NXT Motor Open Loop Step Response (OLSR) — Last updated 03/14/23

Hands-on Lab

Lego NXT — NXT Motor Open-Loop Step Response (OLSR)

In class, the theory underlying a DC motor was presented. Briefly, a DC motor can be modeled
as a first order system. Here, a step input (i.e. a constant voltage) is applied to the motor. The
motor’s rotational speed gradually reaches a steady-state value as depicted in Figure 1 below.
This lab demonstrates this phenomenon. CountTick is used to set the sampling time, and to
calculate the time between changes in the motor's angle. The resulting speed (rad/s and RPM)
are computed and saved as a file. XLS scatter plot (Figure 1 graph) shows the motor’s first-order
response.

& olsr.csv
[4] & B c D E F G H i) K L
1 Time[s] RAD/S RPM
2 0 0 0
3 0.04 2188 20.83
a 008 6563 62.5 RAD/S
] 0.12 8.313 79.17
6 0.16 9.188 87.5 iy
7 0.2 10063 95.83 iz 4 =
8 0.24 105 100 W
9 0.28 10671 10163 WiTe
10 0.32 11098 105.69 s ¢
11 .36 10.671 101.63 s d ® RAD/S
12 041 1125 107.14
13 0.44 10.938 104.17 4 1
14 0.49 11.098 105.69 2 #
15 0.53 11.098 105.69
16 0.57 10.671 101.63 oe
o 2 3 4 5

17 .61 11.524 109.76
Figure 1: Open-Loop Step Response of a LEGO NXT motor
Step 1: Write save, and compile motorOlsrl _Oa.nxc
Note: The program is long only because it is filled with comments. Moreover, the code leverages

the concepts learned in file handling (e.g. x"2Filel.0.nxc) and timers (e.g.
stopWatchl_Oa.nxc).

© Copyright Paul Oh

NXT Motor Open Loop Step Response (OLSR) — Last updated 03/14/23

task main() {

// Declare variable
// Motor related variables

long degPrev, degCurr, degDelta;
float motorRpm;

string strMotorRpm;

float motorRadPerSec;

string strMotorRadPerSec;

// File related variables
unsigned int result;

byte fileHandle;

short bytesWritten;

string fileName, fileHeader, text;

// Timing related variables

long ticPrev, ticCurr, ticDelta;
long ticWait, ticEnd;

long msSamplingTime;

float secElapsed;

string strSecElapsed;

// Button related variables

// File: displaySquareAndSquareRoot3_0.nxc

// FILE: mtrOlsrl_Oa.nxc - Works!

// AUTH: P_.Oh

// DATE: 03/13/23 15:58

// DESC: OLSR of NXT motor (Port A) with data written to file olsr.csv
// with 40 msec sampling time

// VERS: 1 Oa: ME 425/625 Release version

// REFS: nxtMotorOlsrl_0.nxc; x”2Filel.0.nxc, rotateO_la.nxc, mtrSpeedO_2a5.nxc
// mtrOlsr0_la.nxc

// NOTE: Uses MotorRotationCount which reports encoder count in degrees
// and program calculates difference over delta tic counts

#define MOTOR OUT_A // set constant MOTOR for Port A
#define FULL_SPEED 75 // 75 percent of possible motor speed
#define DEG2RPM 166.667 // deg/msec to RPM

#define RPM2RADPERSEC 0.105; // RPM to rad/sec

motor®s degrees previous,current, delta
motor speed [RPM]

string form of motorRpm

motor speed [rad/s]

string form of motorRadPerSec

flag returned when handling files
handle to the data file

number of bytes written to the file
name, header and text to write to file

previous, current and delta ticks
ticks to wait and to end

sampling time in [msec]

seconds elapsed in [sec]

string form of secElapsed

bool orangeButtonPushed, rightArrowButtonPushed;

// Initialize variables

secElapsed = 0.0; // set elapsed time to zero

degPrev

0; // motor initially motionless so set angle to zero

msSamplingTime = 40; // [msec] sampling time

// Algorithm starts here
// (1) Set up the file
fileName “olsr.csv" ;

// <---- file name you want data saved to

result=CreateFile(fileName, 2048, fileHandle);
// (1A) Check if filename already exists, and overwrite it

while (result==LDR_FILEEXISTS) {
CloseFile(fileHandle);
DeleteFile(fileName);

// result=CreateFile(fileName, 1024, fileHandle);
result=CreateFile(fileName, 2048, fileHandle);

} 7/ end while

// (1B) write column header to file
fileHeader = "Time [s], RAD/S, RPM" ; // <--—- column header in your CSV file
WriteLnString(fileHandle, fileHeader, bytesWritten);

© Copyright Paul Oh

NXT Motor Open Loop Step Response (OLSR) — Last updated 03/14/23

// (2) Process that generates data

// Prompt user to begin step input

TextOut (O, LCD_LINE1, "-> starts");

do { // wait until user hits right button
rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);

} while(!rightArrowButtonPushed);

// Begin step response

TextOut (O, LCD_LINE1, "Orange Btn quits");

strSecElapsed = FormatNum(*'%5.3f" , secElapsed);

