െ ݓܽݎ
 ݓܽݎ

So, this homemade ohmmeter can detect resistances between ൎ 9Ω and 10,220,000Ω.

Concept 3 – ADC Voltages: Build a voltmeter

Recall that a 10-bit ADC results in (raw) decimal values ranging from 0 to 1023. The ADC is
connected to a +5V power supply inside the NXT Brick, Thus, the (raw) decimal values
corresponding to 0 and 1023 for 0V and 5V respectively. Or, a formula:

ܸ ൌ
ݓܽݎ
1023

∙ 5	ሾܸݏݐ݈ሿ	

Exercise 2:

2-1: Derive the equation (2) above and calculate the min and max resistances that can detected

2-2: Replace a fixed resistor with a potentiometer and show with a real ohmmeter, that your NxC
program works

(2)

(3)

Exercise 3:

3-1. Write an NxC program that implements equation (3). Use the NxC statement

SensorRaw(IN_1) for your program to report raw values that digitally represent a voltage
across Pins 1 and 2. Call your program volt1_0.nxc – to represent your homemade
voltmeter.

3-2: Connect a 1.5V battery or variable power supply to Port 1. The +’ve part of the battery or

power supply connects to Pin 1 (AN). The –‘ve part goes into Pin 2 (i.e. GND). Run your
volt1_0.nxc so that it displays the voltage of the battery or power supply. Compare the
Brick’s value with a real voltmeter.

3-3. From equation (3), what is calculated resolution (in volts) of the Brick’s 10-bit ADC?

