
Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

Hands-on Lab

Lego Programming – BricxCC Timers

Timing is important in controller design; data and actions often must be respectively acquired and
commanded at prescribed intervals. NxC provides statements for millisecond timers, and when
combined with file handling, programs for system identification become possible. Hands-on
exercises will culminate in in capturing the step response of an NXT motor.

Preamble: #include statement

Previously the file displaySquareAndSquareRoot2_0.nxc iterated numbers from 1 to 10,
computed their squares and square roots. These computations were saved into a file, which
could be opened with programs like Excel. Recall file handling involved 3 functions that we
composed:

1. void InitWriteToFile()allocates memory to save data into. This function does not
take any variables, nor does it return any (i.e. void). It creates the filename and writes a
header to the file e.g. x, x^2, sqrt(x).

2. void WriteToFile(string someStringVariable) writes the string variable
someStringVariable. This function does not return any variable (i.e. void). Recall,
someStringVariable will contain the alphanumeric representation of numeric data
(like integers and floats).

3. void StopWriteToFile()gracefully closes the file. This function does not take any
variables, nor does it return any (i.e. void).

These 3 functions allowed one to save any data into a file. Note, because WriteToFile wrote
data as a string (i.e. collection of alphanumeric characters), one can open the file with an ASCII
editor (i.e. plain-text) like Windows Notepad. Also, the file extension was saved as a CSV
(comma separated values) which programs like Excel easily recognize.

File-related functions play an important role in future programs and will be used often. It would
save time and be more efficient if one could simple re-use such functions (i.e. write it once and
use them whenever needed). This time savings is achieved by the ANSI C statement #include.
One only needs to save the functions in a file with the extension .h (called a header file).

Step 1: Click File – Open and load displaySquareAndSquareRoot2_0.nxc. Click File
– Save As with the name “displaySquareAndSquareRoot3_0.nxc”.

Step 2: Copy all file-saving related functions into a new file called fileSavingFunctions.h.
Save it the same directory as displaySquareAndSquareRoot3_0.nxc.

Step 3: Delete the file-saving functions from displaySquareAndSquareRoot3_0.nxc and
add the line #include “fileSavingFunctions.h”.

Step 4: Compile and run from displaySquareAndSquareRoot3_0.nxc. This program
should now run like displaySquareAndSquareRoot2_0.nxc.

Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

// File: displaySquareAndSquareRoot3_0.nxc
// Date: 10/14/2012 14:47
// Desc: Display number, its square and square root save to file
// Vers: 3.0 (with file saving functions as include file)
// Refs: displaySquareAndSquareRoot2_0.nxc

#include "fileSavingFunctions.h"

task main ()
{
 int x; // integers from 1 to 10
 int xSquared; // square of x
 float xSquareRoot; // square root of x

 string strX;
 string strXSquared;
 string strXSquareRoot;

 // Create a new file that captures time and motor speed
 InitWriteToFile();

 for (x = 1; x <=10; x++) {
 xSquared = x*x;
 xSquareRoot = sqrt(x);

 // TextOut (xPosition, yPosition, string) put string on LCD's x,y position
 // NB: x = y = 0 is lower left corner of LCD; +x goes rights, +y goes up
 // FormatNum is a string with sprintf syntax

 TextOut (10, LCD_LINE4, FormatNum("x = %d" , x));
 TextOut (10, LCD_LINE5, FormatNum("xSquared = %d" , xSquared));
 TextOut (10, LCD_LINE6, FormatNum("sqrt(x) = %3.3f" , xSquareRoot));
 Wait (SEC_2);

 // Create string version of calculated values
 strX = FormatNum("%d" , x);
 strXSquared = FormatNum("%d" , xSquared);
 strXSquareRoot = FormatNum("%3.3f" , xSquareRoot);

 // Concatenate the 3 strings into a single one.
 // Write resulting string to file. The text will be end with a EOL
 text=StrCat(strX, "," , strXSquared, "," , strXSquareRoot, ",");
 WriteToFile(text);
 } // end of for loop

 // Finished computing square and square root, so clean up and quit
 ClearScreen();
 TextOut(0, LCD_LINE2, "Quitting", false);
 StopWriteToFile();
 PlaySound(SOUND_LOW_BEEP); // Beep to signal quitting
 Wait(SEC_2);

} // end of main

New Program: displaySquareAndSquareRoot3.0.nxc

Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

// File: fileSavingFunctions.h
// Note: Save this .h file in same directory as the file that includes it
// Date: 10/14/12 14:48
// Auth: P.Oh
// Desc: Header file for 3 functions related to file handling