// (2A) read current motor angle [deg] and poll timer before applying power
degPrev = MotorRotationCount(MOTOR);

// Command motor to move i.e. step input

ticPrev = CurrentTick(); 7/ poll timer 1lst time <<<<<K<K<KKLKLKLKLKLKLKLKLKLKLKLKLKLKLKLLL LKL
OnFwd(MOTOR, FULL_SPEED); // turn on motor at FULL_SPEED value

do {

// (2B) poll timer a 2nd time, measure elapsed time in [msec], read

// motor®s rotational angle [deg] and compute rotational speed [RPM]
ticCurr = CurrentTick(); 7/ poll timer a 2nd time <<<<K<KKKKKKKKLKLKLKLKLLLKLLLLLKL
// Read change in motor angle

degCurr = MotorRotationCount(MOTOR); // get relative position [deg]
degDelta = degCurr - degPrev;

// Measure elapsed time and hence motor RPM

ticDelta = ticCurr - ticPrev; // time [msec] elapsed between angle reads
motorRpm = (degDelta * DEG2RPM) / ticDelta; // deg/ms * DEG2RPM yields RPM
strMotorRpm = FormatNum(*%5.2F" , motorRpm);

// Display motor actual speed and elapsed time
TextOut(O, LCD_LINE4, FormatNum(''RPM = %5.2f" , motorRpm));
TextOut(0, LCD_LINE6, FormatNum(* Time = %5.3F s" , secElapsed));

// (2C) compute rotational speed [rad/s]. Form string versions of the data
// and write to file

motorRadPerSec = motorRpm * RPM2RADPERSEC; // RPM * RPM2RADPERSEC gives rad/s
strMotorRadPerSec = FormatNum(*%5.3f" , motorRadPerSec);

secElapsed = secElapsed + (ticDeltas1000.0); // [sec]

strSecElapsed = FormatNum(*'%1l.2f" , secElapsed);

text=StrCat(strSecElapsed, "," , strMotorRadPerSec, "," , strMotorRpm);
WriteLnString(fileHandle, text, bytesWritten);

// (2D) call the current values the previous ones before looping back
ticPrev = ticCurr; // assign 2nd polled tick value to 1st polled tick value
degPrev = degCurr; // assign current rot"n count as previous rot"n count

// Check if user wants to quit
orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
} while('orangeButtonPushed);

// Orange button pressed, so command O speed to motor and quit
ClearScreen();
TextOut(0, LCD_LINE2, "Quitting', false);
// Stop motor

OnFwd(MOTOR, 0);

CloseFile(fileHandle);

PlaySound(SOUND_LOW_BEEP); // Beep to signal quitting
Wait(SEC_2);

StopAllTasks();

} // end of main

Program: motorOlsrl Oa.nxc

© Copyright Paul Oh

NXT Motor Open Loop Step Response (OLSR) — Last updated 03/14/23

Step 2: Construct a mount for your LEGO NXT motor. Connect the motor to Port A on the Brick.
Execute motorOlsrl_Oa.nxc. This willimmediately have the NXT motor (that's connected to
Port A) move at 75% power. Count 3 to 5 seconds, and then press the Orange button. This will
stop the motor and quit the program.

Step 3: Refer to Concept 1 in the Lab entitled labBricxxFileHandling-102822a.pdf. Recall, one
can use BrixCC’s Tools- NXT Explorer to see the files in one’s Brick. Click and drag the file
olsr.csv to your laptop. Use Excel to open the file and create a scatter plot (like the one shown
above in Figure 1).

Code Explanation: The cyan highlight of Step (1) is very similar to the code in
x"2Filel _0.nxc. This section creates a file named olsr.csv and writes a comma separated
header for 3 columns of your data: Time [s], RAD/S, and RPM. Recall, Excel reads CSV files
and will automatically put any data in these columns for easy plotting.

Step (2A) reads the motor’'s current angle [deg], polls the timer with a CountTick, and then
applies power to the NXT motor. Step (2B) begins the do-while loop. Here, one polls the timer
and reads the current motor angle. Step (2C) uses that information to compute the motor’'s
rotational speed and writes the data to the file.

Highlighted in green is Step (2E). This is important to ensure the desired sampling rate. In other
words, one wants to sense, compute, and write data at specific times (i.e. at the sampling rate).
The comments give an example to rationalize the need for Step (2E). Here's another example.
One observes the program has two TextOut statements. These display the motorRpm and
secElapsed on the Brick. Displaying info is a time-consuming process for any micro-controller.
For the NXT, such displays can take 2-5 milliseconds to execute. Also, the do-while loop has a
single WriteLnString function. This also consumes time, but varies. Some microprocessors
collect data to write into RAM and then flushes it to memory (e.g. EEPROM) when it's filled.
Other microprocessors write data directly to memory. Some microprocessors do a combination.
The net effect is that Step (2E) employs a Wait statement to ensure the do-while loop time
matches the prescribed sampling time.

Exercise 1: In NxC create programs for the following:

1-1 Repeat motorOlsrl _Oa.nxc but using (1) a 25% and (2) 50% power level. Compare the
resulting open-loop step response plots with the 75% power level. What are the rise times for
the 3 different plots? Why are they different or the same?

© Copyright Paul Oh

