Homework - DC Motor Theory, Open-Loop Step Response, and Obstacle Avoidance

- 1. Fill in the blanks (10-points)
- A. Lorentz's law states that a current-carrying wire in a _____ field will induce an electromotor force
- B. In a DC motor, _____ allow the loops of copper wire to rotate 180 degrees
- C. An _____ is another term for a coil or loop of wire
- D. Inductors _____ the change in current
- E. Induced ____ is called the back EMF
- F. In DC motors, torque is _____ of voltage
- G. Motor speed then torque decreases
- H. A DC motor with negligible inductance is a ____ order system
- I. The rise time (or time constant) is the time to reach _____ of the steady-state value
- J. It takes ____ time constants for the system to reach 99% of the steady-state value.
- 2. Given that the Open Loop Transfer Function for the NXT motor is given by $G_{OL} = \frac{b}{s+a} = \frac{\Omega(s)}{V(s)}$ where the input is the motor command V(s) and the output is motor velocity $\Omega(s)$ (10 points total)

Given a step input
$$v(t) = \begin{cases} 0: t \leq 0 \\ M: t > 0 \end{cases}$$

- A. Show using ordinary differential equations that $\omega(t) = \frac{Mb}{a}(1 e^{-at})$
- B. Show using Laplace transform techniques that $\omega(t) = \frac{Mb}{a}(1 e^{-at})$
- 3. Below is an open-loop step response plot of an NXT motor to a 75% motor command. The X-axis is time in seconds and the Y-axis is the motor's RPM (10-points total)

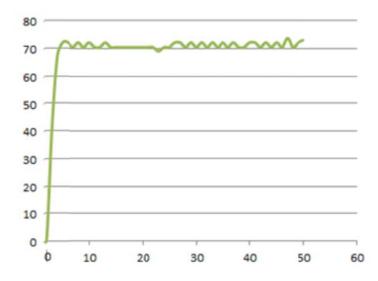


Figure 1A: Excel plot of nxtMotorData.csv

- A. Eyeball the plot. What is the steady-state RPM?
- B. Eyeball the plot. What is the value of the rise time?
- C. Using the understanding of time constants, <u>calculate</u> how many seconds it takes for the motor to reach 99% of the steady-state RPM?

4. In lab, you demonstrated bang-bang and PID obstacle avoidance using an ultrasonic sensor mounted on the Domabot's bow. Complete the following table (20-points total)

Trial	speedBase	o0bst	[oKp, oKi, oKd]	YouTube URL	Observations
А	50	30	[0, 0, 0]		
В	50	30	[20, 0.01, 0.5]		
С	30	30	[0, 0, 0]		
D	30	30	[20, 0.01, 0.5]		