// Global variables (for file writing)
unsigned int result; // flag returned when handling files
byte fileHandle; // handle to the data file
short bytesWritten; // number of bytes written to the file
string fileHeader; // column header for data in the file
int fileNumber, filePart; // integers to split up data file names
string fileName; // name of the file
string strFileNumber; // file number e.g myDataFile 1, 2, 3
string strFilePart; // file part e.g. myDataFile1-1, 1-2, 1-3
string text; // string to be written to file i.e. data values

// Create and initialize a file
void InitWriteToFile() {
 fileNumber = 0; // set first data file to be zero
 filePart = 0; // set first part of first data file to zero
 fileName = "squareData.csv" ; // name of data file
 result=CreateFile(fileName, 1024, fileHandle);
 // NXT Guide Section 9.100 pg. 1812 and Section 6.59.2.2 pg. 535
 // returns file handle (unsigned int)

 // check if the file already exists
 while (result==LDR_FILEEXISTS) // LDR_FILEEXISTS returns if file pre-exists
 {
 CloseFile(fileHandle);
 fileNumber = fileNumber + 1; // create new file if already exists
 fileName=NumToStr(fileNumber);
 fileName=StrCat("squareData" , fileName, ".csv");
 result=CreateFile(fileName, 1024, fileHandle);
 } // end while

 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 fileHeader = "x, x^2, sqrt(x)" ; // header for myData file
 WriteLnString(fileHandle, fileHeader, bytesWritten);
 // NXT Guide Section 6.59.2.43 pg. 554
 // Write string and new line to a file
 // bytesWritten is an unsigned int. Its value is # of bytes written

} // end InitWriteToFile

void WriteToFile(string strTempText) {
 // strTempText stores the text (i.e. ticks and motorRpm to be written to file

 // write string to file
 result=WriteLnString(fileHandle, strTempText, bytesWritten);
 // if the end of file is reached, close the file and create a new part
 if (result==LDR_EOFEXPECTED) // LDR_EOFEXPECTED is flagged when end-of-file
 {
 // close the current file
 CloseFile(fileHandle);
 // NXT Guide Section 6.59.2.1 pg. 535
 // Closes file associated with file handle

 // create the next file name
 filePart = filePart + 1;
 strFileNumber = NumToStr(fileNumber);
 strFilePart = NumToStr(filePart);
 fileName = StrCat("squareData" , strFileNumber,"-", strFilePart ,".csv");

 // delete the file if it exists
 DeleteFile(fileName);
 // NXT Guide Section 6.59.2.5 pg. 537
 // Delete the file specified by the string input

New Header File: fileSavingFunctions.h

Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

Concept 1 – Timers:

In lecture, a DC motor with a voltage input and velocity output is modeled as a 2nd-order system.
For motors with a low inductance, like the NXT one, modeling can be simplified into a first-order
system. A program will be written that commands the NXT motor with a step input. The motor’s
velocity is then captured and plotted in Excel. The resulting curve will illustrate a typical first-
order response, from which one can determine motor characteristics like rise-time.

Step 1: Open BricxCC, click File – New and save your program as nxtMotorOlsr1_0.nxc.
Write the following code.

 // create a new file
 CreateFile(fileName, 1024, fileHandle);
 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 WriteLnString(fileHandle, strTempText, bytesWritten);
 } // end if
} // end WriteToFile

// Close the file
void StopWriteToFile() {
 // close the file
 CloseFile(fileHandle);
} // end StopWriteToFile

New Header File (continued from previous page): fileSavingFunctions.h

// File: nxtMotorOlsr1_0.nxc
// Auth: P.Oh
// Date: 10/14/12 15:33 - works!
// Vers: 1.0: Uses MotorRotationCount which reports encoder count in degrees
// and program calculates difference over delta tic counts
// Desc: NXT motor on Port A, save open-loop step response data to file

#include "fileSavingFunctions.h"

#define MOTOR OUT_A // set constant MOTOR for Port A
#define FULL_SPEED 75 // 75 percent of possible motor speed
#define DEG2RPM 166.667 // deg/msec to RPM
#define RPM2RADPERSEC 0.105; // RPM to rad/sec

task main() {

 // Motor related variables
 long prevAngleInDegrees; // placeholder for degree read by motor encoder
 long curAngleInDegrees; // current motor angle [DEG]
 long deltaAngleInDegrees; // change in motor angle [DEG]
 string strDeltaAngleInDegrees; // string form of deltaAngleInDegrees
 float motorRpm; // motor speed [RPM]
 string strMotorRpm; // store integer value of motorRpm as string
 float motorRadPerSec; // motor speed [rad/s]
 string strMotorRadPerSec; // string form of motorRadPerSec

// Timing related variables
 long prevTick;
 long curTick; // current timer value
 long deltaT; // For calculating time between ticks
 string strDeltaT; // string form of deltaT
 float elapsedTimeInSeconds; // time in seconds
 string strElapsedTimeInSeconds; // string form of elapsed time

Program: nxtMotorOlsr1_0.nxc

Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

Code description: task main begins by declaring motor related variables. As one will see
later, the NxC function MotorRotationCount(MOTOR) will be used. This function reports the
position (not the velocity) of the motor connected to the Brick’s MOTOR port (which happens to be
Port A). Also, time related variables are declared. As one will encounter later, the NxC function
CurrentTick() will be used to poll the Brick’s current clock (called a tick counter). Like a
stopwatch, variables curTick and prevTick are used to calculate the time that has elapsed
and store the resulting difference in the variable elapsedTimeInSeconds.

Step 2: Continue adding code to your program nxtMotorOlsr1_0.nxc

Code description: The program declares two button related Boolean variables:
rightArrowButtonPushed and orangeButtonPushed. These variables are used to detect
which buttons the user pushes on the Brick. The code above then initializes a new file by calling
the InitWriteToFile() function where data (like time and motor velocity) will be saved.

We will perform a step response on the NXT motor. As such, we initialize the motor’s position at
0 degrees (prevAngleInDegrees = 0;) and say that 0 seconds has elapsed
(elapsedTimeInSeconds = 0.0;).

The program then displays a message on the Brick’s LCD and enters a do-while loop that simply
polls for the right button to be pressed with NxC’s ButtonPressed function.

Once the user pushed the right arrow button, the Brick’s internal counter is polled (i.e. the
stopwatch is pushed to start) with the prevTick = CurrentTick(); statement. The LCD
displays a message to prompt the user to hit the orange button to terminate the program. The
program then commands the NXT motor with the NxC function OnFwd(MOTOR, FULL_SPEED);

// Button related variables
 bool orangeButtonPushed, rightArrowButtonPushed;

 // Create a new file that captures time and motor speed
 InitWriteToFile();

 // Initialize variables
 elapsedTimeInSeconds = 0.0; // set elapsed time to zero
 prevAngleInDegrees = 0; // motor initially motionless so set angle to zero

 // Prompt user to begin step input
 TextOut (0, LCD_LINE1, "Right Btn starts");
 do { // wait until user hits right button
 rightArrowButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 } while(!rightArrowButtonPushed);

// Begin step response
 prevTick = CurrentTick();
 TextOut (0, LCD_LINE1, "Orange Btn quits");
 // Command motor to move i.e. step input
 OnFwd(MOTOR, FULL_SPEED); // turn on motor at 100% full speed

Program (continued from previous page): nxtMotorOlsr1_0.nxc

Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

Step 3: Continue adding code to calculate motor velocity and elapsed time

Code description: The program begins a do-while loop which exits when the user pushed the
Brick’s orange button or when the Brick’s memory storage runs out.

The statement curAngleInDegrees = MotorRotationCount(MOTOR); polls the motor’s
internal encoder hardware. The encoder reports values from 0 to 360 degrees and saves the
value in the variable curAngleInDegrees. Because the encoder reports relative changes,
the change in angle needs to be subtracted from the previously polled value. This is achieved
through the deltaAngleInDegrees = curAngleInDegrees - prevAngleInDegrees;
statement. For file saving purposes, the numeric data is converted into a string of alphanumeric
characters using NxC’s FormatNum function.

Unfortunately NxC does not have a function that reports motor velocities directly. As such,
velocity is calculated by polling sequential motor angles and dividing by the elapsed time. The
motor velocity in both radians per second and RPM are calculated and saved to file.

Before the loop iterates, the Brick’s “stopwatch” and angle encoder are updated with their last
polled values i.e. prevTick = curTick; prevAngleInDegrees = curAngleInDegrees;
Finally, the program invokes the Wait(100); statement. This essentially sets the sampling time
of the program to 100 milliseconds. The program loops back unless it detected the user pushing
the orange button (or the Brick’s free memory exceeds 2 KB).

do {
 // Read change in motor angle
 curAngleInDegrees = MotorRotationCount(MOTOR); // get relative position
 deltaAngleInDegrees = curAngleInDegrees - prevAngleInDegrees;
 strDeltaAngleInDegrees = FormatNum("deltaAngle = %ld", deltaAngleInDegrees);

 // Measure elapsed time and hence motor RPM
 curTick = CurrentTick(); // read timer value
 deltaT = curTick - prevTick; // measure time elapsed between angle reads
 motorRpm = deltaAngleInDegrees * DEG2RPM / deltaT;
 strMotorRpm = FormatNum("%5.2f" , motorRpm);
 motorRadPerSec = motorRpm * RPM2RADPERSEC;
 strMotorRadPerSec = FormatNum("%5.3f" , motorRadPerSec);
 elapsedTimeInSeconds = elapsedTimeInSeconds + (deltaT/1000.0); // in sec
 strElapsedTimeInSeconds = FormatNum("%5.3f" , elapsedTimeInSeconds);

 // Display motor actual speed and elapsed time
 TextOut(0, LCD_LINE4, FormatNum("RPM = %5.2f" , motorRpm));
 TextOut(0, LCD_LINE6, FormatNum("Time = %5.3f s" , elapsedTimeInSeconds));

 // Write text data to file. The text will be end with a EOL
 text=StrCat(strElapsedTimeInSeconds, "," , strMotorRadPerSec, "," , strMotorRpm,",");
 WriteToFile(text);

 // Update current tic value and angle
 prevTick = curTick;
 prevAngleInDegrees = curAngleInDegrees;
 Wait(100); // update loop every 100 milliseconds

 // Check if user wants to quit
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed && (FreeMemory()>=2000));

Program (continued from previous page): nxtMotorOlsr1_0.nxc

Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

Step 4: Continue adding code to complete the program

Step 5: Lastly, modify your header file fileSavingFunctions.h

In your InitWriteToFile() function define the file name to store data as well as the first row
that labels your data:

In your WriteToFile() function, edit code so that data is saved to the desired file

// Orange button pressed, so command 0 speed to motor and quit
 ClearScreen();
 TextOut(0, LCD_LINE2, "Quitting", false);
 // Stop motor
 OnFwd(MOTOR, 0);
 StopWriteToFile();
 PlaySound(SOUND_LOW_BEEP); // Beep to signal quitting
 Wait(SEC_2);
} // end of main

Program (last part): nxtMotorOlsr1_0.nxc

void InitWriteToFile() {
 fileNumber = 0; // set first data file to be zero
 filePart = 0; // set first part of first data file to zero
 fileName = "nxtMotorData.csv" ; // name of data file
 result=CreateFile(fileName, 1024, fileHandle);
 // NXT Guide Section 9.100 pg. 1812 and Section 6.59.2.2 pg. 535
 // returns file handle (unsigned int)

// check if the file already exists
 while (result==LDR_FILEEXISTS) // LDR_FILEEXISTS returns if file pre-exists
 {
 CloseFile(fileHandle);
 fileNumber = fileNumber + 1; // create new file if already exists
 fileName=NumToStr(fileNumber);
 fileName=StrCat("nxtMotorData" , fileName, ".csv");
 result=CreateFile(fileName, 1024, fileHandle);
 } // end while

 // play a tone every time a file is created
 PlayTone(TONE_B7, 5);
 fileHeader = "Time [s], Motor Speed [rad/s], Motor Speed [RPM]" ; // header
 WriteLnString(fileHandle, fileHeader, bytesWritten);
 // NXT Guide Section 6.59.2.43 pg. 554
 // Write string and new line to a file
 // bytesWritten is an unsigned int. Its value is # of bytes written

} // end InitWriteToFile

void WriteToFile(string strTempText) {
 // strTempText stores the text (i.e. ticks and motorRpm to be written to file
:
:
:
// create the next file name
 filePart = filePart + 1;
 strFileNumber = NumToStr(fileNumber);
 strFilePart = NumToStr(filePart);
 fileName = StrCat("nxtMotorData" , strFileNumber,"-", strFilePart ,".csv");
:
 } // end if
} // end WriteToFile

Intro to BricxCC Programming – Last updated 10/10/15

© Copyright Paul Oh

Step 6: Save both nxtMotorOlsr1_0.nxc and fileSavingFunctions.h files. Compile
and execute. Once the program runs, hit the right arrow button to start the step response. After
a few seconds (say 5 seconds), hit the orange button to terminate. Open NXT Explorer to
retrieve your data file and plot in Excel.

In Excel, you should have a plot that resembles Figure 1A.

Figure 1A: Excel plot of nxtMotorData.csv

Exercise 1: In NxC create programs for the following:

1-1 Figure 1A is an example of an open-loop step (velocity) response to a 75% motor command.

From the plot, calculate the rise time Recall that rise-time (also called time constant) is defined
as 63.3% of steady-state.

1-2 Theory states for a first-order system, that at 3 time constants, the response will be within 1%
of steady-state. Calculate 3 x rise time and find the velocity at the time. Verify that this
velocity is within 1% of the steady-state velocity.

1-3 Write a new program that performs an open-loop step response but acquires the NXT motor’s

position from 0 to 5 seconds (use a 100 millisecond sample time). Plot the curve. Why does
this curve loop like a ramp?

